1.1分类加法计数原理、分步乘法计数原理
【教学目标】
(1)理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的问题;
(2)培养归纳概括能力;
(3)养成 “自主学习”与“合作学习”等良好的学习习惯
【教学重点】
分类计数原理与分步计数原理的应用
【教学难点】
分类计数原理与分步计数原理的准确理解
第一课时
问题1.1:从温州到杭州,可以乘汽车,也可以乘火车,一天之中,火车有2班,汽车有3班,那么一天中,乘坐这些交通工具从温州到杭州共有几种不同的走法?
问题1.2:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?
探究:你能说说以上两个问题的特征吗?
分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有 m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.21教育网
问题1.3:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:www-2-1-cnjy-com
A大学 B大学
生物学 数学
化学 会计学
医学 信息技术学
物理学 法学
工程学
那么,这名同学可能的专业选择共有多少种?
变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?21世纪教育网版权所有
探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?21·世纪*教育网
如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?
分类加法计数原理
完成一件事,有n 类不同方案,在第1类方案中有m1 种不同方法,在第2类方案中有m2 种不同的方法,‥‥‥在第n类方案中有mn 种不同的方法, 那么完成这件事共有N种不同的方法: N=m1+m2+‥‥‥+mn 。21*cnjy*com
问题2.1:从温州到绍兴,没有直达的火车。但可以先乘火车到缙云,再搭汽车到绍兴。 一天之中,从温州到缙云的火车有3班(在中午之前),从缙云到绍兴的汽车有4班(在午后),那么一天中,乘坐这些交通工具从温州到绍兴共有几种不同的走法?
问题2.2:用前6个大写英文字母和1—9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?
探究:你能说说这个问题的特征吗?
分步乘法计数原理
完成一件事需要分二个步骤,在第1步中有m种不同的方法,在第2步中有n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.
问题2.3:书架上有不同的数学书3本,不同的语文书2本,不同的英语书4本,从书架上拿数学书、语文书、英语书各一本,共有多少种不同的拿法?
探究:如果完成一件事需要三个步骤,做第1步有m11种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?
分步乘法计数原理
完成一件事,需要分成 n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,‥‥‥做第n步有mn种不同的方法,那么完成这件事共有N种不同的方法。
N=m1×m2×‥‥‥×mn
思考:两个基本计数原理的联系与区别?
综合应用
问题3.1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.www.21-cn-jy.com
①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法?
③从书架上任取两本不同学科的书,有多少种不同的取法?
分三类:计+文;计+体;文+体
变式:问题③中的“学科”两字去掉,如何解决?
方法一:在问题③的基础上再加三类:计+计;文+文;体+体
方法二:在总共9本书中直接取两本,但要除以2(分步中暗藏着顺序). (9×8)/2
问题3.2 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?2-1-c-n-j-y
问题3.3 某班有男生25人,女生23人,
①要选一人参加市级会议,又要选男女生各一人参加学校会议(同一人可以参加两个会议)。问:有多少种不同的选法?
②要选一人参加市级会议,又要选男女生各一人参加学校会议(同一人不可以参加两个会议)。问:有多少种不同的选法?【出处:21教育名师】
第二课时
问题4.1 电信局规定:我校的电话号码前四位数字都是8679,后四位数字则是0到9之间的任意一个数字,那么我校最多可以装几部不同的号码的电话机?【来源:21·世纪·教育·网】
问题4.2 4封信投入10 个不同的信箱中,有多少种不同的投法?
思考:7名同学争夺三个体育项目的冠军,每人获得冠军的机会均等,那么产生三个项目的冠军共有几种可能的情况?21*cnjy*com
7名同学报名参加三个体育项目的比赛,要求每位同学限报一项比赛,问共有多少种不同的报名方法?
巩固练习
若集合A={a1,a2,a3,a4,a5},B={b1,b2},从集合A到集合B,可建立 32 个不同的映射,从B到A可建立 25 个不同的映射。21cnjy.com
问题5:(1995全国理)用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有(A)(A)24个 (B)30个 (C)40个 (D)60个【来源:21cnj*y.co*m】
巩固练习:
⑴用0,1,2, 3,4这5个数字组成无重复数字的五位数中,若按从小到大的顺序排列,那么12340应是(B )(A)第9个数 (B)第10个数(C)第11个数 (D)第12个数
⑵用1,2,3,4,5,6,7七个数字排列组成七位数,使其中偶位数上必定是偶数,那么可得七位数的个数是(B )(A)24 (B)144 (C)36 (D)
问题6:(2003广东省全国)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 72 种.(以数字作答)21教育名师原创作品
巩固练习:
⑴在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有_30___种.
⑵某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.
[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种法,所以共有4×3×2=24种不同种法.【版权所有:21教育】
下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4
块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.
若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.2·1·c·n·j·y
综上共有24×(2+2+1)=120种不同的种植方法.
问题7.某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?20
解:由题意可知,在艺术组9人中,有且仅有一人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把会钢琴、小号各1人的选法分为两类:
第一类:多面手入选,另一人只需从其他8人中任选一个,故这类选法共有8种.
第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号的1人也只能从只会小号的 2人中选出,放这类选法共有6×2=12种, 21·cn·jy·com
故共有20种不同的选法.
1.2.1排列
教学目标:理解排列、排列数的概念;
了解排列数公式的推导;
能用“树型图”写出一个排列中所有的排列;
能用排列数公式计算。
教学重点:排列、排列数的概念。
教学难点:排列数公式的推导
第一课时
一、复习引入:
1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有 种不同的方法
分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制
二、讲解新课:
1问题:
问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?21·cn·jy·com
分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素【版权所有:21教育】
解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.
把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca, cb,
共有 3×2=6 种.
问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?
分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法
由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法
显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:
第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;
第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;
第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.
根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有
4×3×2=24
种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示.
由此可写出所有的三位数:
123,124, 132, 134, 142, 143, 213,214, 231, 234, 241, 243,
312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 。
同样,问题 2 可以归结为:
从4个不同的元素a, b, c,d中任取 3 个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?
所有不同排列是
abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc,
cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb.
共有4×3×2=24种.
树形图如下
a b c d
b c d a c d a b d a b c
2.排列的概念:
从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列21教育网
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同
3.排列数的定义:
从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列2-1-c-n-j-y
4.排列数公式及其推导:
由的意义:假定有排好顺序的2个空位,从个元素中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数.由分步计数原理完成上述填空共有种填法,∴=
由此,求可以按依次填3个空位来考虑,∴=,
求以按依次填个空位来考虑,
排列数公式:
()
说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个
少1,最后一个因数是,共有个因数;
(2)全排列:当时即个不同元素全部取出的一个排列
全排列数:(叫做n的阶乘)
另外,我们规定 0! =1 .
例1.用计算器计算: (1); (2); (3).
解:用计算器可得:
由( 2 ) ( 3 )我们看到,.那么,这个结果有没有一般性呢?即
.
排列数的另一个计算公式:
=.
即 =
说明:(1)解含排列数的方程和不等式时要注意排列数中,且这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;
(2)公式常用来求值,特别是均为已知时,公式=,常用来证明或化简
第二课时
例1.(课本例2).某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?【来源:21·世纪·教育·网】
解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列.因此,比赛的总场次是=14×13=182.
例2.(课本例3).(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是=5×4×3=60.
(2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是5×5×5=125.
例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算.
例3.(课本例4).用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析:在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素.一般的,我们可以从特殊元素的排列位置人手来考虑问题
解法 1 :由于在没有重复数字的三位数中,百位上的数字不能是O,因此可以分两步完成排列.第1步,排百位上的数字,可以从1到9 这九个数字中任选 1 个,有种选法;第2步,排十位和个位上的数字,可以从余下的9个数字中任选2个,有种选法(图1.2一 5) .根据分步乘法计数原理,所求的三位数有
=9×9×8=648(个) .
解法 2 :如图1.2 一6 所示,符合条件的三位数可分成 3 类.每一位数字都不是位数有 A 母个,个位数字是 O 的三位数有揭个,十位数字是 0 的三位数有揭个.根据分类加法计数原理,符合条件的三位数有
=648个.
解法 3 :从0到9这10个数字中任取3个数字的排列数为,其中 O 在百位上的排列数是,它们的差就是用这10个数字组成的没有重复数字的三位数的个数,即所求的三位数的个数是【来源:21cnj*y.co*m】
-=10×9×8-9×8=648.
对于例9 这类计数问题,可用适当的方法将问题分解,而且思考的角度不同,就可以有不同的解题方法.解法 1 根据百位数字不能是。的要求,分步完成选 3 个数组成没有重复数字的三位数这件事,依据的是分步乘法计数原理;解法 2 以 O 是否出现以及出现的位置为标准,分类完成这件事情,依据的是分类加法计数原理;解法 3 是一种逆向思考方法:先求出从10个不同数字中选3个不重复数字的排列数,然后从中减去百位是。的排列数(即不是三位数的个数),就得到没有重复数字的三位数的个数.从上述问题的解答过程可以看到,引进排列的概念,以及推导求排列数的公式,可以更加简便、快捷地求解“从n个不同元素中取出 m (m≤n)个元素的所有排列的个数”这类特殊的计数问题.
1.1节中的例 9 是否也是这类计数问题?你能用排列的知识解决它吗?
小结:排列的特征:一个是“取出元素”;二是“按照一定顺序排列” ,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志。根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同. 了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”.前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去.了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。21cnjy.com
四、课堂练习:
1.若,则 ( )
2. 若,则的值为 ( )
3.计算: ;
4.已知,那么 ;
5.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?21教育名师原创作品
6.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?
第三课时
例1.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?
解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法
(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:,所以,共有125种不同的送法
说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算
例2.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是:,www-2-1-cnjy-com
例3.将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?【出处:21教育名师】
分析:解决这个问题可以分为两步,第一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;21*cnjy*com
第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,
利用分步计数原理即得分配方案的种数
解:由分步计数原理,分配方案共有(种)例4.用0到9这10个数字,可以组成多少个没有重复数字的三位数?
解法1:用分步计数原理:
所求的三位数的个数是:
解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0的三位数有个,十位数字是0的三位数有个,
由分类计数原理,符合条件的三位数的个数是:.
解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的个数是-.
说明:解决排列应用题,常用的思考方法有直接法和间接法直接法:通过对问题进行恰当的分类和分步,直接计算符合条件的排列数如解法1,2;间接法:对于有限制条件的排列应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再减去不符合限制条件的情况种数如解法3.对于有限制条件的排列应用题,要恰当地确定分类与分步的标准,防止重复与遗漏
第四课时
例5.(1)7位同学站成一排,共有多少种不同的排法?
解:问题可以看作:7个元素的全排列=5040.
(2)7位同学站成两排(前3后4),共有多少种不同的排法?
解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
解:问题可以看作:余下的6个元素的全排列——=720.
(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
解:根据分步计数原理:第一步 甲、乙站在两端有种;
第二步 余下的5名同学进行全排列有种,所以,共有=240种排列方法
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有=2400种排列方法
解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有-+=2400种.
说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑
例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
解法一:(从特殊位置考虑);
解法二:(从特殊元素考虑)若选:;若不选:,
则共有种;
解法三:(间接法)
第五课时
例7. 7位同学站成一排,
(1)甲、乙两同学必须相邻的排法共有多少种?
解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种21世纪教育网版权所有
(2)甲、乙和丙三个同学都相邻的排法共有多少种?
解:方法同上,一共有=720种
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有=960种方法
解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,2·1·c·n·j·y
所以,丙不能站在排头和排尾的排法有种方法
解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有=960种方法.www.21-cn-jy.com
(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起
解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:(种)
说明:对于相邻问题,常用“捆绑法”(先捆后松).
例8.7位同学站成一排,
(1)甲、乙两同学不能相邻的排法共有多少种?
解法一:(排除法);
解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法.21*cnjy*com
(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?
解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有=1440种.
说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).
例9.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
解:(1)先将男生排好,有种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有种排法21·世纪*教育网
故本题的排法有(种);
(2)方法1:;
方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法
故本题的结论为(种)
1.2.2组合
教学目标:
1.理解组合的意义,掌握组合数的计算公式;
2.能正确认识组合与排列的联系与区别
教学重点:
理解组合的意义,掌握组合数的计算公式
第一课时
一、复习引入:
1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有 种不同的方法
3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列
4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示
5.排列数公式:()
6阶乘:表示正整数1到的连乘积,叫做的阶乘规定.
7.排列数的另一个计算公式:=
8.提出问题:
示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合.
二、讲解新课:
1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合
说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同
例1.判断下列问题是组合还是排列
(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?
(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?
(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?
(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?
问题:(1)1、2、3和3、1、2是相同的组合吗?
(2)什么样的两个组合就叫相同的组合
2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数.用符号表示.www-2-1-cnjy-com
例2.用计算器计算.
解:由计算器可得
例3.计算:(1); (2);
(1)解: =35;
(2)解法1:=120.
解法2:=120.
第二课时
3.组合数公式的推导:
(1)从4个不同元素中取出3个元素的组合数是多少呢?
启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下:21cnjy.com
组 合 排列
由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有个;② 对每一个组合的3个不同元素进行全排列,各有种方法.由分步计数原理得:=,所以,.21世纪教育网版权所有
(2)推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步:
① 先求从n个不同元素中取出m个元素的组合数;
② 求每一个组合中m个元素全排列数,根据分步计数原理得:=.
(3)组合数的公式:
或
规定: .
三、讲解范例:
例4. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:21教育网
(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?
分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.www.21-cn-jy.com
解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) . 2·1·c·n·j·y
(2)教练员可以分两步完成这件事情:
第1步,从17名学员中选出 n 人组成上场小组,共有种选法;
第2步,从选出的 n 人中选出 1 名守门员,共有种选法.
所以教练员做这件事情的方法数有
=136136(种).
例5.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?
(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?
解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有21教育名师原创作品
(条).
(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有
(条).
例6.在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种?
(3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?
解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有
= 161700 (种).
(2)从2 件次品中抽出 1 件次品的抽法有种,从 98 件合格品中抽出 2 件合格品的抽法有种,因此抽出的 3 件中恰好有 1 件次品的抽法有【出处:21教育名师】
=9506(种).
(3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有21*cnjy*com
+=9 604 (种) .
解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即
=161 700-152 096 = 9 604 (种).
说明:“至少”“至多”的问题,通常用分类法或间接法求解。
变式:按下列条件,从12人中选出5人,有多少种不同选法?
(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;
例7.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?
解:.
(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?21·cn·jy·com
解:问题可以分成2类:
第一类 2名男生和2名女生参加,有中选法;
第二类 3名男生和1名女生参加,有中选法
依据分类计数原理,共有100种选法
错解:种选法引导学生用直接法检验,可知重复的很多
例8.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有,,,
所以,一共有++=100种方法.
解法二:(间接法)
第四课时
组合数的性质1:.
一般地,从n个不同元素中取出个元素后,剩下个元素.因为从n个不同元素中取出m个元素的每一个组合,与剩下的n ? m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n ? m个元素的组合数,即:.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想
说明:①规定:;
②等式特点:等式两边下标同,上标之和等于下标;
③此性质作用:当时,计算可变为计算,能够使运算简化.
例如===2002;
④或.
2.组合数的性质2:=+.
一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m ?1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.
证明:
∴=+.
说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;21·世纪*教育网
②此性质的作用:恒等变形,简化运算
例9.一个口袋内装有大小不同的7个白球和1个黑球,
(1)从口袋内取出3个球,共有多少种取法?
(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?
解:(1),或,;(2);(3).
例10.计算:.
解:原式;
例11.第17届世界杯足球赛于2002年夏季在韩国、日本举办、五大洲共有32支球队有幸参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、四名,问这次世界杯总共将进行多少场比赛?2-1-c-n-j-y
答案是:,这题如果作为习题课应如何分析
解:可分为如下几类比赛:
⑴小组循环赛:每组有6场,8个小组共有48场;
⑵八分之一淘汰赛:8个小组的第一、二名组成16强,根据抽签规则,每两个队比赛一场,可以决出8强,共有8场;【来源:21·世纪·教育·网】
⑶四分之一淘汰赛:根据抽签规则,8强中每两个队比赛一场,可以决出4强,共有4场;
⑷半决赛:根据抽签规则,4强中每两个队比赛一场,可以决出2强,共有2场;
⑸决赛:2强比赛1场确定冠亚军,4强中的另两队比赛1场决出第三、四名 共有2场.
综上,共有场
小结:
1注意区别“恰好”与“至少”
从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种
2特殊元素(或位置)优先安排
将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有种21*cnjy*com
3“相邻”用“捆绑”,“不邻”就“插空”
七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种
4、混合问题,先“组”后“排”
对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?【版权所有:21教育】
5、分清排列、组合、等分的算法区别
(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?
(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?
(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?
6、分类组合,隔板处理
从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
四、课堂练习:
1.判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
2.名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )
. . . .
3.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )
.对 .对 .对 .对
4.设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( )【来源:21cnj*y.co*m】
. . . .
5.从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法
6.从位同学中选出人去参加座谈会,有 种不同的选法
7.圆上有10个点:
(1)过每2个点画一条弦,一共可画 条弦;
(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形
8.(1)凸五边形有 条对角线;(2)凸五边形有 条对角线
9.计算:(1);(2).
10.个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?
11.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?
12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?
13.写出从这个元素中每次取出个的所有不同的组合
答案:1. (1)组合, (2)排列 2. B 3. A 4. D 5. 30 6. 15
7. (1)45 (2) 120 8. (1)5(2)
9. ⑴455; ⑵ 10. ⑴10; ⑵20
11. ⑴; ⑵
12.
13. ; ; ; ;
1.3.1二项式定理
【教学目标】
(1)理解用组合的知识推导二项式定理;
(2)理解通项的意义并会灵活应用通项,能区分项的系数与二项式系数的不同;
(3)会用二项式定理解决与二项展开式有关的简单问题.
(4)充分体验归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
【教学重点】
二项式定理及通项公式的掌握及运用
【教学难点】
二项式定理及通项公式的掌握及运用
第一课时
一、复习引入:
⑴;
⑵
⑶的各项都是次式,
即展开式应有下面形式的各项:,,,,,
展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是,21教育网
∴.
二、讲解新课:
二项式定理:
⑴的展开式的各项都是次式,即展开式应有下面形式的各项:
,,…,,…,,
⑵展开式各项的系数:
每个都不取的情况有种,即种,的系数是;
恰有个取的情况有种,的系数是,……,
恰有个取的情况有种,的系数是,……,
有都取的情况有种,的系数是,
∴,
这个公式所表示的定理叫二项式定理,右边的多项式叫的二项展开式,⑶它有项,各项的系数叫二项式系数,21·cn·jy·com
⑷叫二项展开式的通项,用表示,即通项.
⑸二项式定理中,设,则
三、讲解范例:
例1.展开.
解一: .
解二:
.
例2.展开.
解:
.
第二课时
例3.求的展开式中的倒数第项
解:的展开式中共项,它的倒数第项是第项,
.
例4.求(1),(2)的展开式中的第项.
解:(1),
(2).
点评:,的展开后结果相同,但展开式中的第项不相同
例5.(1)求的展开式常数项;
(2)求的展开式的中间两项
解:∵,
∴(1)当时展开式是常数项,即常数项为;
(2)的展开式共项,它的中间两项分别是第项、第项,
,
第三课时
例6.(1)求的展开式的第4项的系数;
(2)求的展开式中的系数及二项式系数
解:的展开式的第四项是,
∴的展开式的第四项的系数是.
(2)∵的展开式的通项是,
∴,,
∴的系数,的二项式系数.
例7.求的展开式中的系数
分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开21世纪教育网版权所有
解:(法一)
,
显然,上式中只有第四项中含的项,
∴展开式中含的项的系数是
(法二):
∴展开式中含的项的系数是.
例8.已知 的展开式中含项的系数为,求展开式中含项的系数最小值
分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解21cnjy.com
解:展开式中含的项为
∴,即,
展开式中含的项的系数为
,
∵, ∴,
∴
,∴当时,取最小值,但,
∴ 时,即项的系数最小,最小值为,此时.
第四课时
课堂练习:
1.求的展开式的第3项.
2.求的展开式的第3项.
3.写出的展开式的第r+1项.
4.求的展开式的第4项的二项式系数,并求第4项的系数.
5.用二项式定理展开:
(1);(2).
6.化简:(1);(2)
7.展开式中的第项为,求.
8.求展开式的中间项
答案:1.
2.
3.
4.展开式的第4项的二项式系数,第4项的系数
5.(1);
(2).
6. (1);
(2)
7. 展开式中的第项为
8. 展开式的中间项为
1.3.2 “杨辉三角”与二项式系数的性质
●三维目标
1.知识与技能
(1)能认识杨辉三角,并能利用它解决实际问题.
(2)记住二项式系数的性质,并能解决相关问题.
2.过程与方法
通过观察、分析杨辉三角数表的特点,掌握二项式系数的性质.
3.情感、态度与价值观
通过“杨辉三角”的学习,了解中华民族的历史,增强爱国主义意识.
●重点、难点
重点:二项式系数的性质.
难点:杨辉三角的结构.
第一课时
【问题导思】
(1)观察“杨辉三角”发现规律
①第一行中各数之和为多少?
第二、三、四、五行呢?由此你能得出怎样的结论?
②观察第3行中2与第2行各数之间什么关系?
第4行中3与第2行各数之间什么关系?
第5行中的4、6与第4行各数之间有什么关系?
由此你能得出怎样的结论?
【提示】 (1)①20,21,22,23,24,第n行各数之和为2n-1.
②2=1+1,3=2+1,4=1+3,6=3+3,相邻两行中,除1外的每一个数都等于它“肩上”两个数的和,设C表示任一不为1的数,则它“肩上”两数分别为C,C,所以C=C+C.21cnjy.com
1.杨辉三角的特点
(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.
(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C=C+C.
2.二项式系数的性质
(1)对称性:在(a+b)n的展开式中,与首末两端“等距离”的两个二项式系数相等,即C=C,C=C,…,C=C.www.21-cn-jy.com
(2)增减性与最大值:当k<时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n是偶数时,中间一项的二项式系数Cn取得最大值;当n是奇数时,中间两项的二项式系数Cn,Cn相等,且同时取得最大值.
3.二项式系数的和
(1)C+C+C+…+C=2n. (2)C+C+C+…=C+C+C+…=2n-1.
图1-3-1
例1 如图1-3-1所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,记其前n项和为Sn,求S16的值.21世纪教育网版权所有
【思路探究】 观察数列的特点、它在杨辉三角中的位置,或者联系二项式系数的性质,直接对数列求和即可.
【自主解答】 由题意及杨辉三角的特点可得:
S16=(1+2)+(3+3)+(6+4)+(10+5)+…+(36+9)
=(C+C)+(C+C)+(C+C)+…+(C+C)
=(C+C+C+…+C)+(2+3+…+9)
=C+
=164.
解决与杨辉三角有关的问题的一般思路:
(1)观察:对题目进行多角度观察,找出每一行的数与数之间,行与行之间的数的规律.
(2)表达:将发现的规律用数学式子表达.
(3)结论:由数学表达式得出结论.
本例条件不变,若改为求S21,则结果如何?
【解】 S21=(1+2)+(3+3)+(6+4)+…+(55+11)+66
=(C+C)+(C+C)+(C+C)+…+(C+C)+C
=(C+C+C+……C)+(2+3+…+11)
=C+
=286+65
=351.
第二课时
例1:设(1-2x)2 012=a0+a1x+a2x2+…+a2 012·x2 012(x∈R).
(1)求a0+a1+a2+…+a2 012的值.
(2)求a1+a3+a5+…+a2 011的值.
(3)求|a0|+|a1|+|a2|+…+|a2 012|的值.
【思路探究】 先观察所要求的式子与展开式各项的特点,用赋值法求解.
【自主解答】 (1)令x=1,得
a0+a1+a2+…+a2 012=(-1)2 012=1.①
(2)令x=-1,得a0-a1+a2-…+a2 012=32 012.②
①-②得
2(a1+a3+…+a2 011)=1-32 012,
∴a1+a3+a5+…+a2 011=.
(3)∵Tr+1=C(-2x)r=(-1)r·C·(2x)r,
∴a2k-1<0(k∈N*),a2k>0(k∈N).
∴|a0|+|a1|+|a2|+|a3|+…+|a2 012|
=a0-a1+a2-a3+…+a2 012=32 012.
1.本题根据问题恒等式的特点采用“特殊值”法即“赋值法”,这是一种重要的方法,适用于恒等式.
2.“赋值法”是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.
例2:已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7,a0+a2+a4+a6.
【解】 (1)∵(1-2x)7=a0+a1x+a2x2+…+a7x7,
令x=1,得
a0+a1+a2+…+a7=-1,①
令x=0,得a0=1,
∴a1+a2+…+a7=-2.
(2)令x=-1,得
a0-a1+a2-a3+…+a6-a7=37=2187,②
由①、②得
a1+a3+a5+a7=-1 094,
a0+a2+a4+a6=1 093.
例3 已知f(x)=(+3x2)n展开式中各项的系数和比各项的二项式系数和大992.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
【思路探究】 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x,y的系数均考虑进去,包括“+”、“-”号.21教育网
【自主解答】 令x=1,则二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n.由题意知,4n-2n=992.21·cn·jy·com
∴(2n)2-2n-992=0,
∴(2n+31)(2n-32)=0,
∴2n=-31(舍去),或2n=32,∴n=5.
(1)由于n=5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是
假设Tr+1项系数最大,
则有
∴∴
∴≤r≤,∵r∈N,∴r=4.
小结:1.求二项式系数最大的项,根据二项式系数的性质,当n为奇数时,中间两项的二项式系数最大;当n为偶数时,中间一项的二项式系数最大.2·1·c·n·j·y
2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.【来源:21·世纪·教育·网】
练习:求(1+2x)7的展开式中的二项式系数最大项与系数最大项.
【解】 在二项式系数C,C,C,…,C中,最大的是C与C,故二项式系数最大项是第4项与第5项,即T4=C(2x)3=280x3与T5=C(2x)4=560x4.21·世纪*教育网
设第r+1项的系数最大,则由?
?由于r是整数,故r=5,所以系数最大的是第6项,即T6=C(2x)5=672x5.
第三课时
例4 已知(2x-1)n二项展开式中,奇次项系数的和比偶次项系数的和小38,则C+C+C+…+C的值为( )www-2-1-cnjy-com
A.28 B.28-1 C.27 D.27-1
【错解】 设(2x-1)n=a0+a1x+a2x2+…+anxn,
令A=a1+a3+a5+…,B=a0+a2+a4+…,
由题意知B-A=38.
令x=-1得a0-a1+a2-a3+…+an(-1)n=(-3)n,
∴(a0+a2+…)-(a1+a3+…)=(-3)n
∴B-A=(-3)n=38,∴n=8.
由二项式系数性质可得,a+a+…+C=2n=28
【答案】 A
【错因分析】 误将C+C+…+C看作是二项展开式各项二项式系数和,忽略了C.
【防范措施】 (1)解答本题应认真审题,搞清已知条件以及所要求的结论,避免失误.
(2)解决此类问题时,要对二项式系数的性质熟练把握,尤其是赋值法,要根据题目的要求,灵活赋给字母所取的不同值.2-1-c-n-j-y
【正解】 设(2x-1)n=a0+a1x+a2x2+…+anxn,且奇次项的系数和为A,偶次项的系数和为B.21*cnjy*com
则A=a1+a3+a5+…,B=a0+a2+a4+a6+….
由已知可知:B-A=38.令x=-1,
得:a0-a1+a2-a3+…+an(-1)n=(-3)n,
即:(a0+a2+a4+a6+…)- (a1+a3+a5+a7+…)=(-3)n,
即:B-A=(-3)n.∴(-3)n=38=(-3)8,∴n=8.
由二项式系数性质可得:
C+C+C+…+C=2n-C=28-1.
【答案】 B
二项式系数的有关性质的形成过程体现了观察——归纳——猜想——证明的数学方法,并且在归纳证明的过程中应用了函数、方程等数学思想,大致对应如下:
对称性应用了组合数的性质增减性与最大值应用了组合数公式、
分类讨论思想等系数和应用了赋值法、方程思想
1.(a+b)7的各二项式系数的最大值为( )
A.21 B.35 C.34 D.70
【答案】 B
2.在(a-b)20的二项展开式中,二项式系数与第6项二项式系数相同的项是( )
A.第15项 B.第16项
C.第17项 D.第18项
【解析】 由二项式系数的性质知与第6项系数相等的项应为倒数第6项,即第16项.
【答案】 B
3.(1+2x)2n的展开式中,二项式系数最大的项所在的项数是第________项.
【解析】 (1+2x)2n的展开式中共有2n+1项,中间一项的系数最大,即第n+1项.
【答案】 n+1
4.已知(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,试求:
(1)a0+a1+a2+…+a14;
(2)a1+a3+a5+…+a13.
【解】 (1)在已知等式中令x=1,则得:
a0+a1+a2+…+a13+a14=27=128.①
(2)在已知等式中令x=-1,则得:
a0-a1+a2-a3+…-a13+a14=67.②
①-②得:
2(a1+a3+a5+…+a13)=27-67=-279 808.
因此,a1+a3+a5+…+a13=-139 904.