课时作业10 分层抽样
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取的居民家庭进行调查,这种抽样是( )【来源:21·世纪·教育·网】
A.简单随机抽样 B.系统抽样
C.分层抽样 D.分类抽样
解析:符合分层抽样的特点.
答案:C
2.为了保证分层抽样时,每个个体等可能地被抽取,必须要求( )
A.每层的个体数必须一样多
B.每层抽取的个体数相等
C.每层抽取的个体可以不一样多,但必须满足抽取ni=n·(i=1,2,…,k)个个体,其中k是层数,n是抽取的样本容量,Ni是第i层所包含的个体数,N是总体容量
D.只要抽取的样本容量一定,每层抽取的个体数没有限制
解析:
选项
正误
理由
A
×
每层的个体数不一定都一样多
B
×
由于每层的容量不一定相等,每层抽同样多的个体,从整个总体来看,各层之间的个体被抽取的可能性显然就不一样了
C
√
对于第i层的每个个体,它被抽到的可能性与层数i无关,即对于每个个体来说,被抽入样本的可能性是相同的
D
×
每层抽取的个体数是有限制的
答案:C
3.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区作分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )21教育网
A.101 B.808
C.1 212 D.2 012
解析:由题意知抽样比为,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有=,解得N=808.2-1-c-n-j-y
答案:B
4.某地区高中分三类,A类学校共有学生4 000人,B类学校共有学生2 000人,C类学校共有学生3 000人,现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A类学校抽取的试卷份数为( )21*cnjy*com
A.450 B.400
C.300 D.200
解析:应采取分层抽样(因为学校间差异大),抽取的比例为4 000:2 000:3 000,即4:2:3,所以A类学校应抽取900×=400(份).【来源:21cnj*y.co*m】
答案:B
5.当前,国家正分批修建经济适用房以解决低收入家庭住房紧张的问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )21cnjy.com
A.40 B.30
C.20 D.36
解析:抽样比为=,则应从甲社区中抽取低收入家庭的户数为360×=40.
答案:A
二、填空题(每小题5分,共15分)
6.(黄山高一检测)在距离2016年央视春晚直播不到20天的时候,某媒体报道,由六小龄童和郭富城合演的《猴戏》节目被毙,为此,某网站针对“是否支持该节目上春晚”对网民进行调查,得到如下数据:【出处:21教育名师】
网民态度
支持
反对
无所谓
人数(单位:人)
8 000
6 000
10 000
若采用分层抽样的方法从中抽取48人进行座谈,则持“支持”态度的网民抽取的人数为________.
解析:由分层抽样的方法,得持“支持”态度的网民抽取的人数为:48×=48×=16.
答案:16
7.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.21世纪教育网版权所有
解析:设乙设备生产的产品总数为x件,由已知得:=,解得x=1 800.
答案:1 800
8.一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用下述抽样方法抽取一个容量为8的样本:即在0组先随机抽取一个号码i,则k组抽取的号码为10k+j,其中j=若先在0组抽取的号码为6,则所抽到的8个号码依次为______________.www.21-cn-jy.com
解析:因为i=6,所以1组抽取号码为10×1+(6+1)=17,2组抽取号码为10×2+(6+2)=28,3组抽取号码为10×3+(6+3)=39,4组抽取号码为10×4+(6+4-10)=40,5组抽取号码为10×5+(6+5-10)=51,6组抽取号码为10×6+(6+6-10)=62,7组抽取号码为10×7+(6+7-10)=73.21·世纪*教育网
答案:6,17,28,39,40,51,62,73
三、解答题(每小题10分,共20分)
9.某政府机关有在编人员160人,其中有一般干部112人,副处级以上干部16人,后勤工人32人,为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取样本,并具体实施操作.【版权所有:21教育】
解析:因机构改革关系到每个人的不同利益,故采用分层抽样方法较妥.
(1)样本容量与总体的个体数的比为=.
(2)确定各层干部要抽取的数目:
一般干部112×=14(人),副处级以上干部16×=2(人),后勤工人32×=4(人).
∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4个.
(3)因副处级以上干部与后勤工人数都较少,他们分别按1~16编号和1~32编号,然后采用抽签法分别抽取2人和4人;对一般干部112人采用000,001,002,…,111编号,然后用随机数表法抽取14人.这样便得到一个容量为20的样本.21教育名师原创作品
10.(莱州检测)某校高一年级500名学生中,血型为O型的有200人,血型为A型的有125人,血型为B型的有125人,血型为AB型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB型的抽样过程.
解析:因为40÷500=,所以应用分层抽样法抽取血型为O型的×200=16(人),A型的×125=10(人),B型的×125=10(人),AB型的×50=4(人).
AB型的4人可以这样抽取:
第一步,将50人随机编号,编号为1,2,…,50.
第二步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签.
第三步,把得到的号签放入一个不透明的袋子中,充分搅拌均匀.
第四步,从袋子中逐个抽取4个号签,并记录上面的编号.
第五步,根据所得编号找出对应的4人即可得到样本.
|能力提升|(20分钟,40分)
11.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )21*cnjy*com
A.60 B.80
C.120 D.180
解析:11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为,故=,得x=360,则在15~16岁学生中抽取的问卷份数为360×=120.
答案:C
12.某机关老年、中年、青年的人数分别为18,12,6,现从中抽取一个容量为n的样本,若采用系统抽样和分层抽样,则不用剔除个体.当样本容量增加1时,若采用系统抽样,需在总体中剔除1个个体,则样本容量n=________.
解析:当样本容量为n时,因为采用系统抽样时不用剔除个体,所以n是18+12+6=36的约数,n可能为1,2,3,4,6,9,12,18,36.因为采用分层抽样时不用剔除个体,所以×18=,×12=,×6=均是整数,所以n可能为6,12,18,36.又因为当样本容量增加1时,需要剔除1个个体,才能用系统抽样,所以n+1是35的约数,而n+1可能为7,13,19,37,所以n+1=7,所以n=6.
答案:6
13.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解析:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,
则有=47.5%,=10%.
解得b=50%,c=10%.
故a=1-50%-10%=40%.
即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.
(2)游泳组中,抽取的青年人数为200××40%=60;
抽取的中年人数为200××50%=75;
抽取的老年人数为200××10%=15.
14.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.
(1)应如何抽取才能得到比较客观的评价结论?
(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?
(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?
解析:(1)由于这次活动对教职员工、初中生和高中生产生的影响会不相同,所以应当采取分层抽样的方法进行抽样.因为样本容量=120,总体个数=500+3 000+4 000=7 500,则抽样比:=所以有500×=8,3 000×=48,4 000×=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.21·cn·jy·com
分层抽样的步骤是:
①分层:分为教职员工、初中生、高中生,共三层.
②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.
③各层分别按简单随机抽样或系统抽样的方法抽取样本.
④综合每层抽样,组成样本.
这样便完成了整个抽样过程,就能得到比较客观的评价结论.
(2)由于简单随机抽样有两种方法:抽签法和随机数表法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数表抽取样本,步骤是:2·1·c·n·j·y
①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.
②在随机数表上随机选取一个起始位置.
③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.www-2-1-cnjy-com
课时作业11 用样本的频率分布估计总体分布
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是( )
A.频率分布折线图与总体密度曲线无关
B.频率分布折线图就是总体密度曲线
C.样本容量很大的频率分布折线图就是总体密度曲线
D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线
解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.www-2-1-cnjy-com
答案:D
2.
某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )【来源:21cnj*y.co*m】
A.甲城市销售额多,乙城市销售额不够稳定
B.甲城市销售额多,乙城市销售额稳定
C.乙城市销售额多,甲城市销售额稳定
D.乙城市销售额多,甲城市销售额不够稳定
解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.【出处:21教育名师】
答案:D
3.(南宁高一检测)有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5],8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的( )21*cnjy*com
A.91% B.92%
C.95% D.30%
解析:不大于27.5的样本数为:3+8+9+11+10=41,所以约占总体百分比为×100%≈91%.
答案:A
4.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )
A.45 B.50
C.55 D.60
解析:设该班人数为n,则20×(0.005+0.01)n=15,n=50,故选B.
答案:B
5.(北京高一检测)如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为10,则抽取的学生人数为( )
A.20 B.30
C.40 D.50
解析:前3组的频率之和等于1-(0.012 5+0.037 5)×5=0.75,第2小组的频率是0.75×=0.25,设样本容量为n,则=0.25,即n=40.21世纪教育网版权所有
答案:C
二、填空题(每小题5分,共15分)
6.一个容量为32的样本,分成5组,已知第三组的频率为0.375,则另外四组的频数之和为________.21cnjy.com
解析:由题意,得第三组的频数为32×0.375=12.
所以另外四组的频数之和为32-12=20.
答案:20
7.(杭州高一检测)某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有____________根棉花纤维的长度小于20 mm.
解析:由题意知,棉花纤维的长度小于20 mm的频率为(0.01+0.01+0.04)×5=0.3,故抽测的100根中,棉花纤维的长度小于20 mm的有0.3×100=30(根).
答案:30
8.某省选拔运动员参加运动会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.21教育网
解析:依题意得,180×2+1+170×5+3+x+8+9=177×7,x=8.
答案:8
三、解答题(每小题10分,共20分)
9.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图:
(1)甲、乙两名队员的最高得分各是多少?
(2)哪名运动员的成绩好一些?
解析:(1)甲、乙两名队员的最高得分分别为51分,52分.
(2)从茎叶图可以看出,甲运动员得分大致对称,乙运动员的得分除一个52分以外,也大致对称.因此甲运动员的成绩好,总体得分比乙好.21·cn·jy·com
10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.www.21-cn-jy.com
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
解析:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:
=0.08;
又因为第二小组频率=,
所以样本容量===150.
(2)由图可估计该学校高一学生的达标率约为×100%=88%.
|能力提升|(20分钟,40分)
11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )2·1·c·n·j·y
A.0.001 B.0.1
C.0.2 D.0.3
解析:由频率分布直方图的意义可知,各小长方形的面积=组距×=频率,即各小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.21*cnjy*com
答案:D
12.下列说法正确的是________.(填序号)
(1)频率分布直方图中每个小矩形的面积等于相应组的频数.
(2)频率分布直方图的面积为对应数据的频率.
(3)频率分布直方图中各小矩形的高(平行于纵轴的边)表示频率与组距的比.
解析:在频率分布直方图中,横轴表示样本数据;纵轴表示.由于小矩形的面积=组距×=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1.综上可知(3)正确.【来源:21·世纪·教育·网】
答案:(3)
13.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00各自的车流量(单位:百辆),得如图所示的统计图,问:2-1-c-n-j-y
(1)甲、乙两个交通站的车流量的极差分别是多少?
(2)甲交通站的车流量在[10,40]间的频率是多少?
(3)甲、乙两个交通站哪个站更繁忙?并说明理由.
解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).【版权所有:21教育】
(2)甲交通站的车流量在[10,40]间的频率为=.
(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.21教育名师原创作品
14.为调查我校学生的用电情况,学校后勤部门组织抽取了100间学生宿舍某月用电量调查,发现每间宿舍用电量都在50度到350度之间,其频率分布直方图如图所示.
(1)为降低能源损耗,节约用电,学校规定:每间宿舍每月用电量不超过200度时,按每度0.5元收取费用;超过200度,超过部分按每度1元收取费用.以t表示某宿舍的用电量(单位:度),以y表示该宿舍的用电费用(单位:元),求y与t的函数关系式?
(2)求图中月用电量在(200,250]度的宿舍有多少间?
解析:(1)根据题意,得:
当0≤t≤200时,用电费用为y=0.5t;
当t>200时,用电费用为
y=200×0.5+(t-200)×1=t-100;
综上:宿舍的用电费用为
y=
(2)因为月用电量在(200,250]度的频率为50x=1-(0.006 0+0.003 6+0.002 4+0.002 4+0.001 2)×5021·世纪*教育网
=1-0.015 6×50
=0.22,
所以月用电量在(200,250]度的宿舍有100×0.22=22(间).
课时作业12 用样本的数字特征估计总体的数字特征
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.下列说法正确的是( )
A.在两组数据中,平均数较大的一组方差较大
B.平均数反映数据的集中趋势,方差则反映数据离平均数的波动大小
C.求出各个数据与平均数的差的平方后再相加,所得的和就是方差
D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高
解析:由平均数、方差的定义及意义可知选B.
答案:B
2.在一次射击训练中,一小组的成绩如下表所示:
环数
7
8
9
人数
2
3
已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )
A.5 B.6
C.4 D.7
解析:设成绩为8环的人数为x,则有=8.1,解得x=5,故选A.
答案:A
3.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数
5
4
3
2
1
人数
20
10
30
30
10
A. B.
C.3 D.
解析:因为==3,
所以s2=[(x1-)2+(x2-)2+…+(xn-)2]=(20×22+10×12+30×12+10×22)==,21·世纪*教育网
所以s=.故选B.
答案:B
4.(潍坊高一期中)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:2-1-c-n-j-y
则7个剩余分数的方差为( )
A. B.
C.36 D.
解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x=4.故s2=[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=.故选B.
答案:B
5.一组数据的方差为s2,平均数为,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )www-2-1-cnjy-com
A.s2, B.2s2,2
C.4s2,2 D.s2,
解析:将一组数据的每一个数都乘以a,则新数据组的方差为原来数据组方差的a2倍,平均数为原来数据组的a倍.故答案选C.21*cnjy*com
答案:C
二、填空题(每小题5分,共15分)
6.某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…[90,100]后画出如下频率分布直方图.估计这次考试的平均分为________.【来源:21cnj*y.co*m】
解析:利用组中值估算抽样学生的平均分.
45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,【版权所有:21教育】
平均分是71分.
答案:71分
7.甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如下:
甲:6,8,9,9,8;
乙:10,7,7,7,9.
则两人的射击成绩较稳定的是________.
解析:由题意求平均数可得
x甲=x乙=8,s=1.2,s=1.6,
s
答案:甲
8.(江苏高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.
解析:样本数据的平均数为5.1,所以方差为
s2=×[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]
=×[(-0.4)2+(-0.3)2+02+0.32+0.42]
=×(0.16+0.09+0.09+0.16)=×0.5=0.1.
答案:0.1
三、解答题(每小题10分,共20分)
9.某纺织厂订购一批棉花,其各种长度的纤维所占的比例如下表所示:
纤维长度(厘米)
3
5
6
所占的比例(%)
25
40
35
(1)请估计这批棉花纤维的平均长度与方差;
(2)如果规定这批棉花纤维的平均长度为4.90厘米,方差不超过1.200,两者允许误差均不超过0.10视为合格产品.请你估计这批棉花的质量是否合格?21世纪教育网版权所有
解析:(1)=3×25%+5×40%+6×35%=4.85(厘米).
s2=(3-4.85)2×0.25+(5-4.85)2×0.4+(6-4.85)2×0.35=1.327 5(平方厘米).
由此估计这批棉花纤维的平均长度为4.85厘米,方差为1.327 5平方厘米.
(2)因为4.90-4.85=0.05<0.10,
1.327 5-1.200=0.127 5>0.10,故棉花纤维长度的平均值达到标准,但方差超过标准,所以可认为这批产品不合格.2·1·c·n·j·y
10.如图所示的是甲、乙两人在一次射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中时所得的环数),每人射击了6次.
(1)请用列表法将甲、乙两人的射击成绩统计出来;
(2)请用学过的统计知识,对甲、乙两人这次的射击情况进行比较.
解析: (1)甲、乙两人的射击成绩统计表如下:
环数
6
7
8
9
10
甲命中次数
0
0
2
2
2
乙命中次数
0
1
0
3
2
(2)甲=×(8×2+9×2+10×2)=9(环),
乙=×(7×1+9×3+10×2)=9(环),
s=×[(8-9)2×2+(9-9)2×2+(10-9)2×2]=,
s=×[(7-9)2+(9-9)2×3+(10-9)2×2]=1,
因为甲=乙,s所以甲与乙的平均成绩相同,但甲的发挥比乙稳定.
|能力提升|(20分钟,40分)
11.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )21cnjy.com
A.,s2+1002 B.+100,s2+1002
C.,s2 D.+100,s2
解析:=,yi=xi+100,所以y1,y2,…,y10的均值为+100,方差不变,故选D.
答案:D
12.某人5次上班途中所花的时间(单位 :分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则x2+y2=________.21·cn·jy·com
解析:由平均数为10,得(x+y+10+11+9)×=10,则x+y=20;
又由于方差为2,则[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×=2,
整理得x2+y2-20(x+y)=-192.
则x2+y2=20(x+y)-192=20×20-192=208.
答案:208
13.某学校高一(1)班和高一(2)班各有49名学生,两班在一次数学测验中的成绩统计如下:
班级
平均分
众数
中位数
标准差
(1)班
79
70
87
19.8
(2)班
79
70
79
5.2
(1)请你对下面的一段话给予简要分析:
高一(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算上游了!”【来源:21·世纪·教育·网】
(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.
解析:(1)由于(1)班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.【出处:21教育名师】
(2)(1)班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.www.21-cn-jy.com
(2)班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.21教育名师原创作品
14.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].21*cnjy*com
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段
[50,60)
[60,70)
[70,80)
[80,90)
x:y
1:1
2:1
3:4
4:5
解析:(1)由频率分布直方图知(0.04+0.03+0.02+2a)×10=1,
所以a=0.005.
(2)55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以平均分为73分.
(3)分别求出语文成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.21教育网
所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为:5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).
课时作业13 变量间的相关关系 两个变量的线性相关
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.下列变量是线性相关的是( )
A.人的体重与视力
B.圆心角的大小与所对的圆弧长
C.收入水平与购买能力
D.人的年龄与体重
解析:B为确定性关系;A,D不具有线性关系,故选C.
答案:C
2.下列各图中所示两个变量具有相关关系的是( )
A.①② B.①③
C.②④ D.②③
解析:具有相关关系的两个变量的数据所对应的图形是散点图,②③能反映两个变量的变化规律,它们之间是相关关系.21教育网
答案:D
3.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为( )
A.=1.5x+2 B.=-1.5x+2
C.=1.5x-2 D.=-1.5x-2
解析:设回归方程为=x+,由散点图可知变量x,y之间负相关,回归直线在y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.21·世纪*教育网
答案:B
4.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( )21*cnjy*com
A.直线l1和l2有交点(s,t)
B.直线l1和l2相交,但是交点未必是点(s,t)
C.直线l1和l2由于斜率相等,所以必定平行
D.直线l1和l2必定重合
解析:设线性回归直线方程为=x+,而=-.所以点(s,t)在回归直线上.所以直线l1和l2有公共点(s,t).21cnjy.com
答案:A
5.下列有关回归方程=x+的叙述正确的是( )
①反映与x之间的函数关系
②反映y与x之间的函数关系
③表示与x之间的不确定关系
④表示最接近y与z之间真实关系的一条直线
A.①② B.②③
C.③④ D.①④
解析:=x+表示与x之间的函数关系,而不是y与x之间的函数关系.但它所反映的关系最接近y与x之间的真实关系.www-2-1-cnjy-com
答案:D
二、填空题(每小题5分,共15分)
6.下列关系:
(1)炼钢时钢水的含碳量与冶炼时间的关系.
(2)曲线上的点与该点的坐标之间的关系.
(3)柑橘的产量与气温之间的关系.
(4)森林中的同一种树木,其横断面直径与高度之间的关系.
其中具有相关关系的是________.
解析:(1)炼钢的过程就是一个降低含碳量进行氧化还原的过程,除了与冶炼时间有关外,还要受冶炼温度等其他因素的影响,故具有相关关系.【来源:21cnj*y.co*m】
(2)曲线上的点与该点的坐标之间的关系是一种确定性关系.
(3)柑橘的产量除了受气温影响以外,还与施肥量以及水分等因素的影响,故具有相关关系.
(4)森林中的同一种树木,其横断面直径随高度的增加而增加,但是还受树木的疏松及光照等因素的影响,故具有相关关系.【出处:21教育名师】
答案:(1)(3)(4)
7.下列说法:①回归方程适用于一切样本和总体;
②回归方程一般都有局限性;
③样本取值的范围会影响回归方程的适用范围;
④回归方程得到的预测值是预测变量的精确值.
正确的是________(将你认为正确的序号都填上).
解析:样本或总体具有线性相关关系时,才可求回归方程,而且由回归方程得到的函数值是近似值,而非精确值,因此回归方程有一定的局限性.所以①④错.
答案:②③
8.某地区近10年居民的年收入x与支出y之间的关系大致符合y=0.8x+0.1(单位:亿元),预计今年该地区居民收入为15亿元,则年支出估计是________亿元.
解析:由题意知,y=0.8×15+0.1=12.1(亿元),即年支出估计是12.1亿元.
答案:12.1
三、解答题(每小题10分,共20分)
9.根据有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟和健康之间有因果关系吗?每一个吸烟者的健康问题都是因为吸烟引起的吗?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法正确吗?2-1-c-n-j-y
解析:吸烟和健康之间存在一定的相关关系,但不是每一个吸烟者的健康问题都是因为吸烟引起的.“健康问题不一定是由吸烟引起的,所以可以吸烟”是不正确的.
10.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表【版权所有:21教育】
x
3
4
5
6
7
8
9
y
66
69
73
81
89
90
91
已知=280,=45 209,iyi=3 487.
(1)求,;
(2)求回归方程.
解析:(1)=×(3+4+5+6+7+8+9)=6,
=×(66+69+73+81+89+90+91)=.
(2)==,
∴=-×6=,
∴所求回归方程为=x+.
|能力提升|(20分钟,40分)
11.已知x与y之间的几组数据如下表:
x
1
2
3
4
5
6
y
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为=x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )
A.>b′,>a′ B.>b′,C.a′ D.解析:由两组数据(1,0)和(2,2)可求得直线方程为y=2x-2,从而b′=2,a′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得===,
=-=-×=-,
所以a′.
答案:C
12.(广州高一检测)某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据(由资料显示y与x呈线性相关关系):2·1·c·n·j·y
x
2
4
5
6
8
y
30
40
60
50
70
根据上表提供的数据得到回归方程=x+中的=6.5,预测销售额为115万元时约需________万元广告费.21世纪教育网版权所有
解析:=(2+4+5+6+8)=5,
=(30+40+60+50+70)=50,
由=6.5知,=-·=50-6.5×5=17.5,
所以=17.5+6.5x,当=115时,解得x=15.
答案:15
13.(重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:【来源:21·世纪·教育·网】
年份
2010
2011
2012
2013
2014
时间代号t
1
2
3
4
5
储蓄存款y(千亿元)
5
6
7
8
10
(1)求y关于t的回归方程=t+;
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程=t+中,=,=-.
解析:(1)列表计算如下:
i
ti
yi
t
tiyi
1
1
5
1
5
2
2
6
4
12
3
3
7
9
21
4
4
8
16
32
5
5
10
25
50
∑
15
36
55
120
这里n=5,=,i==3,
=i==7.2.
又-n2=55-5×32=10,iyi-n=120-5×3×7.2=12,
从而==1.2,=-
=7.2-1.2×3=3.6,
故所求回归方程为=1.2t+3.6.
(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为
=1.2×6+3.6=10.8(千亿元).
14.(全国卷Ⅲ)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1-7分别对应年份2008-2014.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:i=9.32,iyi=40.17,
=0.55,≈2.646.
参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=-.21·cn·jy·com
解析:(1)由折线图中的数据和附注中参考数据得
=4,(ti-)2=28,=0.55.
(ti-)(yi-)=iyi-i=40.17-4×9.32=2.89,
∴ r≈≈0.99.
因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.www.21-cn-jy.com
(2)由=≈1.331及(1)得==≈0.103,
=-≈1.331-0.103×4≈0.92.
所以,y关于t的回归方程为=0.92+0.10t.
将2016年对应的t=9代入回归方程得:=0.92+0.10×9=1.82.
所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.
课时作业8 简单随机抽样
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.下面的抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖21·cn·jy·com
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见
D.用抽签法从10件产品中选取3件进行质量检验
解析:对每个选项逐条落实简单随机抽样的特点.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.www-2-1-cnjy-com
答案:D
2.在简单随机抽样中,某一个体被抽到的可能性( )
A.与第几次抽样有关,第一次抽到的可能性大一些
B.与第几次抽样无关,每次抽到的可能性都相等
C.与第几次抽样有关,最后一次抽到的可能性要大些
D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定
解析:在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.2·1·c·n·j·y
答案:B
3.(东营月考)从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )
A.500名学生是总体
B.每个学生是个体
C.抽取的60名学生的体重是一个样本
D.抽取的60名学生的体重是样本容量
解析:由题可知在此简单随机抽样中,总体是500名学生的体重,A错误,个体是每个学生的体重,B错;样本容量为60,D错.故选C.【来源:21·世纪·教育·网】
答案:C
4.(惠州高一检测)总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )2-1-c-n-j-y
A.08 B.07
C.02 D.01
解析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为02,14,07,01,故第5个数为01.21*cnjy*com
答案:D
5.(湖北高考)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )【来源:21cnj*y.co*m】
A.134石 B.169石
C.338石 D.1 365石
解析:设这批米内夹谷x石,则由题意知,=,即x=×1 534≈169.
答案:B
二、填空题(每小题5分,共15分)
6.(苏州高一期中)某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为________.【版权所有:21教育】
解析:n=(700+600+500)×0.03=54.
答案:54
7.下列抽样试验中,用抽签法最方便的是________.
①从某厂生产的3 000件产品中抽取600件进行质量检验
②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
③从某厂生产的3 000件产品中抽取10件进行质量检验
解析:抽签法适于样本总体较小,样本容量较小,且总体中样本差异不太明显的抽样试验,从①②③来看,②最符合.21教育名师原创作品
答案:②
8.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.21*cnjy*com
(下面摘取了随机数表第7行至第9行)
81 05 01 08 05 45 57 18 24 05 35 30 34 28 14 88 79 90 74 39 23 40 30 97 32
83 26 97 76 02 02 05 16 56 92 68 55 57 48 18 73 05 38 52 47 18 62 33 85 79
63 57 33 21 35 05 32 54 70 48 90 55 85 75 18 28 46 82 87 09 83 40 12 56 24
解析:找到第8行第7列的数开始向右读,凡不在000~799的跳过去不读,前面读过的也跳过去不读,得到的符合题意的五个数据依次为760,202,051,656,574.
答案:760,202,051,656,574
三、解答题(每小题10分,共20分)
9.从30架钢琴中抽取6架进行质量检查,请用抽签法确定这6架钢琴.
解析:第一步,将30架钢琴编号,号码是01,02,…,30;
第二步,将号码分别写在一张纸条上,揉成团,制成号签;
第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;
第四步,从袋子中逐个抽取6个号签,并记录上面的编号;
第五步,所得号码对应的6架钢琴就是要抽取的对象.
10.为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.21教育网
解析:第一步,将120名服药者重新进行编号,分别为001,002,003,…,120;
第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;
第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;【出处:21教育名师】
第四步,以上这10个号码所对应的服药者即是要抽取的对象.
|能力提升|(20分钟,40分)
11.(石家庄高一检测)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )
(注:如表为随机数表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.07 B.44
C.15 D.51
解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.
答案:B
12.关于简单随机抽样,有下列说法:
①它要求被抽取样本的总体的个数有限;
②它是从总体中逐个地进行抽取;
③它是一种不放回抽样;
④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
其中正确的有________(请把你认为正确的所有序号都写上).
解析:由随机抽样的特征可判断.
答案:①②③④
13.为迎接2016年里约热内卢奥运会,奥委会现从报名的某高校20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.21世纪教育网版权所有
解析:(1)将20名志愿者编号,号码分别是01,02,…,20;
(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;
(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;
(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;
(5)所得号码对应的志愿者就是志愿小组的成员.
14.(临沂月考)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.21cnjy.com
解析:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.21·世纪*教育网
第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一个号签,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.www.21-cn-jy.com
课时作业9 系统抽样
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.为了检查某城市汽车尾气排放执行情况,在该城市的主要干道上抽取车牌末尾数字为5的汽车检查,这种抽样方法为( )www-2-1-cnjy-com
A.抽签法 B.随机数表法
C.系统抽样法 D.其他抽样
解析:符合系统抽样的特点.
答案:C
2.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( )21教育网
A.5,10,15,20 B.2,6,10,14
C.2,4,6,8 D.4,8,12,16
解析:用系统抽样,需要把20位同学分成4组,间隔相同的距离抽样,显然A正确.
答案:A
3.(罗源检测)为了了解一次期中考试的1 253名学生的成绩,决定采用系统抽样方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )
A.2 B.3
C.4 D.5
解析:1 253÷50=25……3,故剔除3个.
答案:B
4.要从已编号(1~61)的61枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )
A.5,10,15,20,25,30
B.3,13,23,33,43,53
C.1,2,3,4,5,6
D.16,25,34,43,52,61
解析:先用简单随机抽样剔除1个个体,再重新编号抽取,则间隔应为10,故B正确.
答案:B
5.(石家庄高一检测)某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a,28,b,52号学生在样本中,则a+b=( )21·cn·jy·com
A.52 B.56
C.45 D.42
解析:因为样本容量为5,所以样本间隔为60÷5=12,因为编号为4,a,28,b,52号学生在样本中,所以a=16,b=40,所以a+b=56.2·1·c·n·j·y
答案:B
二、填空题(每小题5分,共15分)
6.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________.21*cnjy*com
解析:S+15×8=126,得S=6.
答案:6
7.(天水高一检测)若总体中含有1 645个个体,按0 001至1 645进行编号,采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为________段,分段间隔k=________,每段有________个个体.若第5段抽取的号码为190,则第1段应抽取的号码为________.2-1-c-n-j-y
解析:因为N=1 645,n=35,则编号后确定编号分为35段,且k===47,则分段间隔k=47,每段有47个个体.设第1段应抽取的号码为x,则190=x+(5-1)×47,解得x=2.21*cnjy*com
答案:35 47 47 2
8.(锦州高一检测)从编号为001,002,…,800的800个产品中用系统抽样的方法抽取一个样本,已知样本中最小的两个编号分别为008,033,则样本中最大的编号应该是________.【来源:21cnj*y.co*m】
解析:因为样本中编号最小的两个编号分别为008,033,
所以样本数据组距为33-8=25,则样本容量为=32,
则对应的号码数x=8+25(n-1),当n=32时,x取最大值为x=8+25×31=783.
答案:783
三、解答题(每小题10分,共20分)
9.某工厂有工人1 000名,现从中抽取100人进行体检,试写出抽样方案.
解析:抽样步骤如下:
①对全体工人进行编号:1,2,3,…,1 000;
②分段:由于样本容量与总体容量的比为1:10,
所以我们将总体平均分为100个部分,其中每一部分包含10个个体;
③在第一部分即1号到10号用抽签法抽取一个号码,比如8号;
④以8作为起始数,然后顺次抽取18,28,38,…,998,这样就得到一个容量为100的样本.
10.(烟台检测)从2 005名同学中,抽取一个容量为20的样本,试叙述系统抽样的步骤.
解析:(1)先给这2 005名同学编号为1,2,3,4,…,2005.
(2)利用简单随机抽样剔除5个个体,再对剩余的2 000名同学重新编号为1,2,…,2000.
(3)分段,由于20:2 000=1:100,故将总体分为20个部分,其中每一部分有100个个体.
(4)然后在第1部分随机抽取1个号码,例如第1部分的个体编号为1,2,…,100,抽取66号.
(5)从第66号起,每隔100个抽取1个号码,这样得到容量为20的样本:
66,166,266,366,466,566,666,766,866,966,1066,1166,1266,1366,1466,1566,1666,1766,1866,1966.21世纪教育网版权所有
|能力提升|(20分钟,40分)
11.将夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )www.21-cn-jy.com
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
解析:依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每组有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).【来源:21·世纪·教育·网】
令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;
令300<3+12(k-1)≤495得从而第Ⅲ营区被抽中的人数是50-42=8.
答案:B
12.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.21cnjy.com
解析:∵m=6,k=7,∴m+k=13.∴在第7组中抽取的号码应为63.
答案:63
13.中国机动车呈现几何增长,城市交通压力日益增大.为了调查某路口一个月的车流量情况,交警采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为交警这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?21·世纪*教育网
解析:交警所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.【出处:21教育名师】
改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.【版权所有:21教育】
14.(长春高一检测)某集团有员工1 019人,其中获得过国家级表彰的有29人,其他人员990人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人.如何确定人选?21教育名师原创作品
解析:获得过国家级表彰的人员选5人,适宜使用抽签法;其他人员选30人,适宜使用系统抽样法.
(1)确定获得过国家级表彰的人员人选:①用随机方式给29人编号,号码为1,2,…,29;
②将这29个号码分别写在一张小纸条上,揉成小球,制成号签;
③将得到的号签放入一个不透明的袋子中,搅拌均匀;
④从袋子中逐个抽取5个号签,并记录上面的号码;
⑤从总体中将与抽取的号签的号码相一致的个体取出,人选就确定了.
(2)确定其他人员人选:
第一步:将990个其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;
第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;
第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.
(1)、(2)确定的人选合在一起就是最终确定的人选.