广东单元测试(五) 数据的分析
(时间:40分钟 满分:100分)
一、选择题(本大题共10小题,每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
选项
1.某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是()
A.71.8 B.77 C.82 D.95.7
2.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()
A.方差 B.平均数 C.中位数 D.众数
3.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是()
A.1 B. C.0 D.2
4.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()
A.83.5分 B.84.5分 C.85.5分 D.86.35分
5.甲、乙、丙、丁四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如下表所示:
甲
乙
丙
丁
x
7
8
8
7
s2
1
1
1.2
1.8
如果选出一名成绩较好且状态稳定的运动员去参赛,那么应选()
A.甲 B.乙 C.丙 D.丁
6.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:
身高(cm)
176
178
180
182
186
188
192
人数(人)
1
2
3
2
1
1
1
则这11名队员身高的众数和中位数分别是(单位:cm)()
A.180,180 B.180,182 C.182,182 D.3,2
7.A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C三人的平均成绩是78分,下列说法一定正确的是()
A.D,E两人的成绩比其他三人都好 B.D,E两人的平均成绩是83分
C.五人的成绩的中位数一定是80分 D.五人的成绩的众数一定是80分
8.小丽根据演讲比赛中九位评委所给的分数作了如下表格:
平均数
中位数
众数
方差
8.5
8.3
8.1
0.15
如果去掉一个最高分和一个最低分,那么表中数据一定不会发生变化的是()
A.平均数 B.众数 C.方差 D.中位数
9.若一组数据1,2,3,4,x的平均数与中位数相同,则x的值不可能是()
A.0 B.2.5 C.3 D.5
10.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()
A.1 B.2 C.3 D.4
二、填空题(本大题共6小题,每小题4分,共24分)
11.红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有____________人.
12.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为____________分.
13.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿片.现从它们分装的火腿片中各随机抽取10盒,经称量并计算得到质量的方差如下表所示,你认为包装质量最稳定的切割包装机是____________.
包装机
甲
乙
丙
方差
1.70
2.29
7.23
14.有5个从小到大排列的正整数,如果中位数是3,唯一的众数是7,那么这5个数的平均数是____________.
15.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为____________(请用“>”连接).
16.若一组数据x1,x2,…,xn的平均数是a,方差是b,则4x1-3,4x2-3,…,4xn-3的平均数是____________,方差是____________.
三、解答题(本大题共5小题,共46分)
17.(6分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:
学生
平时作业
单元测验
期中考试
期末考试
小丽
80
75
71
88
小明
76
80
70
90
请你通过计算,比较谁的学期总评成绩高?
18.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A,B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg):
A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.2
5.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0
B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.9
5.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3
(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:
优等品数量(个)
平均数
方差
A
4.990
0.103
B
4.975
0.093
(2)请分别从优等品数量、平均数与方差三方面对A,B两种技术作出评价.从市场销售的角度看,你认为推广哪种种植技术较好?
19.(10分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).
请根据图中提供的信息,解答下列问题:
(1)这次活动中学生做家务时间的中位数所在的组是____________;
(2)补全频数分布直方图;
(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.
20.(10分)在某旅游景区上山的一条山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路高度的示意图.(单位:cm)
(1)两段台阶路有哪些相同点与不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为了方便游客行走,需要重新整修上山的小路,对于这两条台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
21.(12分)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:
质量/kg
0.5
0.6
0.7
1.0
1.2
1.6
1.9
数量/条
1
8
15
18
5
1
2
然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.
(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);
(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).
广东单元测试(五) 数据的分析
1.C 2.D 3.A 4.B 5.B 6.A 7.B 8.D 9.C 10.C 11.680 12.88 13.甲 14.4 15.b>a>c
16.4a-3 16b
17.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),80.6>79.05,所以小明的学期总评成绩高.
18.(1)16 10 (2)从优等品数量的角度看,因为A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因为A技术种植的西瓜质量的平均数更接近5 kg,所以A技术较好;从方差的角度看,因为B技术种植的西瓜质量的方差更小,所以B技术种植的西瓜质量更为稳定;从市场销售角度看,因为优等品更畅销,A技术种植的西瓜优等品数量更多,且平均质量更接近5 kg,所以更适合推广A种技术.
19.(1)C组 (2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x<2.5,所以小明的判断符合实际.
20.(1)因为x甲=15,x乙=15,所以,相同点是两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差均不相同.(2)甲路段走起来更舒服些,因为它的台阶高度的方差小些.(3)使每个台阶高度均为15 cm,使得台阶路高度的方差为0.
21.(1)补图略.(2)其质量落在0.5~0.8 kg这一组内的可能性最大.(3)质量落在0.8~1.1 kg这一组内.(4)平均数x==0.904(kg).50÷×0.904=2 260(kg).∴水库中成品鱼的总质量约为2 260 kg.(答案不唯一,合理即可)