2017-2018学年高中数学人教A版必修1学案打包73份

文档属性

名称 2017-2018学年高中数学人教A版必修1学案打包73份
格式 zip
文件大小 73.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-01-13 17:14:01

文档简介

1.1.1 集合的含义与表示
课堂导学
三点剖析
一、集合的概念
【例1】 判断下列命题是否正确,并说明理由.
(1){R}=R;
(2)方程组的解集为{x=1,y=2};
(3){x|y=x2-1}={y|y=x2-1}={(x,y)|y=x2-1};
(4)平面内线段MN的垂直平分线可表示为{P|PM=PN}.
思路分析:以上几种命题都是同学们在初学过程中极易出错的几种典型类型.处理此类问题关键在于要正确而深刻地理解集合的表示方法.
解:(1){R}=R是不正确的,R通常为R={x|x为实数},即R本身可表示为全体实数的集合,而{R}则表示含有一个字母R的集合,它不能为实数的集合.
(2)方程组的解集为{x=1,y=2}是不对的,因为解集的元素是有序实数对(x,y),正确答案应为{(x,y)|}={(1,2)}.
(3){x|y=x2-1}={y|y=x2-1}={(x,y)|y=x2-1}是不正确的.
{x|y=x2-1}表示的是函数自变量的集合,它可以为{x|y=x2-1}={x|x∈R}=R.
{y|y=x2-1}表示的是函数因变量的集合,它可以为{y|y=x2-1}={y|y≥-1}.
{(x,y)|y=x2-1}表示点的集合,这些点在二次函数y=x2-1的图象上.
(4)平面上线段MN的垂直平分线可表示为{P|PM=PN}是正确的.
温馨提示
正确理解集合表示方法对以后的学习有极大帮助.特殊数集用特定字母表示有特别规定,不能乱用;二元一次方程组的解集必须为{(x,y)|}的形式;对描述法表示的集合一定要认清竖杠前面的元素是谁,竖杠后其特征又是什么.
【例2】 已知a∈{1,-1,a2},则a的值为______________________.
解析:处理该类问题的关键是对a进行分类讨论,利用元素的互异性解题.
∵a∈{1,-1,a2},
∴a可以等于1,-1,a2.
(1)当a=1时,集合则为{1,-1,1},不符合集合元素的互异性.故a≠1.
(2)同上,a=-1时也不成立.
(3)a=a2时,得a=0或1,a=1不满足舍去,a=0时集合为{1,-1,0}.
综上,a=0.
答案:0
温馨提示
集合元素的互异性指集合中元素必须互不相同,无序性指集合中的元素与顺序无关.因此在处理元素为字母的集合问题时,既要注意对字母进行讨论,又要自觉注意集合元素的互异性、确定性.
二、运用集合的两种表示方法正确地表示集合
【例3】 用列举法表示下列集合.
(1){y|y=x2-2,x≤3,x∈N};
(2){(x,y)|y=x2-2,x≤3,x∈N}.
思路分析:首先认准描述法所表示集合的代表元素,然后根据条件求其值,用列举法将集合中的元素不计次序、不重复、不遗漏地列出来.
解:(1)因为x≤3,x∈N,所以x=0,1,2,3.所以y=-2,-1,2,7.所以{y|y=x2-2,x≤3,x∈N}用列举法表示为{-2,-1,2,7}.
(2)由上题可知,{(x,y)|y=x2-2,x≤3,x∈N}用列举法表示为{(0,-2),(1,-1),(2,2),(3,7)}.
温馨提示
列举法适合于表示集合是有限集,且元素个数较少,但有时也可表示无限集或个数较多的集合,如:{1,2,…,n,…}.
【例4】 用描述法表示下列集合.
(1)偶数集;
(2){2,4,6,8};
(3)坐标平面内在第一象限的点组成的集合.
解:(1){x|x=2n,n∈Z};
(2){x|x=2n,1≤n≤4,n∈Z};
(3){(x,y)|x>0,且y>0}.
温馨提示
用描述法表示集合时,要弄清楚元素的特征,使其具有符合性质的都属于集合,不具有性质的不属于集合.
三、集合概念再理解
【例5】 判断以下对象的全体能否组成集合.
(1)高一·一班的身高大于1.75 m的学生;
(2)高一·一班的高个子学生.
思路分析:该例贴近于现实生活,能较好地帮助同学们正确理解集合元素的确定性.
解:(1)高一·一班中身高大于1.75 m的学生是确定的,因此身高大于1.75 m的学生可以组成集合.
(2)高一·一班中的高个子学生没有具体身高标准,因此高个子学生不能组成集合.
温馨提示
判断某组对象是否为集合必须同时满足三个特征:(1)确定性,(2)互异性,(3)无序性,特别是确定性比较难理解,是指元素和集合的关系是非常明确的,要么该元素属于集合,要么该元素不属于集合,而不是模棱两可.
各个击破
类题演练1
(1) 下列命题是假命题的个数为_______________________.
①{1,2}={(1,2)} ②={x|x+1=1} ③解的集合为{(x,y)|x=2或y=-6}
④∈{x|x≤3} ⑤{P|PO=3 cm}(O是定点)表示圆
解析:①②③为假命题.
答案:3
(2)判断下列表示能否视为集合表示:
①{1,2,3,…};
②{s=t2+1};
③{正方形}.
解析:①不是集合表示.若用列举法表示无限集,应将元素间的规律表示出来.此集合可表示为{1,2,3,…n,…}.
②不是集合表示,没说清楚集合中元素是什么.
③不是集合表示,没说清楚集合中元素是什么,应写为{x|x是正方形}.
(3)可以表示方程组的解集的是__________________.
①{x=2,y=1} ②{(x,y)|(2,1)} ③{2,1} ④{(2,1)} ⑤{(x,y)|x=2或y=1}⑥{(x,y)|x=2且y=1} ⑦{(x,y)|}
答案:④⑥⑦
变式提升1
实数{3,x,x2-2x}中的元素x应满足的条件为:______________________________
解析:由集合元素的互异性可知x≠-1且x≠0且x≠3.
类题演练2
集合A={a,,1},B={a2,a+b,0},a∈R,b∈R.若A=B,求a2006+b2006的值.
解析:由题目条件得解得∴a2006+b2006=1.
变式提升2
已知集合A={x∈R|ax2+2x+a=0,a∈R}中只有一个元素,求a的值,并求这个元素.
解析:由于A={x∈R|ax2+2x+a=0,a∈R}只有一个元素,
因此,有两种情况.
(1)a=0时,ax2+2x+a=0变为x=0,A={x|x=0}满足条件.
(2)a≠0时,ax2+2x+a=0有相等实根,即Δ=4-4a2=0,得a=±1.
a=1时,A={x∈R|x2+2x+1=0}={x|x=-1};
a=-1时,A={x=R|x2-2x+1=0}={x|x=1}.
综上知,a=0时,A={x|x=0};
a=1时,A={x|x=-1};
a=-1时,A={x|x=1}.
类题演练3
用列举法表示下列集合.
(1)不大于10的非负偶数;
(2)方程(x-1)2(x-3)=0的解集;
(3)方程组的解集.
答案:(1){0,2,4,6,8,10};(2){1,3};(3){(2,1)}.
变式提升3
(2006山东高考,1)定义集合运算:A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B=(2,3),则集合A⊙B的所有元素之和为( )
A.0 B.6 C.12 D.18
解析:取x=0时,z=0,
取x=1时,z=6或12,
∴A⊙B={0,6,12},
∴所求A⊙B的元素之和为18,选D.
答案:D
类题演练4
用描述法表示下列集合.
(1)所有正奇数组成的集合;
(2)坐标平面内x轴上的点组成的集合.
答案:(1){x|x=2n-1,n∈N*}; (2){(x,y)|y=0}.
变式提升4
用适当的方法表示下列集合.
(1)由不等式x-3>2的所有解组成的集合;
(2)由方程组的所有解组成的集合;
(3)由小于10的非负奇数组成的集合.
解:(1){x|x>5}; (2){(x,y)|}或{(2,3)}; (3){1,3,5,7,9}或{x|x=2n-1,1≤n≤5,n∈Z}.
类题演练5
以下说法的对象能组成集合的有____________________.
①所有的奇数 ②不小于-2的数 ③满足方程2x-y=0的解为坐标的点 ④很小的数 ⑤漂亮的花 ⑥不满足x+1=0的实数
解析:∵①②③⑥中描述的元素都具有确定性,能构成集合,而④⑤中描述的元素都不具有确定性,即无法判断一个元素是否属于集合,故不能构成集合.
答案:①②③⑥
变式提升5
已知满足“如果x∈A,则6-x∈A”的自然数x构成集合A.
(1)若A是一个单元素集,则A=_________________;
(2)若A有且只有两个元素,则A=_______________.
解析:(1)∵3∈A,则6-3∈A,∴A={3}; (2)∵2∈A,∴6-2∈A,∴A={2,4}.
同理A={0,6}或{1,5}.
答案:(1){3} (2){2,4} {0,6} {1,5}
1.1.2 集合间的基本关系
课堂导学
三点剖析
一、集合间的关系
【例1】 判断下列各式是否正确.
(1){x|x≤2};
(2)∈{x|x≤2};
(3){}{x|x≤2};
(4)∈{x|x≤2};
(5){x|x≤2};
(6){a,b,c,d}{e,f,b,d,g}.
思路分析:要注意元素与集合之间、集合与集合之间关系符号的不同,绝对不能混淆.
解:根据元素与集合、集合与集合之间的有关规定,(1)(4)(6)不正确,(2)(3)(5)正确.
温馨提示
一般来说,元素与集合之间应该用“”或“∈”;而“,”应该出现于集合与集合之间;作为特殊集合应遵从A,A(非空).但这不是绝对的,选择的关键在于具体分析二者的关系.例{1,2}∈{{1,2},{1}},而∈{,1},{,1}都是对的.
二、运用集合间的关系解题
【例2】 {a,b}A{a,b,c,d,e},求所有满足条件的集合A.
思路分析:从子集、真子集的概念着手解答.
解:因为{a,b}A,所以,A中必有元素a,b.
因为,A是{a,b,c,d,e}的真子集,所以,A中元素可以有2个,3个,4个三种情形.具体为:{a,b};{a,b,c};{a,b,d};{a,b,e};{a,b,c,d};{a,b,c,e};{a,b,d,e}共7个.
温馨提示
1.按顺序摆,做到不重不漏.
2.正确地把集合语言表述的问题“翻译”成普通数学语言.
【例3】 集合A={1,3,a},B={a2},且BA,求实数a的取值集合.
思路分析:在利用BA这一条件时要注意对a进行讨论.
解:由于B={a2}A={1,3,a},
因此,①a2=1,得a=1(不合题意舍去)或a=-1;
②a2=3得a=±;
③a2=a得a=1(不合题意舍去)或a=0.
综上,实数a的取值集合为{-1,,-,0}.
温馨提示
1.分类讨论思想是很重要的思想方法,注意掌握分类方法;
2.在解决集合的元素问题时,最后结论要注意检验元素是否具备互异性.
三、元素与集合之间、集合与集合之间的关系再讨论
【例4】 已知集合A={a,b},B={x|x∈A,}C={x|xA},试判断A、B、C之间的关系.
解:集合B中的代表元素是x,x满足的条件是x∈A,因此x=a或x=b,即B={a,b}=A,而集合C则不然,集合C的代表元素虽然也是x,但x代表的是集合,xA,因此,x={a}或x={b}或x={a,b}或x= ,即C={,{a},{b},{a,b}},此时集合C中的元素是集合,故BC,A∈C.
∴A=B,BC,A∈C.
温馨提示
对于元素与集合、集合与集合之间的∈、关系要理解透彻,“∈”是用于描述元素与集合之间的关系,即只要元素a是构成集合A的一个元素,则a∈A,如{1}与{{1},{2}},尽管{1}是一个集合,但是{1}是构成集合{{1},{2}}的一个元素,故{1}∈{{1},{2}},“”是用于描述集合与集合之间的关系,如{1,2,3}{1,2,3,4}.
各个击破
类题演练1
下列各式中,正确的个数是( )
①={0} ②{0} ③∈{0} ④0={0}⑤0∈{0} ⑥{1,2}{1,2}
A.1 个 B.2 个 C.3 个 D.4个
解析:正确命题有②⑤⑥.
答案:C
变式提升1
在以下五个写法中,写法正确的个数有( )
①{0}∈{0,1,2} ②{0} ③{0,1,2}{1,2,0} ④0∈ ⑤1∈{x|x{1,2}}
A.1个 B.2个 C.3个 D.4个
解析:①集合与集合之间应用,或=而不是属于关系.②空集是任何非空集合的真子集.③两集合相等时也可以写成AB的形式.④中不含任何元素.⑤此集合的元素是集合而不是数字.故②和③是正确的.
答案:B
类题演练2
求满足条件{x|x2+1=0}M{x|x2-1=0}的集合M的个数.
解析:{x|x2-1=0}={-1,1},其非空子集为{-1},{1},{-1,1}.所以满足条件
{x|x2-1=0}M{x|x2-1=0}的集合M共3个.
变式提升2
集合{x∈N|x=-y2+6,y∈N},试写出该集合的所有真子集.
解析:由集合{x∈N|x=-y2+6,y∈N},x∈N,则x=-y2+6≥0y2≤6.
又因为y∈N,所以y=0,1,2,相应地x=6,5,2.
集合为{2,5,6},其真子集个数为23-1=7个.
分别写出为,{2},{5},{6},{2,5},{2,6},{5,6}.
类题演练3
已知集合A={1,3,a},B={1,a2-a+1}且AB,求a的值.
解析:∵BA,∴①当a2-a+1=3时,a2-a-2=0,∴a=2或a=-1.
②当a2-a+1=a时,a=1,代入A中不满足A中元素互异性,舍去.∴a=2或a=-1.
变式提升3
设A={x|4x+p<0},B={x|x<-1或x>2},若使AB,则p的取值范围是________________.
解析:A={x|4x+p<0}={x|x<-}画数轴,
分析得-≤-1,∴p≥4.
类题演练4
集合A={(x,y)x=1}与B={(x,y)|y=x}的关系是( )
A.A=B B.AB C.AB D.AB
解析:注意=1与y=x这两个式子是不同的,前者只有x≠0时才有意义,故A中少一个点(0,0),因此AB.
答案:B
变式提升4
已知a、x∈R,A={2,4,x2-5x+9},B={3,x2+ax+a},求使2∈B,BA的a与x的值.
解析:∵2∈B,∴x2+ax+a=2.
∵BA,∴3=x2-5x+9.
解得或
答案:或
1.1.3 集合的基本运算
课堂导学
三点剖析
一、交集、并集、补集的概念与运算
【例1】 若全集U={x|x≤9,x∈N*},M={1,7,8},P={2,3,5,7},S={1,4,7},则(M∪P)∩(S)
=__________________.
解析:U={x|x≤9,x∈N*}={1,2,3,4,5,6,7,8,9},(M∪P)∩(S)={2,3,5,8}.
答案:{2,3,5,8}
温馨提示
1.进行集合运算应首先要弄清楚各集合是由什么元素构成的,然后再根据交集、并集、补集的概念进行运算.
2.集合间的包含关系的判断及集合的运算一般使用韦恩图.
【例2】 已知全集U=R,A={x|-4A.A∩B B.A∪B C.(A∩B) D.(A∪B)
解析:利用数轴解决有关不等式的数集运算是最有效的工具,借助数轴易得A∩B=,A∪B={x|x<},所以C=(A∪B).
答案:D
温馨提示
数集的运算一般使用数轴.
二、交集与并集的概念符号之间的区别与联系
【例3】 已知A={y|y=x2-2,x∈R},B={y|y=x,x∈R}.求A∩B,A∪B.
思路分析:本题注重考查集合概念及运算,其中集合中的元素y的本质是许多同学认识不足的,它其实是函数的因变量,集合为函数因变量的取值集合.
解:A={y|y=x2-2,x∈R}={y|y≥-2},B={y|y=x}=R,则A∩B={y|y≥-2},A∪B=R.
温馨提示
1.对于描述法给出的集合,要抓住竖线前的代表元素及它具有的性质再进行运算.
2.本题中的两个集合都是数集,且是每个函数的函数值构成的集合.
三、集合运算性质的运用
【例4】 集合A={x|x2-3x+2=0},B={x|ax-2=0},若A∪B=A,则a能取到的所有值的集合为_
______________.
解析:处理此类问题有两处值得同学们注意,一是明确A∪B=ABA;二是B={x|ax=2}≠{x|x=},要注意对a是否为0进行讨论.
A={x|x2-3x+2=0}={1,2},A∪B=ABA.因此集合B只能为单元素集或.
当B={1}时,即1∈B={x|ax-2=0},得a=2;
同理,当B={2}时,得a=1;
当B=时,即ax=2无解,得a=0.
综上,a能取到的值所组成的集合为{0,1,2}.
答案:{0,1,2}
温馨提示
1.A∪B=ABA,A∩B=AAB两个性质常常作为“等价转化”的依据,要特别注意当AB时,往往需要按A=和A≠两种情况分类讨论,而这一点却很容易被忽视.如本题中由BA应分B=和B≠两种情况考虑,尽管本题中B=不适合题意,但也不要遗漏这种情况.
2.要注重集合语言与数学文字语言之间的转化.
各个击破
类题演练1
设全集U=N,P={2n|n∈N},Q={x|x=4n,n∈N},则N可以表示为( )
A.P∩Q B.(P)∪Q C.P∪(Q) D.(P)∪(Q)
解析:Q如图所示的阴影部分,∴P∪Q=N.
答案:C
变式提升1
设全集U={1,3,5,7,9},集合A={1,|a-5|,9},A={5,7},则a的值是( )
A.2 B.8 C.-2或8 D.2或8
解析:∵由条件得|a-5|=3,
∴a=2或8.
答案:D
类题演练2
已知全集U=R,集合A={x|x<1或x>2},集合B={x|x<-3或x≥1},求A,B,A∩B,A∪B.
解析:借助于数轴,由右图可知A={x|x≥1且x≤2}={x|1≤x≤2};B={x|x≥-3且x<1}
={x|-3≤x<1};
A∩B={x|x<1或x>2}∩{x|x<-3或x≥1}={x|x<-3或x>2};A∪B={x|x<1或x>2}∪{x|x<-3或x≥1}=R.
变式提升2
集合M={x|-1≤x≤2},N={x|x-a≥0},若M∩N≠,则实数a的取值范围是_____________.
解析:由图示可知a≤2.
答案:a≤2
类题演练3
已知A={y∈N|y=x2-4x+10},B={y∈N|y=-x2-2x+12},求A∩B.
解析:∵A={y|y≥6,y∈N},B={y|y≤13,y∈N},
∴A∩B={y∈N|6≤y≤13}.
答案:{y|6≤y≤13,y∈N}
变式提升3
(2006江苏高考,7)若A、B、C为三个集合,A∪B=B∩C,则一定有( )
A.AC B.CA C.A≠C D.A=
解析:画出韦恩图可知A成立.
答案:A
类题演练4
若集合P={1,2,3,m},Q={m2,3},满足P∩Q=Q,求m的值.
解析:∵P∩Q=Q,∴QP,
∴m2=1或m2=2或m2=m,解得m=±1或±或0.
经检验m=1时,不满足集合P中元素的互异性,∴m=-1或±或0.
答案:-1或±或0
变式提升4
设集合M={x|x<3},N={x|x>-2},Q={x|x-a≥0},令P=M∩N.
(1)求集合P;
(2)若PQ,求实数a的取值范围;
(3)若P∩Q={x|0≤x≤3},求实数a的取值范围;
(4)若P∩Q=,求实数a的取值范围.
解析:(1)P=M∩N={x|x<3}∩{x|x>-2}={x|-2 〔利用数轴作为工具分别对(2)(3)(4)进行分析,注意对端点处进行讨论〕
(2)当a<-2时,满足题意;
当a=-2时,Q={x|x≥-2},也有PQ.
所以a≤-2.
(3)由于a是可变的实数,因此,若P∩Q={x|0≤x≤3},从数轴上观察,a能且只能取0,所以a=0.
(4)若要P∩Q=,通过数轴观察知,当a>3时,P∩Q=;当a=3时,Q={x|x-3≥0}={x|x≥3},P∩Q={x|-21.1 集合
互动课堂
疏导引导
1.1.1 集合的含义与表示?
1.集合的含义?
一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.?
疑难疏引
(1)集合是数学中最原始的概念之一,无法给出它的定义只能作描述性说明.?
(2)集合中元素的特征.确定性是指集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否形成集合的标准;互异性是指给定的一个集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一元素,这一点常被我们所忽略;无序性是指在一个集合中,元素之间都是平等的,它们都充当集合中的一员,无先后次序之分.
●案例1
下列对象:①方程x2-9=0的实数根;②我国近代著名的数学家;③联合国常任理事国;④空气中密度大的气体,能否构成集合??
【探究】 研究对象能否构成集合的问题一般主要考查集合元素的确定性.①③中的研究对象显然符合确定性;②中“著名”没有明确的界限;④中“密度大”的程度没有明确的界限.因而①③能构成集合,②④不能.?
【溯源】 判断命题是否构成集合最重要的标志就是看其所叙述对象是否具有确定性,即对所叙述对象进行描述的特征词语是否具有共性标准.?
●案例2
当x为何值时,{0,x,x2-x}不能表示一个数集?
【探究】 问题的知识依托是集合中元素的互异性,即同一集合中的元素必须是互不相同的.{0,x,x2-x}能否表示一个数集,关键在于它是否具备集合元素的三个特征,在这里,只要看它是否满足互异性,即要使{0,x,x2-x}不表示一个数集,只需x=0或x2-x=0或x2-x=x,即x=0或x=1或x=2.
【溯源】 判断一组对象能否构成一个集合,关键是看这组对象是否同时具备集合元素的三个特征.考查该知识点的问题分正向和逆向思维两个角度,其解决问题的基础还是正确理解三个特征要求.
2.元素和集合的关系
疑难疏引
(1)元素和集合的关系是∈和,二者有且只有一种成立.集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.辩证理解集合和元素这两个概念:(2)集合和元素是两个不同的概念,符号∈和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如{1}∈{1,2,3}的写法就是错误的,而{1}∈{{1},{2},{3}}的写法就是正确的.
●案例3
设集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},若a∈A,b∈B,试判断a+b与A、B的关系.
【探究】 首先看到a+b是元素,A、B是集合.∴a+b与A、B的关系应该是∈、的关系.∵a∈A,∴a=2k1(k1∈Z).
又∵b∈B,∴b=2k2+1(k2∈Z).∴a+b=2(k1+k2)+1.
∵k1+k2∈Z,∴a+b∈B,从而a+bA.
【溯源】 理解一个集合的意义重点在于抓住代表元素及公共属性,而判断元素与集合的关系,依据就是元素的公共属性,解题时需做必要的恒等变形.
3.常用的数集及其记法
(1)全体非负整数组成的集合称为非负整数集,记作N.
(2)所有正整数组成的集合称为正整数集,记作N *或N +.?
(3)全体整数组成的集合称为整数集,记作Z.
(4)全体有理数组成的集合称为有理数集,记作Q.?
(5)全体实数组成的集合称为实数集,记作R.?
准确记忆常用数集的符号表示,特别注意Z +、N +等拓展符号表示的集合特征以及数0的归属问题.
4.集合的表示方法?
列举法:把集合中的全部元素一一列举出来,写在大括号内表示集合的方法;
描述法:把集合中的元素的公共属性描述出来,在大括号内表示集合的方法;
图示法:Venn图法,采用平面上一条封闭曲线的内部表示集合.如用Venn图表示为 或 或.?
疑难疏引
(1)在使用列举法时应注意以下四点:①元素间用逗号“,”;②元素不重复;③不考虑元素顺序;④对于含元素较多的集合,如果构成该集合的元素具有明显的规律,可用列举法表示,但是必须把元素间的规律呈现出来后,才能用省略号表示,如{1,2,3,…,n},{1,3,5,7,9,…}.
(2)在使用描述法时应注意以下几点:①写清元素代号;②说清集合中元素的特性;③文?字表述多层次时,应当准确使用“且”“或”;④所有描述的内容都写在集合括号内;⑤语?句力求简明、确切,字句逐一说明.
(3)图示法表示集合的图形的形状、大小与集合的性质没有任何关系,它仅仅把集合中的元素都包括在内,从而体现“整体”.Venn图可直观地表示集合,帮助我们理解、分析问题,但不能作为严密的数学工具使用.
(4)列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意:一般无限集时,不宜采用列举法,因为不能将无限集中元素一一列举出来,而没有列举出来的元素往往难以确定.但要注意,有时为了方便,在不引起混淆的情况下,也把具有明显特征的无限集用列举法表示:如N={0,1,2,3,…}等.?
●案例4
下列两个集合:(1)A={(x,y)|y=x2,x∈R},B={y|y=x2,x∈R};(2)A={x|x2-6x-7=0},B={(x,y)|有什么关系?
【探究】 要确定一个集合,必须从这个集合中的元素入手,只有确定了这个集合中元素的特征,才可以确定这个集合.对于问题中给出的两个集合中的元素,可以发现:一个是数,一个是实数对(点).即(1)集合A是一个点集,是函数y=x2图象上的点的集合;集合B是数集,是由所有实数的完全平方构成的集合.两个集合的元素显然是不同的.(2)进一步化简两个集合可以得到:A={-1,7},B={(-1,7)}.集合A、B分别是方程、方程组解的集合,但A中有两个元素-1,7,而B中只有一个元素(-1,7).
【溯源】 两个集合相同,要求两个集合中的元素都要相同,元素相同就要求元素的种类、属性和数量都要相同.要注意:集合中元素个数较少时采用数形结合的思想进行解析和理解,更容易抓住概念的本质.同时对数集和点集用列举法表示要格外重视区别,还要注意到用描述法表示数集和点集对元素特征的描述也是完全不同的.
1.1.2 集合间的基本关系?
子集
(1)对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(若a∈A,则a∈B),则称集合A为集合B的子集,记作AB或BA,读作:A含于B或B包含A.
(2)对于两个集合A与B,如果集合中的任何一个元素都是集合B中的元素,同时集合B中的任何一个元素都是集合A中的元素,这时,我们说集合A与集合B相等,记作A=B.(也可以说当集合A与B的元素完全相同时,则A=B)?
(3)对于两个集合A与B,如果AB,并且A≠B,我们说集合A是集合B的真子集,记作AB.
(4)对于集合A与B,若AB,BC,则AC;任何一个集合是它本身的子集;是任何集合的子集,任何非空集合的真子集.
(5)子集的有关性质?
①A=BAB且BA.?
②AB,BCAC;AB,BCAC.
疑难疏引
(1)一个集合的子集的个数仅与这个集合的元素的个数有关.含n个元素的集合的子集数为2n个,非空子集数为2n-1个,真子集数为2n-1个,非空真子集数为2n-2个.
(2)两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.同时还要注意分类讨论思想的应用,做到不重不漏.
1.1.3 集合的基本运算
1.交集、并集、补集的概念
(1)一般地,由既属于集合A又属于集合B的元素组成的集合,叫做A与B的交集,记作A∩B,读作A交B.?
(2)由属于集合A或属于集合B的元素组成的集合,叫做A与B的并集,记作A∪B,读作A并B.
(3)一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.
(4)对于一个集合A,则由U中所有不属于A的元素组成的集合,称为集合A相对于全集U的补集,记作UA.
2.交集、并集、补集的性质
(1)A∩A=A,A∩=,A∩B=B∩A,A∪A=A,A∪=A,A∪B=B∪A.
(2)A∩BA,A∩BB,A∪BA,A∪BB.
(3)A∩B=AAB,A∪B=ABA.
(4)A∩UA =,A∪UA =U.
(5)德·摩根律?
UA(A∩B)=UA∪UB,U(A∪B)=UA∩UB.
疑难疏引
1.用数学的三种语言互译表示全集与补集?
2.集合运算注意事项?
(1)处理集合运算问题时,要注意化简集合的表达式.如果集合中含有字母,要注意对字母分类讨论.
(2)在解决有关集合运算题目时,一要把握概念中的关键词,如“所有”“且”“或”;二要把握它们各自的实质;三要借助数轴,应用数形结合的思想.
(3)Venn图在集合中起到数形结合的作用,由图可以把一些不明确的数量关系直观地表现出来,起到化繁为简,化抽象为直观的作用.
(4)集合作为数学语言,已深刻地融入函数、方程、不等式、平面曲线、平面区域等有关知识之中,处理集合问题时,应充分综合运用有关的数学知识进行求解.?
(5)在学习子、交、并、补集的概念时,应注意对“任何一个”“都”“所有”“或”“且”等词的理解,“交集”是指两个集合中所有公共元素所组成的集合,忽略了“交集”概念中的“所有”两个字就会错误地认为“若A={1,2,3},B={2,3,4},A∩B={2}”.“并集”概念中的“或”与生活用语中的“或”含义不同,生活用语中的“或”一般是或此或彼,必具其一,不兼有,“并集”概念中的“或”是可兼有的,但不必须兼有.记忆口诀:?
集合平时很常用,数学概念有不同.?
理解集合并不难,三个要素是关键.?
元素确定和互异,还有无序要牢记.?
集合不论空不空,总有子集在其中.?
集合用图很方便,子交并补很明显.?
●案例1
若集合U={x|1<x≤7},A={x|2≤x<5},B={x|3≤x<7}.如何求解(1)(UA)∩(UB);(2)U(A∪B);(3)(UA)∪(UB);(4)U(A∩B)呢?
【探究】 首先把题目给出的集合(数集)在数轴上正确表示出来,在正确识别题目给出的集合符号后就可以得出结果.先在数轴上分别表示出集合U、A、B,再求出A∩B={x|3≤x<5},A∪B={x|2≤x<7},UA={x|1<x<2或5≤x≤7},UB={x|1<x<3或x=7},于是得(1)(UA)∩(UB)={x|1<x<2或x=7};(2)UU(A∪B)={x|1<x<2或x=7};(3)(UA)∪(UB)={x|1<x<3或5≤x≤7};(4)U(A∩B)={x|1<x<3或5≤x≤7}.
【溯源】 对于有关集合运算的问题,如果题目给出的集合是无限数集,可以结合数轴来帮助解决;如果给出的集合是有限集合,可以借助Venn图帮助解决问题,另外,涉及补集的运算时,我们要注意运用德·摩根律简化运算.?
●案例2
以集合的子、交、并、补为载体,求解参数问题有哪些注意事项??
比如:已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∪B=A,求实数m的取值范围.
【探究】 问题考查集合间的运算关系及分类讨论的数学思想.由A∪B=A得到BA,然后分B=和B≠两种情况讨论.?
由A∪B=ABA.可以得到:
(1)若B=,即m+1>2m-1,
∴m<2.?
此时A∪B=A∪=A成立.
(2)若B≠而且BA,则2≤m≤3.
综上所述,m的取值范围为m≤3.?
【溯源】 在求解参数类型问题时要注意以下几点:?
①A∪B=ABA;
②BA中包含有B=的情况;
③字母问题要注意分类讨论和数形结合.一般参数求值问题要先弄清集合间关系,注意代入验证方法的应用,同时注意二次方程中根与系数关系的应用.
●案例3
某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,两车都乘的18人,求:
(1)只乘电车的人数;
(2)不乘电车的人数;
(3)乘车的人数;
(4)不乘车的人数;
(5)只乘一种车的人数.
  【探究】 本题考查集合的运算,解题的关键是把文字语言转化为集合语言,借助于?Venn?图的直观性把它表示出来,设只乘电车的人数为x,不乘车的人数为y,乘车的人数为z,不乘电车的人数为u,只乘一种车的人数为v,如图所示,可得x=84-18=66(人),y=120-84=36(人),z=84+32-18=98(人),u=120-98=22(人),v=(84-18)+(32-18)=80(人).
【溯源】 实际问题在遇到一人能承担多种任务的“全能”情况时,正好是集合中交集的完美体现,此时借助交集性质数形结合,问题迎刃而解.
活学巧用
1. 下列所给对象不能构成集合的是(  )?
A.一个平面内的所有点
B.所有小于零的正数
C.某校高一(4)班的高个子学生
D.某一天到商场买过货物的顾客
【思路解析】 因为A、B、D中所给对象都是确定的,从而可以构成集合;而C中所给对象不确定,原因是找不到衡量学生身高较高的标准,故不能构成集合,若将C中“身高较高的男同学”改为“身高175 cm以上的男同学”,则能构成集合.
【答案】 C
2. 已知-3∈{a-3,2a-3,a2-4},求a.?
【思路解析】 已知集合中的三个元素都含有未知数,且都具有不确定性,故不能确定-3就是其中的哪一个,应根据分类讨论的思想进行逐一计算.?
【答案】 若-3=a-3,即a=0.
当a=0时,2a-3=-3,即不符合元素的互异性,?
∴a=0(舍);若-3=2a-3a=0,同理舍掉;若a2-4=-3,即a=±1.当a=1时,集合为{?-2,-1,-3};当a=-1时,集合为{-4,-5,-3},∴a=±1.
3. 含有三个实数的集合可表示为{a,,1},又可表示为{a2,a+b,0},则a 2 003-b 2 004=_______.
【思路解析】 考查集合元素的确定性、互异性、无序性.
由得a≠0,又集合中元素有0,所以b=0,得a+b=a.?
所以只能a2=1得a=±1.?
又由元素互异性a≠1,所以a=-1.?
a 2 003-b 2 004=(-1) 2 003+0 2 004=-1.?
【答案】 -1
4. 已知集合A={x|x=m+n,m、n∈Z},判断下列元素x与集合A的关系:(1)x=;(2)x=x1+x2(其中x1∈A,x2∈A).
【思路解析】 本题考查元素与集合的关系.判断某对象是否为某集合的元素,关键在于判断它们是否具备该集合元素公有的属性即将x值试着写成m+n的形式,若m、n是整数,便可完成判定,若无法表示成上式或m、n不为整数,则x不为集合中元素.?
【答案】 (1)x==3+2,即m=,n=1,其中Z,∴A.
(2)∵x1、x2∈A,设x1=m1+n1,x2=m2+n2(m1、m2、n1、n2∈Z),则x1+x2=(m1+m2)+(n1+n2),由m1+m2∈Z,n1+n2∈Z,
∴x1+x2∈A.
5. 给出下面几个关系式:∈R,0.3∈Q,0∈N,0∈{0},0∈N *,∈N *,-πZ,-5Z,其中正确的关系式的个数是(  )
?A.4    B.5    C.6    D.7??
【思路解析】 注意常用数集的字母表示.?
【答案】 ?A
6. 下面有四个命题:①集合N中的最小元素为1;②方程(x-1)3(x+2)(x-5)=0的解集含有3个元素;③0∈;④满足1+x>x的实数的全体形成集合.其中正确命题的个数是(  )
?A.0  B.1  C.2  D.3??
【思路解析】 集合N表示自然数集,最小的自然数是0,故①不对;据集合中元素的互异性知方程(x-1)3(x+2)(x-5)=0有3个不同的解:1、-2、5,所以②对;空集不含有任何元素,1+x>x表示x可以为任意实数,因此③错,④对,故选C.
【答案】 C
7. 用适当的形式表示下列对象构成的集合.(1)比3大5的数;(2)11以内的质数;(3)x2-5x+6=0的解;(4)函数y=x2+4图象上的点.
【思路解析】 对于一个集合用特征性质即描述法表示还是列举法表示,从理论上讲都可以,但有些可能很不方便,因此要结合具体问题选择合理的表示方法.
【答案】 (1)列举法:{8};描述法:{x|x-3=5}.(2)列举法:{2,3,5,7};描述法:{11以内的质数}.(3)列举法:{2,3};描述法:{x|x2-5x+6=0}.(4)描述法:{(x,y)|y=x2+4}.
8. 设集合A={x|∈Z,x∈N},试用列举法表示集合.
【思路解析】 由∈Z,知3-x必为6的因数,遍取6的诸因数,再验证x∈N即可.
【答案】 ∵∈Z,∴3-x可取±1、±2、±3、±6.
又x∈N,∴A={1,2,4,5,6,9}.
9. 下面三个集合:
①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.
(1)它们是不是相同的集合??
(2)它们各自的含义是什么??
【思路解析】 此题考查集合的概念,判断集合是不是相同,要看集合的元素是不是相同.
【答案】 (1)不是相同的集合.
(2)集合①是函数y=x2+1的自变量x所允许值所组成的集合,因为x可以取任意实数,所以{x|y=x2+1}=R.
集合②是函数y=x2+1的所有函数值y组成的集合,由二次函数图象知,y≥1,所以{y|y=x2+1}={y|y≥1}.
集合③是函数y=x2+1图象上的所有点的坐标组成的集合.如下图所示:?
10. 已知集合P={0,1,2,3,4},Q={x|x=ab,a、b∈P,a≠b},用列举法求集合Q.?
【思路解析】 集合Q中的元素是集合P中任意两个元素积,结合元素互异性要求,不同的积有0,2,3,4,6,8,12.
【答案】 Q={0,2,3,4,6,8,12}.
11. 下列说法正确的是(  )?
①任意集合必有子集 ②空集是任意集合的真子集 ③若集合A是集合B的子集,集合B是集合C的子集,则集合A是集合C的子集 ④若不属于集合A的元素也一定不属于集合B,则B是A的子集?
A.①②③
B.①③④
C.①③
D.①②③④
【思路解析】 此题考查子集的性质,并需要注意空集的特殊性.
(1)任意集合都是自身的子集,因此①正确.(2)空集是任意非空集合的真子集,因此②不正确.(3)集合子集的性质具有传递性,因此③正确.(4)可利用文氏图进行思路解析,④正确.
【答案】 B
12. 已知集合A={0,2,3,4},B={0,1,2,3},非空集合M满足MA且MB,则满足条件的集合M的个数为 …(  )
A.7
B.8
C.15
D.16
【思路解析】 MA且MB,则M(A∩B)=N={0,2,3},进而求出集合N的非空子集为23-1=7(个).
【答案】 A
13. 设集合A={x,x2,xy},B={1,x,y},且A=B,求实数x、y的值.
【思路解析】 注意到A、B中都有x,∵A=B,∴A、B中剩余两元素应分别对应相等,但需分类讨论,注意集合中元素的互异性的检验.
【答案】 ∵A=B,
∴或解得或或或当x=1,y∈R时,A=B={1,1,y},不满足集合中元素的互异性,∴舍去.当x=-1,y=0时,A=B={-1,1,0},适合.
当x=y=1时,A=B={1,1,1},不满足集合中元素的互异性,∴舍去.
综上,知x=-1,y=0.
14.已知方程x2+px+q=0的两个不相等实根为α、β.集合A={α,β}, B={2,4,5,6}, C={1,2,3,4}, A∩C=A,A∩B=,求p、q的值.
【思路解析】 由A∩C=A知AC.
又A={α,β},则α∈C,β∈C.而A∩B=,故αB,βB.
显然既属于C又不属于B的元素只有1和3.
不妨设α=1,β=3.对于方程x2+px+q=0的两根α、β应用韦达定理可得p=-4,q=3.
【答案】 p=-4,q=3.
15.已知全集I={小于10的正整数},其子集A、B满足IA∩IB={1,9},A∩B={2},IA∩B={4,6,8},求集合A、B.
【思路解析】 本题主要考查的是全集、补集以及交集之间的运算,方法可采用韦恩图法.?
【答案】 ?
所以A={2,3,5,7},B={2,4,6,8}.
16.已知全集U={不大于30的质数},A、B是U的两个子集,且A∩(UB)={5,13,23},A∪(UB)={2,3,5,7,13,17,23},(UA)∩(UB)={3,7},则A=?   ,B=    .
【思路解析】 U={不大于30的质数}={2,3,5,7,11,13,17,19,23},而(UA)∩(UB)=U(A∪B),画出韦恩图,标出三个集合A∩(UB),A∪(UB),U(A∪B),易得A∩B={2,17}.?
∴A={2,5,13,17,23},?B=?{2,11,17,19,29}.?
【答案】 {2,5,13,17,23} {2,11,17,19,29}
17. 已知A={2,4,a3-2a2-a+7},B={-4,a+3,a2-2a+2,a3+a2+3a+7},且A∩B={2,5}.
(1)求实数a的值;
(2)求A∪B.
【思路解析】 利用A∩B={2,5}确定集合元素的取值是本题的关键.?
【答案】 由题意知,a3-2a2-a+7=5,解之得a=-1,1,2.?
当a=-1,1时,A={2,4,5},B={-4,2,4,5}或{-4,1,4,12},这与已知A∩B={2,5}矛盾;当a=2时,符合题意,故a=2.
此时A∪B={2,4,5}∪{-4,2,5,25}={-4,2,4,5,25}.
18. 已知A={x|x2+x-6=0},B={x|mx+1=0},且B∪A=A,求实数m的取值范围.
【思路解析】 问题错在对集合B考虑的不全面,B={x|mx+1=0}代表方程mx+1=0的解集,可以有一解,也可无解.而无解的情况是B=,这种情况又恰恰满足B∪A=A的题设条件.错的原因有两个,其一是忽略了mx+1=0会无解;其二是忽略了A∪B=ABA及是任何集合的子集.?
【答案】 ∵A={x|x2+x-6=0}={-3,2},且B={x|mx+1=0},B∪A=A,
∴B={-3},B={2}或B=,即-3m+1=0,2m+1=0,或m=0.
故实数m∈{,-,0}.
19. 2005年寒假,小明为完成社会实践作业,对某校大学生进行调查,结果如下:电脑拥有率为49%,手机拥有率为85%,MP3拥有率为44%,拥有上述三种物品中两种的占38%,三种物品齐全的占25%,那么三种物品中一种也没有的大学生比例为(  )?
A.10% B.12%
C.15% D.27%??
【思路解析】 韦恩图如下图所示,设调查了100名大学生.?
I={被调查的100名大学生},
M={100名学生中拥有电脑的学生},
S={100名学生中拥有手机的学生},
P={100名学生中拥有MP3的学生},
  要求I(M∪P∪S)的元素个数,根据已知条件,先求集合M∪P∪S中元素的个数较容易.由图形知M∪P∪S的元素个数为49+85+44-38-2×25=90.?
∴I(M∪P∪S)的元素个数为10.故选A.
【答案】 A
20. 已知A={x|x2+px-12=0},B={x|x2+qx+r=0},且A≠B,若A∪B={-3,4},A∩B={-3},求实数p、q、r的值.
【思路解析】 本题考查集合的交、并运算,可结合方程的根与集合的关系,从两集合有公共元素-3入手,再利用A∪B={-3,4},求出所有参数.?
【答案】 由已知-3∈A且-3∈B.
把x=-3代入方程x2+px-12=0,得9-3p-12=0,解得p=-1.于是可得集合A={-3,4}.
又A∪B={-3,4}=A,所以BA,而已知A≠B,
所以BA.由-3∈B可知B={-3},即方程x2+qx+r=0有两个相等的实数根-3,由根与系数的关系得解得q=6,r=9.
故p=-1,q=6,r=9.
21.已知全集S={x||x|<8,x∈N},A、B是S的子集,若①(SA)∪(SB)={0,1,2,4,5,6,7};②(SA)葿={2,6};③(SB)∩A={1,7}.求满足上述条件的集合A、B.
【思路解析】 由①知S(A∩B)={0,1,2,4,5,6,7},
∴A∩B={3},即3∈A,且3∈B;
由②知,2∈B,6∈B,但2A,6A;?
由③知,1∈A,7∈A,但1B,7B.?
∴A={1,3,7},B={2,3,6}.
【说明】 另可借助韦恩图直观推理分析.
【答案】 A={1,3,7},B={2,3,6}.
1.1 集合
知识导学
集合是一个原始的、不加定义的概念.我们现在刚开始接触集合的概念,最好还是要通过一些实例了解集合的含义.了解集合的含义时要考虑集合元素的三个性质即确定性、互异性和无序性,这有助于我们对集合概念的理解.
元素、集合的字母表示,以及元素与集合之间的属于或不属于关系,可在具体运用中逐渐熟悉.
集合语言是现代数学的基本语言,也就是用集合的有关概念和符号来叙述问题的语言.集合语言通常可以分为文字语言、符号语言和图形语言,将集合的三种语言之间进行相互的转化,或将集合语言转化为自然语言、几何语言,有助于弄清楚集合是由哪些元素构成的,有助于提高分析和解决问题的能力.
要辩证理解集合和元素这两个概念:(1)集合和元素是两个不同的概念,符号∈和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如{1}∈{1,2,3}的写法就是错误的,而{1}∈{{1},{2},{3}}的写法才是正确的.(2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合{x∈R |x≥0},就是指所有不小于0的实数,而不是指“x可以在不小于0的实数范围内取值”,不是指“x是不小于0的一个实数或某些实数,”也不是指“x是不小于0的任一实数值”……(3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.
在集合的表示方法上,有列举法和描述法,应在正确表示的基础上牢固把握两种方法的模式,深入理解问题的本质,根据具体问题选用合理简洁的表示方法.此外,还要会用Venn图的方法直观形象地表示集合.
在用描述法表示集合时,对元素公共属性准确理解是关键.只有准确抓住代表元素的意义及其公共属性才能简化集合,从而将集合语言转化为文字语言、图形语言.
习惯上借助数轴来表示数的集合,借用平面直角坐标系来表示有序实数对集合,从而实现数与形的结合,有助于我们思路解析和解决数学问题.
子集:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(若a∈A,则a∈B),则称集合A为集合B的子集,记作:AB或BA,读作:“集合A包含于集合B”或“集合B包含集合A”,即便有了子集的定义两个集合间也不一定是包含关系.如A={x|x为高一(1)班的男生},B={x|x为高一(1)班的女生},则A与B不具有包含关系,此时可记作:A?B或B?A.
子集的有关性质:
①A=BAB且BA.
②AB,BCAC;AB,BCAC.
③若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1个,非空子集的个数为2n-1,非空真子集的个数为2n-2.
并集:x∈A∪B,则x∈A或x∈B,这里的“或”是指x∈A;x∈B;x同时属于A与B,这三种情况.
三个集合的交、并运算应遵循“按顺序计算”“有括号先算括号”的原则.
如A∪B∩C,应先算“∪”再算“∩”.
一般说,A∪B∩C≠A∪(B∩C).
另外,(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C).ABAB
card(A∪B)=card(A)+card(B)-card(A∩B),
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C).
(card(A)表示有限集合A元素的个数)
交集:要从x∈A∩B,则x∈A且x∈B理解,要理解这里的“且”;
①A∩B是一个新集合的表达式,是由A与B的所有的公共元素组成的;
②当A与B没有公共元素时,不能说它们没有交集,而是交集为,同时结合集合的一些特征去理解.
补集:由全集U中不属于集合A的所有元素组成的集合称为集合A的补集.理解补集的概念首先要在全集的基础上理解,没有全集就谈不上补集,另一个要注意的是一个集合与它的补集的交集是.
记忆口诀:
集合平时很常用,数学概念有不同.理解集合并不难,三个要素是关键.元素确定和互异,还有无序要牢记.集合不论空不空,总有子集在其中.集合用图很方便,子交并补很明显.
图1-1-4
疑难导析
列举法:①有些无穷集合亦可用列举法表示,如所有正奇数组成的集合:{1,3,5,7,…};②a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素.
描述法:①在不致混淆的情况下,可以省去竖线及左边部分.如:{直角三角形};{大于10上标4的实数};
②错误表示法:把R写成{实数集}或{全体实数};
③在用描述法表示集合时,对元素公共属性准确理解是关键.
当用列举法和描述法表示集合时,应在正确表示的基础上牢固把握两种表示方法的模式,深入理解问题的本质,根据具体问题选用合理简洁的表示方法.此外,还要会用Venn图的方法直观形象地表示集合.习惯上借助数轴来表示数的集合,借用平面直角坐标系来表示有序实数对集合,从而实现数与形的结合,有助于我们分析和解决数学问题.
明确集合中元素的特征及元素和集合的关系.集合元素的确定性,是指集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必具其一,它是判断一组对象是否形成集合的标准;互异性是指给定的一个集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一元素,这一点常被我们所忽略;元素和集合的关系是∈和,二者有且只有一种成立.
对于集合与集合相等,可与实数中的结论“若a≥b,且b≥a,则a=b”相类比,这种由某类事物已有的性质,通过类比、联想的方式猜想另一类相似事物的性质,是数学逻辑思维的重要思维方法.集合相等可从元素完全相同的角度去理解,若从子集的角度去理解,可提升对集合相等的理解.证明两个集合相等,分清元素的性质及构成情况是关键.
问题导思
教科书中的解释是根据集合论的创始人德国数学家康托尔关于集合的论述而来的.康托尔的一些见解至今仍然是很严谨的,但也有某些观点或解释被后来的数学家们作了修正.现在看来,“对于一个给定的集合,集合中的元素是确定的”(通常称为集合中元素的确定性)这句话,最好解释为:“对于一个给定的集合,它的元素的意义是明确的”.
列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素一一列举出来,而没有列举出来的元素往往难以确定.
使用描述法时,应注意六点:
①写清集合中元素的代号;
②说明该集合中元素的性质;
③不能出现未被说明的字母;
④多层描述时,应当准确使用“且”“或”;
⑤所有描述的内容都要写在大括号内;
⑥用于描述的语句力求简明、确切.
用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.
补集具有相对性,它是相对于全集而言的,全集改变了,补集也相应地改变.
典题导考
绿色通道
集合中的元素是确定的,某一元素a要么a∈A,要么aA,两者必居其一,这也是判断一组对象能否构成集合的依据.此题是生活中的实例,说明生活处处皆学问.
典题变式 下列对象不能构成集合的是…( )
①方程x2-9=0的实数根
②我国近代著名的数学家
③联合国常任理事国
④空气中密度大的气体
A.①② B.①④ C.①②④ D.②④
答案:D
黑色陷阱
在做关于集合的基本概念的辨析题时应严密,紧扣概念,对每个概念不仅要记住,而且要理解其本质.另外要注意的是:对于错误的说法,举一个反例即可.
典题变式
1.下列说法正确的是( )
①任意集合必有子集
②1,0.5,,组成的集合有四个元素
③若集合A是集合B的子集,集合B是集合C的子集,则集合A是集合C的子集
④若不属于集合A的元素也一定不属于集合B,则B是A的子集
A.①②③ B.①③④ C.①③ D.①②③④
答案:B
2.下面六种表示法:
①{x=-1,y=2};②{(x,y)|x=-1,y=2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x,y)|x=-1或y=2}.
能正确表示方程组的解集的是( )
A.①②③④⑤⑥ B.①②④⑤ C.②⑤ D.②⑤⑥
答案:C
黑色陷阱
在用列举法表示集合时,容易发生的错误:一是列举出来的元素不完整,如将(1)中的答案写成{1,4,9,16};二是列举的元素有重复,如把第(2)小题答案写成{1,1,2};三是不明确集合中的元素,把第(3)小题的答案写成{3,2}等.
典题变式 用列举法表示下列集合:
(1){自然数中五个最小的完全平方数};
(2){x|(x-1) 2 (x-2)=0};
(3){(x,y)|}.
答案:(1){0,1,4,9,16};(2){1,2};(3){(3,2)}.
黑色陷阱
对于集合中元素的求法,要看清原来是用什么方法表示出的,有时要分类讨论.如果不注意分类讨论将导致思维的不严密.
典题变式已知全集I=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a、b的值.
答案:a=,b=-.
绿色通道
集合是由元素构成的,要确定一个集合,一是把集合中的元素一一找出来,用列举法去表示;二是明确集合中元素的范围及其满足的性质,用描述法去表示.
典题变式
已知集合A={0,2,3,4},B={0,1,2,3},非空集合M满足MA且MB,则满足条件的集合M的个数为( )
A.7 B.8 C.15 D.16
答案:A
绿色通道
此题考查分类讨论思想,以及集合间的关系的应用.通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题.这称为数学的化归思想,是数学思想的常用方法,在高考中重点考查.
典题变式设集合A={A|2x2+3px+2=0},B={x|2x2+x+q=0},其中p、q、x∈R,当A∩B={}时,求p的值和A∪B.
答案:p=-,A∪B={-1, ,2}.
黑色陷阱
本题可能会有如下解法:由题设易知B={2,3},C={2,-4}.由A∩B≠,且A∩C=知3∈A.把x=3代入方程x2-ax+a2-19=0,得9-3a+a2-19=0.解得a=5或a=-2.
这里由条件推知3∈A,进而推出a的值,并不能肯定反过来都符合题设条件.
典题变式 已知A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},是否存在a,使A、B满足下列三个条件:①A≠B;②A∪B=B;③(A∩B).若存在,求出a的值;若不存在,请说明理由.
答案:不存在实数a,使得满足条件.
黑色陷阱
本题容易出现以下错误:由A∩B≠,知方程组有解,即方程3x2-ax+15-b=0有解.
∴Δ=a2-4×3×(15-b)=a2+12b-180≥0. ①
由(a,b)∈C,得144≥a2+b2. ②
(以上二元二次不等式组难以求解,故可能半途而废,不了了之)
①+②,得a2+12b-36≥a2+b2,
即(b-6) 2≤0b=6.
把b=6代入①,得a2≥108;
把b=6代入②,得a2≤108.
∴a2=108,即a=±6.
故存在实数a、b满足条件.
典题变式 方程x2-ax+b=0的两根为α、β,方程x2-bx+c=0的两根为γ、δ,其中α、β、γ、δ互不相等,设集合M={α,β,γ,δ},且集合S={x|x=u+υ,u∈M,υ∈M,u≠υ},P={x|x=uυ,u∈M,υ∈M,u≠υ},若S={5,7,8,9,10,12},P={6,10,14,15,21,35},求a、b、c.
答案:b=10,a=7,c=21.
1.1 集合
课堂探究
探究一 判断元素与集合的关系
1.判断一个元素是不是某个集合的元素,对于用描述法给出的集合,就是判断这个元素是否具有这个集合的元素的共同特征;对于用列举法给出的集合,只需观察即可.
2.符号“∈”和“?”是表示元素与集合之间的关系的,不能用来表示集合与集合间的关系,这一点要特别注意.
【典型例题1】 用符号“∈”或“?”填空:
(1)2__________{x|x<},3__________{x|-5≤x≤2,x∈Z};
(2)4__________{x|x=n2+1,n∈Z},5__________{x|x=n2+1,n∈Z};
(3)(-1,1)__________{y|y=x2},(-1,1)__________{(x,y)|y=x2}.
解析:(1)因为22<()2,
所以2∈{x|x<}.
因为{x|-5≤x≤2,x∈Z}={-5,-4,-3,-2,-1,0,1,2},
所以3?{x|-5≤x≤2,x∈Z}.
(2)令4=n2+1,则n=±?Z,
所以4?{x|x=n2+1,n∈Z}.
令5=n2+1,则n=±2∈Z,
所以5∈{x|x=n2+1,n∈Z}.
(3)集合{y|y=x2}的代表元素是数,集合{(x,y)|y=x2}的代表元素是实数对,且1=(-1)2,
所以(-1,1)?{y|y=x2},(-1,1)∈{(x,y)|y=x2}.
答案:(1)∈ ? (2)? ∈ (3)? ∈
探究二 集合元素特性的应用
利用集合元素的特性解答问题,主要是利用集合元素的确定性与互异性:
(1)确定性:是指集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否能形成集合的标准.
(2)互异性:是指对于一个给定的集合,它的任意两个元素都是不同的.简单地说,一个集合中不能出现相同的元素.
【典型例题2】 (1)下列叙述:
①著名的数学家;
②某校2013年在校的所有高个子同学;
③不超过20的非负数;
④2013年度诺贝尔文学奖获得者.
其中能构成集合的是__________.(填序号)
(2)已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.
(1)解析:①②所述的对象都没有明确的标准,故都不能构成集合;③④所述的对象都有确定的标准,即给定一个对象都能确定是否属于该范畴,故③④所述对象能构成集合.
答案:③④
(2)解:∵-3∈A,
∴-3=a-3或-3=2a-1.
若-3=a-3,则a=0.
此时集合A含有两个元素-3,-1,符合题意;
若-3=2a-1,则a=-1.
此时集合A含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a的值为0或-1.
规律小结根据已知条件求集合问题中的参数值时,要进行检验,不仅要检验是否满足题目的条件,还要检验集合的元素是否满足互异性.
探究三 集合的表示
表示一个集合通常用列举法或描述法:
(1)列举法:
①对于元素个数确定的集合或元素个数不确定但元素间存在明显规律的集合,可采用列举法.
②用列举法时要注意:元素之间用“,”而不是用“、”隔开;元素不能重复;不考虑元素顺序.
(2)描述法:
①对于元素个数不确定且元素间无明显规律的集合,不能将元素一一列举出来,可以通过将集合中元素的共同特征描述出来,即采用描述法.
②使用描述法时,还应注意以下几点:
弄清楚集合的属性,是数集、点集,还是其他类型的集合.一般地,数集中的元素用一个字母表示,而点集中的元素则用一个有序实数对来表示.描述元素的共同特征时,若出现了元素记号以外的字母,则要对新字母说明其含义或指出其取值范围.
【典型例题3】 用适当的方法表示下列集合.
(1)BRICS中的所有字母组成的集合;
(2)方程组的解集;
(3)A={(x,y)|x+y=3,x∈N,y∈N};
(4)坐标平面内坐标轴上的点集.
思路分析:先根据题意确定符合条件的元素,再根据元素情况选择适当的表示方法.
解:(1)用列举法表示为{B,R,I,C,S}.
(2)由得
故方程组的解集用列举法表示为{(1,1)}.
(3)因为x∈N,y∈N,x+y=3,
所以或或或
所以A={(0,3),(1,2),(2,1),(3,0)}.
(4)注意到坐标轴上点的横坐标或纵坐标至少有一个为0,故可表示为{(x,y)|xy=0,x∈R,y∈R}.
探究四 易错辨析
易错点 集合中元素的互异性
【典型例题4】 用列举法写出关于x的方程x2-(a+1)x+a=0的解集.
错解:由x2-(a+1)x+a=0,得(x-a)(x-1)=0,
所以方程的解为x=1或x=a,则解集为{1,a}.
错因分析:错解中没有注意到a是参数,使方程的解集具有不确定性.为了保证集合中元素的互异性,写出解集时要对a进行分类讨论.
正解:由x2-(a+1)x+a=0,得(x-a)(x-1)=0,
所以方程的解为x=1或x=a.
若a=1,则解集为{1};
若a≠1,则解集为{1,a}.
反思对于用列举法表示的集合,若其中的元素用字母表示,要注意满足集合中元素的互异性.
1.1 集合
预习导航
1.通过实例了解集合的含义,并掌握集合中元素的三个特性.
2.掌握元素与集合的关系,并能用符号“∈”或“?”来表示.
3.掌握列举法和描述法,会选择不同的方法表示集合,记住常用数集的符号.
一、集合的概念
名师点拨 集合中元素的性质:
(1)确定性:指的是给定一个集合A,任何一个对象a是不是这个集合的元素就确定了,即某一个元素要么是该集合中的元素,要么不是,二者必居其一;
(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的;
(3)无序性:集合中的元素是没有顺序的,也就是说,集合中的元素没有先后之分.
二、元素与集合的关系
特别提醒符号“∈”和“?”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.
三、集合的表示
自主思考1 什么样的集合可以用列举法来表示?
提示:对于元素个数很少或元素存在明显规律的集合可用列举法表示.
自主思考2 在描述法中,表示这个集合元素的一般符号不同,但竖线后的条件一样,那么这样的集合还相同吗?如A={x|y=},B={(x,y)|y=}.
提示:一般地,这样两个集合是不相同的,如集合A={x|y=}表示集合{x|x≥1},而集合B={(x,y)|y=}表示二元方程y=的解组成的集合或是函数y=图象上所有点组成的集合.
自主思考3 用列举法与描述法表示集合的区别是什么?
提示:
列举法
描述法
一般形式
{a1,a2,a3,…,an}
{x∈I|p(x)}
适用范围
有限集或规律性较强的无限集
有限集、无限集均可
特点
直观、明了
抽象、概括
1.1 集合
课堂探究
探究一 补集的运算
1.补集符号?UA的三层含义:
(1)?UA表示一个集合;
(2)A是U的子集,即A?U;
(3)?UA是U中不属于A的所有元素组成的集合.
2.求补集的方法:
求给定集合A的补集通常利用补集的定义去求,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.也常利用Venn图或数轴求解.
【典型例题1】 (1)设全集U={n|n是小于10的正整数},A={n|n是3的倍数,n∈U},求?UA;
(2)设全集U=R,集合A={x|x≥-3},B={x|-3解:(1)∵U={1,2,3,4,5,6,7,8,9},
A={3,6,9},
∴?UA={1,2,4,5,7,8}.
(2)∵A={x|x≥-3},
∴?UA=?RA={x|x<-3}.
又∵B={x|-3∴?UB={x|x≤-3,或x>2}.
画数轴如图:
显然,?UA?UB.
方法技巧在利用数轴解答集合的运算问题时,要特别注意端点值能否取得.在数轴上表示集合时,点的实(心)空(心)要分清,这样有利于准确解答问题.
探究二 交集、并集、补集的综合运算
交集、并集、补集的综合运算主要有两种情况:
(1)对于有限集,先把集合中的元素一一列举出来,然后结合交、并、补集的定义来求解,另外针对此类问题,在解答过程中也常常借助于Venn图来求解,这样处理起来,相对来说比较直观、形象,且解答时不易出错.
(2)对于无限集,常借助于数轴,把已知集合及全集分别表示在数轴上,然后再根据交、并、补集的定义求解,这样处理比较形象直观,解答过程中注意边界问题.
【典型例题2】 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求?UA,?UB,(?UA)∩(?UB).
思路分析:由于U,A,B均为无限集,所求问题是集合间的交集、并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则?UA={x|-1≤x≤3};
?UB={x|-5≤x<-1,或1≤x≤3};
方法一:(?UA)∩(?UB)={x|1≤x≤3}.
方法二:∵A∪B={x|-5≤x<1},
∴(?UA)∩(?UB)=?U(A∪B)
={x|1≤x≤3}.
探究三 补集思想的应用
有些数学问题,若直接从正面解决,或解题思路不明朗,或需要考虑的因素太多,可用补集思想考虑其对立面,即从结论的反面去思考,探索已知和未知之间的关系,从而化繁为简,化难为易,开拓解题思路.
【典型例题3】 已知集合A={x|x>a+5,或x解:当A∩B=?时,如图所示,

解得-1≤a≤2.
即当A∩B=?时,实数a的取值集合为M={a|-1≤a≤2}.而当A∩B≠?时,实数a的取值范围显然是集合M在R中的补集.
故当A∩B≠?时,实数a的取值范围为{a|a<-1,或a>2}.
探究四易错辨析
易错点 忽略检验或考虑不全面
【典型例题4】 设全集U={2,3,a2+2a-3},A={|2a-1|,2},?UA={5},求实数a的值.
错解:∵?UA={5},
∴5∈U,且5?A,
∴a2+2a-3=5,且|2a-1|≠5,
解得a=2或a=-4,即实数a的值是2或-4.
正解:∵?UA={5},
∴5∈U,且5?A,且|2a-1|=3.
解得a=2,
即a的取值是2.
1.1 集合
预习导航
1.理解集合之间的包含与相等的含义,能识别给定集合的子集.
2.了解Venn图的含义,会用Venn图表示两个集合间的关系.
3.在具体情境中,了解空集的含义及其性质.
一、Venn图
二、子集
名师点拨 “∈”与“?”表示元素与集合之间的关系,开口仅指向右,对着集合;“?”与“?”表示两个集合间的关系,开口可以向右,也可以向左.子集定义可表示为:任意x∈A,都有x∈B?A?B.
三、集合相等
四、真子集
自然语言
如果集合A?B,但存在元素x∈B,且x?A,称集合A是集合B的真子集
符号语言
AB(或BA)
图形语言
名师点拨 若AB,则A中的元素都是B的元素,且B中元素比A中元素至少多一个.
五、性质
(1)任何一个集合是它本身的子集,即A?A.
(2)对于集合A,B,C,如果A?B,B?C,那么A?C.
(3)对于集合A,B,C,如果AB,BC,那么AC.
六、空集
自主思考1能否把“A?B”理解成“A是B中部分元素组成的集合”?
提示:不能.这是因为当A=?时,A?B,但A中不含任何元素;又当A=B时,也有A?B,但A中含有B中的所有元素,这两种情况都有A?B成立,所以上述理解是错误的.
自主思考2?就是0,或?就是{0}吗?
提示:两种说法均是错误的,?是不含任何元素的集合,概念中强调了两点:“不含任何元素”“集合”.(1)0是一个数,而非集合,故?不是0;(2){0}表示集合,且集合中有且仅有一个元素0,是非空集合,故{0}与?含义不同,所以?不是{0}.
特别提醒在写一个集合的子集与真子集时,不要忘记?;当题目中给出条件“A?B”时,要注意集合A可以是?.
1.2.1 函数及其表示
课堂导学
三点剖析
一、函数的概念
【例1】 下列对应是从集合M到集合N的函数的是( )
A.M=R,N=R,f:x→y=
B.M=R,N=R+(正实数组成的集合),f:x→y=
C.M={x|x≥0},N=R,f:x→y2=x
D.M=R,N={y|y≥0},f:x→y=x2
思路分析:本题主要考查函数的定义.
解:A.对于M中的元素-1,N中没有元素与之对应,故该对应不是从M到N的函数.B.对于M中的元素-1,N中没有元素与之对应,该对应f:M→N不是函数.C.对于M中的任一元素如x=4,通过对应法则f:x→y2=x得到N中有两个元素±2与之对应,故f:x→y2=x不是从M到N的函数.
答案:D
温馨提示
判断一个对应法则是否构成函数,关键是看给出定义域内任一个值,通过给出的对应法则,y是否有且只有一个元素与之对应.
【例2】 下列四组函数中,有相同图象的一组是( )
A.y=x-1,y= B.y=,y=
C.y=2,y= D.y=1,y=x0
解析:y=x-1与y==|x-1|的对应法则不同;y=的定义域为[1,+∞),y=的定义域为(1,+∞),两函数的定义域不同;y=1的定义域为R,y=x0的定义域为(-∞,0)∪(0,+∞),两函数定义域不同;y=2与y=是两相等的函数,所以图象相同.选C.
答案:C
温馨提示
1.定义域、对应关系、值域分别相同的函数有相同的图象,三要素中只要有一项不同,两个函数就不相等.由于值域由定义域与对应关系所确定,所以判断函数是否相等,只要判断定义域与对应关系是否相同即可.
2.判断对应法则是否相同,可以化简以后再判断,但是求函数的定义域必须通过原函数解析式去求.
二、求函数解析式、定义域
【例3】如图,有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,其下底AB是⊙O的直径,上底CD的端点在圆周上,梯形周长y是否是腰长x的函数?如果是,写出函数关系式,并求出定义域.
思路分析:判定两个变量是否构成函数,关键看两个变量之间的对应关系是否满足函数定义.该题中的每一个腰长都能对应唯一的周长值,因此周长y是腰长x的函数.若要用腰长表示周长的关系式,应知等腰梯形各边长,下底长已知为2R,两腰长为2x,因此只需用已知量(半径R)和腰长x把上底表示出来,即可写出周长与腰长的函数关系式.
解:由题意可知,每一个腰长x都能对应唯一的周长值y,因此周长y是腰长x的函数.
如上图,AB=2R,C、D在⊙O的半圆周上,设腰长AD=BC=x,作DE⊥AE,垂足为E,连结BD,那么∠ADB是直角,由此Rt△ADE∽Rt△ABD.
∴AD2=AE·AB,即AE=.
∴CD=AB-2AE=2R-.
∴周长y满足关系式
y=2R+2x+(2R-)=-+2x+4R,
即周长y和腰长x间的函数关系式y=-+2x+4R.
∵ABCD是圆内接梯形,∴AD>0,AE>0,CD>0,即解不等式组,得函数y的定义域为{x|0温馨提示
该题是实际应用问题,解题过程是从实际问题出发,利用函数概念的内涵,判断是否构成函数关系,进而引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义作出回答.这个过程实际上就是建立数学模型的最简单的情形.
【例4】求下列函数的定义域.
(1)y=;(2)y=;(3)y=++.
思路分析:具体函数即有具体解析式的函数的定义域是求使解析式有意义的x取值集合,其求法通常是转化为求不等式组的解集,实际问题还要注意符合实际意义.
解:要使函数解析式有意义,
(1)≥0或≥2或x<-2.
所以函数定义域为{x|x≥2或x<-2}(或(-∞,-2)∪[2,+∞]).
(2)x≥-1且x≠2,
所以函数定义域为{x|x≥-1且x≠2}.
(3)-4≤x≤0且x≠-3,
所以函数定义域为{x|-4≤x≤0且x≠-3}.
温馨提示
1.当函数用解析式给出时,求函数的定义域,要把所有制约自变量取值的条件找出来,然后归结为解不等式(组)的问题,在解不等式时要细心,取交集时可借助数轴,并且要注意端点值的取舍.
2.求函数定义域之前,尽量不要对函数解析式作变形,以免引起定义域的变化.
3.已和函数f(x)的定义域为[a,b],则函数f[g(x)]的定义域是指满足不等式a≤g(x)≤b的取值范围;一般地,函数f[g(x)]的定义域是[a,b],指的是x∈[a,b],要求f(x)的定义域,就是求x∈[a,b]时,g(x)的值域.
三、求函数的值域
【例5】 已知函数f(x)=,求:
(1)f(),f();(2)f(x)+f();(3)f(1)+f(2)+f()+f(3)+f()+f(4)+f()+…+f(2 005)+f().
思路分析:y=f(x)的涵义是指自变量x通过对应关系求对应函数值y=f(x).该题则指x对应的函数值通过而获得,无论谁处于自变量的位置上,不管是,还是,都充当自变量角色,通过对应法则而得到所求的函数值.
解:由于f(x)=,
(1)f()==,f()==.
(2)f(x)+f()=+==1.
(3)由(2)可得f(1)+f(2)+f()+f(3)+f()+…+f(2 005)+f()=+=2 004+=2 004.5.
温馨提示
1.求函数值时,要正确理解对应法则“f”和“g”的含义.
2.求f[g(x)]时,一般遵循先里后外的原则,先求g(x),然后将f(x)解析式中的x代换为g(x),同时要注意函数的定义域.
【例6】已知函数y=x2-4x-5,求:
(1)x∈R时的函数值域;
(2)x∈{-1,0,1,2,3,4}时的值域;
(3)x∈[-2,1]时的值域.
思路分析:函数值域是由定义域与对应关系所确定的,在求函数有关问题时,始终要把握好“定义域优先”的原则,二次函数的特定区间求值域值得关注.
解:(1)x∈R,y=x2-4x-5=(x-2)2-9,值域为[-9,+∞].
(2)当x=-1时,y=(-1)2-4×(-1)-5=0;
当x=0时,y=-5;
当x=1时,y=12-4×1-5=-8;
当x=2时,y=22-4×2-5=-9;
当x=3时,y=32-4×3-5=-8;
当x=4时,y=42-4×4-5=-5.
∴当x∈{-1,0,1,2,3,4}时函数y=x2-4x-5的值域为{0,-5,-8,-9}.
(3)∵y=x2-4x-5的图象如图所示,当x∈[-2,1]时的图象如图所示,由二次函数的性质可知函数y=x2-4x+5在x∈[-2,1]上的最小值为ymin=12-4×1-5=-8,最大值为ymax=(-2)2-4×(-2)-5=7.
∴其值域为[-8,7].
温馨提示
1.求函数的值域应遵循“定义域优先”的原则.
2.求二次函数的值域要结合二次函数的图象求其值域.
各个击破
类题演练1
下列关系中确定是函数关系吗?
(1)L=2πR,其中R表示圆的半径,L表示圆的周长;
(2)S=S0+vt,其中S表示物体运动的距离,t表示运动时间,S0表示初始距离,v表示匀速常数;
(3)A={x|x≥0,x∈R},B=R,从集合A到集合B的对应关系是“求平方根”.
答案:(1)(2)是函数关系,(3)不是函数关系.
变式提升1
下列图象可以作为函数y=f(x)图象的是( )
解析:对于B,给x一个值,y可能没有元素与之对应或有两个元素与之对应;对于C,给x一个值,y可能没有或有两个元素与之对应;对于D,当x=0时,y有两个值与之对应,故选A.
答案:A
类题演练2
下列四组函数中,表示同一函数的是( )
A.f(x)=x,g(x)=()2 B.f(x)=x2+1,g(t)=t2+1
C.f(x)=x2,g(x)=(x+1)2 D.f(x)=,g(x)=x+1
解析:A.定义域不同,C.对应关系不同,D.定义域不同.
答案:B
变式提升2
下列各小题中的两个函数是否表示同一函数.
(1)y=·与y=;
(2)y=·与y=.
解析:(1)y=·的定义域为即x≥1;而的定义域为x2-1≥0,即x≥1或x≤-1,可见定义域不同,故不表示同一函数.
(2)y=·的定义域为-1≤x≤1;y=的定义域为-1≤x≤1;且·=,故对应关系相同,定义域相同,表示同一函数.
类题演练3
用长为l的铁丝弯成下部为矩形,上部为半圆形的框架(如右图),若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并指出其定义域.
解析:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB=2x,宽为a.则有2x+2a+πx=l,即a=-x-x,半圆的直径为2x,半径为x,所以y=+(-x-x)·2x=-(2+)x2+lx.根据实际意义知-x-x>0,解得x>0且x<,即函数y=-(2+)x2+lx的定义域是0变式提升3
如右图所示,等腰梯形ABCD的两底分别为AD=2,BC=1,∠BAD=45°,直线MN⊥AD交AD于M,交折线ABCD位于N,记AM=x,试将梯形ABCD于直线MN左侧的面积y表示为x的函数,并写出函数的定义域和值域,画出函数的图象.
解:过B、C分别作AD的垂线,垂足分别为H和G,则AH=,AG=,当M位于H左侧时,AM=x,MN=x.
∴y=S△AMN=x·x=x2(0≤x<).
当M位于H、G之间时,
y=AH·BH+HM·MN
=··+(x-)·
=x-(≤x<).
当M位于G、D之间时,y=S梯形ABCD-S△MDN
=··(2+1)-·(2-x)(2-x)
=-x2+2x-(≤x≤2).
∴所求函数的关系式为

函数的图象如右图所示,函数的定义域为[0,2],函数的值域为[0,].
类题演练4
求下列函数的定义域:
(1)y=;
(2)y=+.
解:(1)令
故函数的定义域为
{x|x<0且x≠-1}.
(2)令
故函数的定义域为
{x|-≤x≤}且x≠±.
变式提升4
(1)若函数f(x)的定义域是[0,1],则函数f(2x)+f(x+)的定义域为______________.
解析:此类函数没有具体的解析式,由f(x)的定义域已知,那么f(2x)中的2x与f(x+)中的x+处在自变量位置上就要满足f(x)的条件要求.
∵f(x)的定义域是[0,1],∴f(2x)+f(x+)中的x必须满足
0≤x≤.
因此所求函数定义域为[0,].
答案:[0,]
(2)已知函数f(2x-1)的定义域为[0,1),求f(1-3x)的定义域.
解析:f(2x-1)的定义域为[0,1],即0≤x<1,∴-1≤2x-1<1.∴f(x)的定义域为[-1,1],
即-1≤1-3x<1,0类题演练5
已知f(x)=(x∈R且x≠-1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f[g(2)]的值;
(3)求f[g(x)]的解析式.
解:(1)f(2)==,g(2)=22+2=6.
(2)f[g(2)]=f(6)==.
(3)f[g(x)]=f(x2+2)==.
变式提升5
(1)已知f(x)=求f[f()]=______________.
解析:f[g()]=f(1)=0.
答案:0
(2)已知:f(x)=2x+a,g(x)=(x2+3),若g[f(x)]=x2+x+1,求a的值.
解析:∵g[f(x)]=g(2x+a)
=[(2x+a)2+3]
=x2+ax+(a2+3),
又∵g[f(x)]=x2+x+1,
∴∴a=1.
类题演练6
已知函数y=x2+2.
(1)求x∈{x||x|≤2,x∈Z}时的函数的值域;
(2)x∈[-1,2]时的函数的值域.
解析:(1){2,3,6}.
(2)∵由函数图象可得ymin=f(0)=2,ymax=f(2)=6.
∴所求值域为[2,6].
答案:(1){2,3,6} (2)[2,6]
变式提升6
求函数y=x2-4x+5在x∈[m,6]时的值域.
解析:(1)当2≤m<6时,其图象如右图所示, 由二次函数的性质可得
ymin=f(m)=m2-4m+5.
ymax=f(6)=62-4×6+5=17.
∴原函数的值域为[m2-4m+5,17].
(2)当-2≤m≤2时,
f(x)min=1,f(x)max=f(6)=17,
∴值域为[1,17].
(3)当m<-2时,f(x)min=f(2)=1,
f(x)max=f(m)=m2-4m+5,
∴其值域为[1,m2-4m+5].
1.2.2 函数的表示法
课堂导学
三点剖析
一、函数的三种表示方法
【例1】 作出下列函数的图象:
(1)y=2-x,x∈Z;
(2)y=2x2-3x-2(x>0);
(3)y=
思路分析:作函数图象主要有两种思路:①利用列表描点法,②转化为基础函数,利用基本函数图象作复杂函数图象.
解:(1)这个函数图象是由一些点组成的,这些点都在直线y=2-x上.如图1所示.
图1
(2)这个函数图象是抛物线的一部分,可先利用描点法作出y=2x2-3x-2的图象,然后截出需要的图象,如图2所示.
图2
(3)这个图象是由两部分组成的,当x≥1时,为双曲线y=的一部分,当x<1时,为抛物线y=x2的一部分,如图3所示.
图3
温馨提示
1.从本题可以看出,函数的图象不一定是一条或几条平滑曲线,也可是一些孤立的点、线段、射线等,这要由定义域对应关系确定.
2.函数的图象对研究函数性质和解决有关问题十分重要,它是研究函数性质的直观图,也是数形结合的有力工具.
【例2】 由函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求函数解析式.
思路分析:由于f(x)是一次函数,因此可设f(x)=ax+b(a≠0),然后利用条件列方程(组),再求系数.
解:f(x)是一次函数,设f(x)=ax+b(a≠0).由于3f(x+1)-2f(x-1)=2x+17,
因此3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17,则得
即故函数解析式为f(x)=2x+7.
温馨提示
求已知函数的解析式通常利用待定系数法.由于常见的已知函数(正比例函数、反比例函数、一次函数、二次函数等)的解析式结构形式是确定的,故可用待定系数法确定其解析式,即若已知函数类型,可设所求函数解析式,然后利用已知条件列方程(组),再求系数.
二、根据已知关系,写出函数的解析式
【例3】 在边长为4的正方形ABCD的边上有一动点P,从B点开始,沿折线BCDA向A点运动(如右图),设P点移动的距离为x,△ABP的面积为y,求函数y=f(x)及其定义域.
思路分析:由于P点在折线BCDA上位置不同时,△ABP各有特征,计算它们的面积也有不同的方法,因此这里要对P点位置进行分类讨论,由此y=f(x)很可能是分段函数.
解:如上图,当点P在线段BC上时,即0 当P点在线段CD上时,即4 当P点在线段DA上时,即8 ∴y=f(x)=
且f(x)的定义域是(0,12).
温馨提示
分段函数作为一类重要的函数,其对应关系不能用统一的对应法则来表示,处理分段函数的问题时除要用到分类讨论思想外,还要注意其中整体和局部的关系.
【例4】 (1)已知f(+1)=x+2,求f(x);
(2)已知f(x)满足af(x)+f()=ax(x∈R且x≠0,a为常数,且a≠±1),求f(x).
解:(1)解法一:令t=+1,则x=(t-1)2,t≥1
代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1.
∴f(x)=x2-1(x≥1).
温馨提示
此种解法称为换元法,所谓换元法即将接受对象“+1”换作另一个字母“t”,然后从中解出x与t的关系,代入原式中便可求出关于“t”的函数关系,此即为所求函数解析式.
解法二:x+2=()2+2+1-1=(+1)2-1,
∴f(+1)=(+1)2-1(+1≥1),即f(x)=x2-1(x≥1).
温馨提示
此方法为直接变换法或称配凑法,通过观察,分析将右端的表达式变为“接受对象”的表达式,即变为关于+1的表达式.
(2)∵af(x)+f()=ax,将原式中的x与互换得af()+f(x)=,
于是得关于f(x)的方程组:

解得f(x)=(a≠±1).
温馨提示
本题求解析式的方法称为方程法.函数是定义域到值域上的映射,定义域中的每一个元素都应满足函数表达式,在已知条件下,x满足已知的式子,那么在定义域内也满足这个式子,这样得到两个关于f(x)与f()的方程,因而才能解出f(x).
三、映射的概念
【例5】 下面的对应哪些是从集合M到集合N的映射?哪些是函数?
(1)设M=R,N=R,对应关系f:y=,x∈M;
(2)设M={平面上的点},N={(x,y)|x,y∈R},对应关系f:M中的元素对应它在平面上的坐标;
(3)设M={高一年级全体同学},N={0,1},对应关系f:M中的男生对应1,女生对应0;
(4)设M=R,N=R,对应关系f(x)=2x2+1,x∈M;
(5)设M={1,4,9},N={-1,1,-2,2,3,-3},对应关系:M中的元素开平方.
思路分析:判断一个对应是否构成映射,关键是看M中的任一元素在N中按照给定的对应关系是否有唯一元素与之对应,是映射但不一定构成函数,只有M、N都是非空数集,且从M到N构成映射时,才能确定构成从M到N的函数;不是映射的,更不可能构成函数.
解:(1)M中的0在N中没有元素与之对应,从M到N的对应构不成映射.
(2)(3)都符合映射定义,能构成从M到N的映射,但由于M不是非空数集,因此构不成函数.
(4)从M到N的对应既能构成映射,又能构成函数.
(5)M中的元素在N中有两个元素与之对应,所以构不成映射.
温馨提示
1.映射概念中的两个集合A、B,它们可以是数集、点集或其他集合,而函数不同,A、B必须是非空数集.
2.A到B的映射与B到A的映射是不同的,同学们判断时应注意“方向性”否则会导致错误.
各个击破
类题演练1
作出下列函数的图象.
(1)y=x,|x|≤1;
(2)y=1-x,x∈Z且|x|≤2;
(3)y=;
解:(1)此函数图象是直线y=x的一部分.
(2)此函数的定义域为{-2,-1,0,1,2},所以其图象是由五个点组成,这些点都在直线y=1-x上.(这样的点叫做整点)
(3)先求定义域,在定义域上化简函数式y==x,x∈(-∞,1)∪(1,+∞).如下图所示.
变式提升1
设[x]是不超过x的最大整数,作下列函数的图象.
(1)f(x)=[x];
(2)h(x)=x-[x],x∈[-2,2].
解:(1)f(x)=[x]=n(n≤x f(x)=n(n≤x ∴f(x)=[x]的图象是无数条线段,不包括线段的右端点.注意在x轴上的线段的端点是(0,0)、(1,0).见下图(A).
(2)h(x)=x-[x] x∈[-2,2]化为
h(x)=
h(x)的图象是四条线段和点(2,0),注意均不含线段上面的端点,见下图(B).
图(A)
图(B)
类题演练2
已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x).
解析:①设f(x)=ax2+bx+c(a≠0),
由f(0)=1得c=1,而f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax+a+b.
由已知f(x+1)-f(x)=2x得2ax+a+b=2x.所以解得a=1,b=-1.
故f(x)=x2-x+1.
变式提升2
求函数y=2|x-1|-3|x|的最大值.
思路分析:本题为绝对值函数,应先由零点分段讨论法去掉绝对值符号,变为分段函数,再画出分段函数的图象,然后解之.
解:
作出函数图象如右上图,由图象可知x=0时,ymax=2.
类题演练3
国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿费的11%纳税.
(1)试根据上述规定建立某人所得稿费x(元)与纳税额y(元)之间的函数关系式;
(2)某人出了一本书,共纳税420元,则这个人的稿费是多少元?
答案:(1)
(2)3 800
变式提升3
某商场因拆迁将库存的原价100元/套的时装50套作减价处理,规定:不超过5件按八五折(即原价的85%);6件到20件(包含20件)按六五折;20件以上打五折.
(1)你能表示出上述规定中的单价与所买件数之间的函数关系式吗?
(2)你能表示出上述规定中付出与购买件数的函数关系式吗?
答案:(1)y=
(2)y=
类题演练4
如果f()=,则f(x)=____________.
解法一:∵f()===,∴f(x)=.
解法二:设t=,则x=,
代入f()=,
得f(t)==,
故f(x)=.
变式提升4
已知f()=+,求f(x).
解法一:∵f()=+
=()2-+=()2-=()2-+1,
∴f(x)=x2-x+1.
解法二:设=u,
则x=,u≠1.
则f(u)=f()=+=1++=1+(u-1)2+(u-1).
∴f(x)=x2-x+1(x≠1).
温馨提示
解决这类考查求函数表达式的问题的关键是弄清楚对一个自变量“x”而言,“f”是怎样的对应规律.
类题演练5
(1)下列对应是从A到B的函数的是( )
①A={x|x≥0,x∈R},B=R,f:x→y2=x ②A=N,B={-1,1},f:x→(-1)x ③A={三角形},B={圆},f:三角形→三角形的外接圆 ④A=R,B=R,f:x→y=x3
A.②④ B.② C.④ D.①②④
答案:A
(2)f:A→B是集合A到集合B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中的元素(6,2),在此映射下的原象是(3,1),则k=_____________,b=______________.
解析:由
答案:2 1
变式提升5
已知集合A={a|a<5,a∈N}到集合B的对应法则是“乘3加2”,集合B到集合C的对应法则是“求算术平方根”.
(1)试写出集合A到集合C的对应法则f;
(2)求集合C;
(3)集合A到集合C的对应是映射吗?
解析:(1)设x∈A,y∈B,z∈C,依题意y=3x+2,z=,∴z=,
∴从集合A到集合C的对应法则是f:x→z=.
(2)∵A={a|a<5,a∈N}={0,1,2,3,4},
∴C={,,2,,}.
(3)因为对于集合A内任一元素x在集合C中都有唯一的一个元素z与之对应,所以A到C的对应法则f是A到C的映射.
1.2 函数及其表示
互动课堂
疏导引导
1.2.1 函数的概念?
1.函数的定义?
设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域,显然值域是集合B的子集.
疑难疏引 函数概念的正确理解:
(1)关于函数的两个定义域实质上是一致的.初中定义的出发点是运动变化的观点,而高中定义却是从集合、对应的观点出发.
(2)两个函数相同的充要条件是它们的定义域与对应关系分别相同,例如函数f(x)=|x|,与f(x)=x2是同一个函数.
(3)函数的核心是对应关系.在函数符号y=f(x)中,f是表示函数的对应关系,等式y=f(x)表明,对于定义域中的任意x,在对应关系f的作用下,可得到y,因此,f是使“对应”得以实现的方法和途径.?
函数符号y=f(x)是“y是x的函数”这句话的数学表示,它不表示“y等于f与x的乘积”.f(x)可以是解析式,也可以是图象或数表.
(4)值域是全体函数值所组成的集合.在多数情况下,一旦定义域和对应关系确定,函数的值域也就随之确定.
2.函数的三要素
构成函数的三要素:定义域A,对应法则f,值域B.?
疑难疏引 核心是对应法则f,它是联系x和y的纽带,是对应得以实现的关键.对应法则可以由多种形式给出,可以是解析法,可以是列表法和图象法,不管是哪种形式,都必须是确定的,且使集合A中的每一个元素在B中都有唯一的元素与之对应.当一个函数的定义域和对应法则确定之后,值域也就唯一的确定了,所以值域是定义域这个“原材料”通过对应法则“加工”而成的“产品”.因此,要确定一个函数,只要定义域与对应法则确定即可.
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素.由于值域可由定义域和对应法则唯一确定,所以两个函数当且仅当定义域与对应法则分别相同时,才是同一函数.
3.区间的概念?
(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b].
(2)满足不等式a(3)满足不等式a≤x疑难疏引 无穷大是个符号,不是一个数.关于用-∞、+∞作为区间的一端或两端的区间称为无穷区间.区间是数学中常用的术语和符号.必须记住闭区间、开区间、半开半闭区间的符号及其含义.
对于[a,b],(a,b),[a,b),(a,b],都称数a和数b为区间的端点:a为左端点,b为右端点,称b-a为区间长度.这样,某些以实数为元素的集合就有三种表示法:集合表示法、不等式表示法和区间表示法.
●案例1
下列各题中的两个函数表示同一个函数的是?(  )
A. f(x)=x,g(x)=
B. f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)?
C. f(x)=x-2,g(t)=t-2?
D. f(x)=,g(x)=1+x
【探究】 两个函数相同必须有相同的定义域、值域和对应法则.A中两函数的值域不同;B中虽然定义域和值域都相同,但对应法则不同;C中尽管表示自变量的两个字母不同,但两个函数的三个要素是一致的,因此它们是同一函数;D中两函数的定义域不同.C符合.
【溯源】 给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否相同;二看对应法则是否一致.只有当两函数的定义域相同且对应法则完全一致时,两函数才可称为同一函数.
若判断两个函数不是同一个函数,只要三要素中有一者不同即可判断不是同一个函数.
4.函数的定义域
函数定义域是函数y=f(x)自变量x的取值范围.
疑难疏引 (1)定义域不同,而对应法则相同的函数,应看作两个不同函数;如:y=x2(x∈R)与y=x2(x>0);y=1与y=x0.
(2)若未加以特别说明,函数的定义域就是指使这个式子有意义的所有实数x的集合;在实际中,还必须考虑x所代表的具体量的允许值范围.
(3)常见函数定义域类型及求解策略:
如果给出具体解析式求定义域:一般首先分析解析式中含有哪几种运算,然后列出各运算对象的范围,组成不等式组,解不等式组,即得所求定义域.求函数的定义域就是求使函数解析式有意义的自变量的取值的集合:
①解析式是整式的函数,其定义域为R;
②解析式是分式的函数,其定义域为使分母不为零的实数的集合;
③解析式是偶次根式的函数,其定义域是使被开方式为非负数的实数的集合.?
复合函数f[g(x)]的定义域和f(x)定义域互相转化,要注意定义域就是x的取值范围,并且前者中g(x)的取值范围等价于后者中x的取值范围.?
如果解析式是由实际问题得出的,则其定义域不仅是要使实际问题有意义,还必须是使思路分析式有意义的实数的集合.?
●案例2
已知函数y=的定义域为R,求实数m的取值范围.
【探究】 首先向不等式转化,在求m的取值范围时,由于m为二次项系数,∴要对其进行分类讨论;当x∈R时,mx2-6mx+m+8≥0恒成立.
当m=0时,x∈R.
当m≠0时,即
解之,得0【溯源】 由定义域是R求参数的取值范围问题,首先转化成含参不等式恒成立,然后利用数形结合等方法列出相关条件,尤其注意在含x2项问题中要对其系数进行讨论.?
5.函数的解析式?
疑难疏引?
(1)在y=f(x)中f表示对应法则,不同的函数其含义不一样.?
(2)f(x)不一定是解析式,有时可能是“列表”“图象”.
(3)符号f(a)与f(x)既有区别又有联系.f(a)表示当自变量x=a时函数f(x)的值,是一个常量;而f(x)是自变量x的函数,在一般情况下,它是一个变量.f(a)是f(x)的一个特殊值.
●案例3
已知函数f(x)=根据已知条件分别求出f(1),f(-3),f[f(-3)],f{f[f(-3)]}的值.
【探究】 此函数是分段函数,应注意在不同的自变量取值范围内有不同的对应关系.
答案:f(1)=12=1;f(-3)=0;f[f(-3)]=f(0)=1;f{f[f(-3)]}=f[f(0)]=f(1)=12=1.
【溯源】 深刻理解复合函数的概念,注意选取的自变量和其要应用的解析式要对应,这类问题是历年高考的热点.
●案例4
已知函数f(x+1)=x2-1,x∈[-1,3],求f(x)的表达式.?
【探究】 函数是一类特殊的对应,已知函数f(x+1)=x2-1,即知道了x+1被法则“处理”的结果是x2-1,如果知道x2-1是怎样由x+1演变得出的,也就知道f(x)的表达式了.本题可用“配凑法”或“换元法”.
解法一:(配凑法)∵f(x+1)=x2-1=(x+1)2-2(x+1),
∴f(x)=x2-2x.
又当x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].
解法二:(换元法)令x+1=t,则x=t-1,且由x∈[-1,3]知t∈[0,4],
∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].
∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].
【溯源】 已知函数f[g(x)]的表达式,求f(x)的表达式一般有两种方法,一种是用配凑的方法,一种是用换元的方法.?
所谓“配凑法”即把已知的f[g(x)]配凑成关于g(x)的表达式,而后将g(x)全用x取代,化简得要求的f(x)的表达式;
所谓“换元法”即令已知的f[g(x)]中的g(x)=t,由此解出x,即用t的表达式表示出x,后代入f[g(x)],化简成最简式.
需要注意的是,无论是用“配凑法”还是用“换元法”,在求出f(x)的表达式后,都需要指出其定义域,而f(x)的定义域即x的取值范围应和已知条件f[g(x)]中g(x)的范围一致,所以说求f(x)的定义域就是求函数g(x)的值域.?
●案例5
已知二次函数f(x)的图象过点A(1,1)、B(2,0)及点C(6,0),求f(x)的表达式.
【探究】 二次函数是我们熟悉的一种函数,其形式有:一般式f(x)=ax2+bx+c(a、b、c∈R且a≠0);交点式f(x)=a(x-x1)(x-x2)(a∈R且a≠0),其中x1、x2分别是f(x)的图象与x轴的两个交点的横坐标;顶点式f(x)=a(x-m)2+n(a∈R且a≠0),(m,n)是顶点坐标.无论哪种形式都有三个参数,所以可用待定系数法求解f(x),具体解法如下.
解法一:(待定系数法)由题意可设f(x)=ax2+bx+c(a、b、c∈R且a≠0).
∵f(x)的图象过点A(1,1)、B(2,0)及点C(6,0),
∴解得
∴f(x)=x2-x+.
解法二:(待定系数法)∵f(x)的图象过点B(2,0)及点C(6,0),∴f(x)的图象与x轴的两交点的横坐标分别是2和6.∴可设f(x)=a(x-2)(x-6),a∈R且a≠0.∵f(x)的图象过点A(1,1),∴1=a(1-2)(1-6).解得a=.
∴f(x)=(x-2)(x-6),即f(x)=x2-x+.
解法三:(待定系数法)∵f(x)的图象过点B(2,0)及点C(6,0),∴f(x)的图象关于直线x=,即x=4对称.∴可设f(x)=a(x-4)2+m,其中a、m∈R且a≠0.又f(x)的图象过点A(1,1)、B(2,0),∴
∴解得
∴f(x)=(x-4)2-,即f(x)=x2-x+.
【溯源】 当知道了函数类型求解函数表达式时,一般用待定系数法.如求一次函数可设f(x)=kx+b,k、b为待定系数;求反比例函数可设f(x)=,k为待定系数.
6.函数的值域
基本函数的值域:
(1)正比例函数y=kx与一次函数y=kx+b(k≠0)的值域为R.?
(2)反比例函数y=(k≠0)的值域为(-∞,0)∪(0,+∞).?
(3)二次函数y=ax2+bx+c(a≠0).?
当a>0时,值域为[,+∞);?
当a<0时,值域为(-∞,].
常见函数值域的求解类型和方法:
(1)配方法是求“二次函数类”值域的基本方法,形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法.
(2)函数解析式中含有根式,并且根式内x的次数与根式外的x的次数相同,可用一个新的变量来替代根式,而根式外的x也可以用这个新的变量表示出来,这样就可将原函数表示成这个新变量的一个二次函数形.我们把这种求函数值域的方法叫做“换元法”,形如y=ax+d±(ab≠0)的函数均可用“换元法”求值域.需要注意的是换元后的变量的取值范围.
(3)形如y=(c≠0,bc≠ad)可以将其分解成一个常数与一个分式的和或差的形式,并且分式的变量x只在分母中,又因为反比例函数y=及其相应的形式y=的值域为{y|y≠0},所以这种函数的值域就是不等于此常数的所有实数.我们通常称这种求值域的方法为“分离常数法”.
(4)形如y=(a1、a2不同时为零)的函数,可把函数转化成关于x的二次方程F(x,y)=0,通过方程有实根,判别式Δ≥0,从而求得原函数的值域.注意事项:函数定义域应为R(或有有限个断点),分子、分母没有公因式.
●案例6
在求解下列函数的值域后,你能有什么启发吗?
(1)y=x2+4x-2,x∈R;?
(2)y=x2+4x-2,x∈[-5,0];?
(3)y=x2+4x-2,x∈[-6,-3];?
(4)y=x2+4x-2,x∈[0,2].?
【探究】 这些函数都是二次函数且解析式都相同,但是各自函数的定义域都是不同的,应该通过“配方”借助于函数的图象来求其函数.?
(1)配方,得y=(x+2)2-6,由于x∈R,故当x=-2时,y min=-6,无最大值,所以值域是[-6,+∞).
(2)配方,得y=(x+2)2-6,因为x∈[-5,0],所以当x=-2时,y min=-6,当x=-5时,ymax=3.
故函数的值域是[-6,3].
(3)配方,得y=(x+2)2-6,因为x∈[-6,-3],?
所以当x=-3时,y min=-5,当x=-6时,y max=10.?
故函数的值域是[-5,10].
(4)配方,得y=(x+2)2-6,?
因为x∈[0,2],所以当x=0时,y min=-2;?
当x=2时,y max=10.
故函数的值域是[-2,10].
【溯源】 上述四个题目相同但所给的区间不同,最后得到的值域也不同,主要是由于二次函数在不同区间上的单调性不同而产生的,因此在求二次函数值域时一定要考虑函数是针对哪一个区间上的值域和此时图象是什么样子.
1.2.2 函数的表示法?
1.函数的表示方法?
主要有三种常用的表示方法,即解析法、列表法和图象法.
(1)解析法:把一个函数用一个式子表示,这种表示函数的方法叫做解析法.?
(2)列表法:把两个变量的一系列对应值列成一个表,这种表示方法叫做列表法.?
(3)图象法:把两个变量之间的关系用图象表示,这种方法叫做图象法.?
疑难疏引 用解析式表示函数关系的优点:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质.中学里研究的函数主要是用解析式表示的函数.缺点:有些函数很难用解析式表示.?
用列表法表示函数关系的优点:不必通过计算就知道当自变量取某些值时函数的对应值.缺点:函数解析式的体现有时不明显.?
用图象法表示函数关系的优点:能直观形象地表示出函数的变化情况,更能体现数形结合的思想.缺点:变量的值依赖于图象的精度,不利于精确计算.?
由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽如人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.
●案例1
小刚离开家去学校,由于怕迟到,所以一开始就跑步,跑累了再走余下的路程.在下图所示中,纵轴表示离校的距离,横轴表示出发后的时间,则下列四个图象中较符合小刚走法的是(  )
【探究】 首先审清题意,特别是横、纵两轴的含义.纵轴表示离校的距离,所以排除A、C,在B、D中选择答案.由于开始时是跑步前进,所以同一时间内,位置变化大,所以选择D.
【溯源】 实际应用问题是高考考查的重点也是难点,解决此类问题要特别重视实际变量和函数变量之间的对应关系,尤其是图象题经常用直观感觉判断.
2.分段函数
疑难疏引 有些函数在它的定义域中,对于自变量x的不同取值范围,对应法则也不同,这样的函数通常称为分段函数.分段函数是一个函数,而不是几个函数,分段函数是一个函数,在画图象时必须分段画,尤其需注意特殊点,在解决这部分题目时要注意分段定义函数作为一个整体与构成它的局部之间的关系.主要是指根据定义域的分段而产生不同的函数关系式.
●案例2
用分段函数表示f(x)=|x-1|,并求f(0)、f(-2)、f(3).
【探究】 函数f(x)=|x-1|是一个分段函数,欲求f(0)、f(-2)、f(3),只需观察0、-2、3这三个自变量对应的是此函数的哪一段,从而代入求值.?
【答案】 ∵f(x)=
∴f(0)=1,f(-2)=1-(-2)=3,f(3)=3-1=2.
【溯源】 求分段函数的有关函数值的关键是分段归类,即自变量的取值属于哪一段,就用哪一段的解析式.一般分段函数的问题经常画出函数的图象,应用图象特征解决问题.同时要注意分类讨论思想的应用.
2.映射的概念
映射f∶A→B的定义是:设A、B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.?
疑难疏引
(1)映射中的两个集合A和B可以是数集、点集或由图形组成的集合等.?
(2)映射是有方向的,A到B的映射与B到A的映射往往是不一样的.?
(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而这个与之对应的元素是唯一确定的,这种集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心.?
(4)映射允许集合B中存在的元素在A中没有元素与其对应.?
(5)映射允许集合A中不同的元素在集合B中有相同的对应元素,即映射只能是“多对一”或“一对一”,不能是“一对多”.?
(6)函数是一种特殊的映射,定义域集合和函数值域集合都是非空的数集;但映射中的两个集合A和B可为任何集合,如人、物、数等.
●案例3
下列对应是不是从集合A到集合B的映射,为什么??
(1)A=R,B={x∈R|x≥0},对应法则是“求平方”;?
(2)A=R,B={x∈R|x>0},对应法则是“求平方”;?
(3)A={x∈R|x>0},B=R,对应法则是“求平方根”;?
(4)A={平面α内的圆},B={平面α内的矩形},对应法则是“作圆的内接矩形”.
【探究】 只有(1)是映射,因为A中的任何一个元素,在B中都能找到唯一的元素与之对应.
(2)不是从集合A到集合B的映射.因为A中的元素0,在集合B中没有象.?
(3)不是从集合A到集合B的映射.因为任何正数的平方根都有两个值,即集合A中的任何元素,在集合B中都有两个元素与之对应,象不唯一.
(4)不是从集合A到集合B的映射.因为一个圆有无穷多个内接矩形,即集合A中任何一个元素在集合B中有无穷多个元素与之对应,象不唯一.
【答案】 (1)是;(2)不是;(3)不是;(4)不是.
【溯源】 对于一个A到B的对应,A中的任何一个元素都对应B中的唯一一个元素,或A中的多个元素对应B中的一个元素,这样的对应都是映射,而A中的一个元素对应B中的多个元素的对应就不是映射.?
可以简单地说:“一对一”“多对一”的对应是映射,“一对多”的对应不是映射.
活学巧用
1. 下列各组函数中,表示同一个函数的是(  )?
A. y=x-1和y=
B. y=x0和y=1?
C. f(x)=x2和g(x)=(x+1)2?
D. f(x)=和g(x)=
【思路解析】 看两个函数是否相同,主要看函数的定义域和对应法则.A选项中的两个函数定义域不相同;B选项中的两个函数的定义域也不同;C选项中的两个函数的解析式不同;只有D选项中的两个函数对应法则相同,定义域也相同.
【答案】 D
2. 下列各组函数是否表示同一个函数??
(1)f(x)=2x+1与g(x)=;
(2)f(x)=与g(x)=x-1;
(3)f(x)=|x-1|与g(t)=
(4)f(n)=2n-1(n∈Z)与g(n)=2n+1(n∈Z).
【思路解析】 对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.?
【答案】 (1)g(x)=|2x+1|,f(x)与g(x)对应关系不同,因此是不同的函数.?
(2)f(x)=x-1(x≠0),f(x)与g(x)的定义域不同,因此是不同的函数.?
(3)f(x)= f(x)与g(t)的定义域相同,对应关系相同,因此是相同的函数.
(4)f(n)与g(n)的对应关系不同,因此是不同的函数.
3. 在下列选项中,可表示函数y=f(x)的图象的只可能是(  )
【思路解析】 判断一幅图象表示的是不是函数的图象,关键是在图象中能不能找到一个x对应两个或两个以上的y,如果一个x对应两个以上的y,那么这个图象表示的就不是函数的图象.
A的图象表示的不是函数的图象,∵存在一个自变量x的取值(如:x=0)有两个y与之对应,不符合函数的定义.因此A不正确;B的图象是关于x轴对称也不符合函数的定义.因此B也不正确;C的图象是关于原点对称,但是当自变量x=0时,有两个y值与之对应,不符合函数的定义.∴C选项也不正确;D表示的图象符合函数的定义,因此它表示的是函数的图象.因此选D.?
【答案】 D
4. 求下列函数的定义域:?
(1)y=2+;
(2)y=·;
(3)y=(x-1)0+.
【思路解析】 给定函数时,要指明函数的定义域.对于用解析式表示的函数,如果没有给出定义域,那么就认为函数的定义域是指使函数有意义的自变量的取值集合.因为函数的定义域是同时使思路分析式各部分有意义的x值的集合,所以应取各部分的交集.?
【答案】 (1)要使函数有意义,当且仅当x-2≠0,即x≠2,所以这个函数的定义域为{x|x∈R且x≠2}.
(2)要使函数有意义,当且仅当解得1≤x≤3,所以这个函数的定义域为{x|?x∈R且1≤x≤3}.
(3)要使函数有意义,当且仅当解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.
5. 若函数f(x+1)的定义域为[0,1],则f(3x-1)的定义域为?     .?
【思路解析】 ∵0≤x≤1,
∴1≤x+1≤2.?
又∵f(x+1)和f(3x-1)在对应法则上有联系,
∴1≤3x-1≤2.?
∴≤x≤1,即f(3x-1)的定义域为≤x≤1.?
【答案】≤x≤1
6. 如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是     ,这个函数的定义域为     .
【思路解析】 据长方体的体积公式,易得V=x(a-2x)2,其中0<x<.
【答案】 V=x(a-2x)2 {x|0<x<}
7. 设f(x)=则f(-)=? ,f(1)=________,f(6)=________.
【思路解析】 分清自变量对应的解析式.?
【答案】 1 - 3?
8. 如果f()=,求f(x)的解析式.
【思路解析】 函数解析式y=f(x)是自变量x确定y值的关系式,本题实质是求经怎样的变形得到这一结果.
【答案】 配凑法:∵f()===,
∴f(x)=(x∈R且x≠0,x≠±1).
换元法:设t=,则x=,代入f()=,得
f(t)==,
∴f(x)=(x∈R且x≠0,x≠±1).
9. 已知一次函数y=f(x)满足f[f(x)]=4x+3,求一次函数的解析式.?
【思路解析】 设f(x)=ax+b(a≠0),用待定系数法.?
【答案】 设f(x)=ax+b(a≠0),?
∴f[f(x)]=a·f(x)+b=a(ax+b)+b?
=a2x+ab+b.?
∴a2x+ab+b=4x+3.?


∴f(x)=2x+1或f(x)=-2x-3.
10. 已知函数f(x)=(a、b为常数)且方程f(x)-x+?12=?0有两个实根为x1=3,x2=4,求函数f(x)的解析式.
【思路解析】 求出函数f(x)的解析式中的待定系数a、b是我们解题的目标,根据已知条件f(x)-x+12=0有两个实根为x1=3,x2=4,可以将题意转化为方程组求解.?
【答案】 将x1=3,x2=4分别代入方程-x+12=0,得
解之得
所以f(x)=(x≠2).
11. 设函数f(x)满足f(x)+2f(-x)=x(x≠0),求f(x).?
【思路解析】 以-x代换x,解关于-x、x的方程组,消去-x.?
【答案】 ∵f(x)+2f(-x)=x①
以-x代换x,得f(-x)+2f(x)=-x②?
解①②组成的方程组得f(x)=-3x.
12. 已知f(xy)=f(x)f(y),且f(0)≠0,求f(x).
【思路解析】 可利用赋值法求解.赋值法:在求函数的解析式时,有时候要“以退求进”,即把自变量赋于特殊值展现内在联系,或者减少变量个数,以利求解.
【答案】 由于等式f(xy)=f(x)f(y)对于一切实数都成立,故不妨设y=0,代入得f(x·0)=?f(x)·f(0),即f(0)=f(x)·f(0).
又∵f(0)≠0,∴f(x)=1.
13. 已知a为实数,x∈(-∞,a),则函数f(x)=x2-x+a+1的最小值是(  )?
A. a+
B. a2+1?
C. 1?
D. a2+1或a+
【思路解析】 此题考查用配方法求二次函数,并用分类讨论的数学思想确定函数的最小值.
f(x)=x2-x+a+1=(x-)2+a+,若a≤,则函数f(x)=x2-x+a+1在(-∞,a)上单调递减,从而函数f(x)=x2-x+a+1在(-∞,a)上的最小值为f(a)=a2+1;若a>,则函数f(x)=x2-x+a+1在(-∞,a)上的最小值为f()=a+.
综上,当a≤时,函数的最小值为a2+1;当a>时,函数的最小值为a+.因此选D.
【答案】 D
14. 二次函数y=-x2+6x+k的值域为(-∞,0],求k的值.
【思路解析】 ∵二次函数y=-x2+6x+k的值域为(-∞,0],?
∴其最小值为0,即顶点纵坐标为0,从图形上看就二次函数的图象与x轴相切.?
【答案】 法1:y=-x2+6x+k=-(x-3)2+k+9.?
∵值域为(-∞,0],?
∴k+9=0,k=-9.?
法2:∵二次函数开口向下,值域为(-∞,0],?
∴其图象与x轴相切,判别式Δ=0,?
即Δ=62-4·(-1)·k=36+4k=0.?
∴k=-9.
15. 函数y=的值域是(  )?
A. (-∞,-1)∪(-1,+∞)?
B. (-∞,1)∪(1,+∞)?
C. (-∞,0)∪(0,+∞)?
D. (-∞,0)∪(1,+∞)?
【思路解析】 因为函数的分子与分母都是关于x的一次函数,所以可用“分离常数法”求此函数的值域.?
y=
=
=1-
∵≠0,∴y≠1.故选B.
【答案】 B
16. 求函数y=2x-3+4x-13的值域.?
【思路解析】 函数解析式中含有根式,并且根式内x的次数与根式外的x的次数相同,故可用“换元法”来求值域.?
【答案】 令t=4x-13(t≥0),则x=.
所以y=+t
=
=.
因为t≥0,所以当t=0时,y min=.
所以函数的值域是(-∞, ].
17. 求函数y=的值域.
【思路解析】 函数的解析式是分式,且分母中变量x的次数是二次的,函数式可化为关于x的一元二次方程,利用“判别式法”来求值域.?
【答案】 将解析式改写成关于x的一元二次方程(2y-2)x2+(2y-2)x+y-5=0.
当y≠1时,Δ≥0,即(2y-2)2+20(2y-2)≥0y≥1或y≤-9.
当y=1时,y=5不成立,所以值域为(-∞,-9]∪(1,+∞).
18. 李明骑车上学,一开始以某一速度前进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上学时间,于是就加快了车速,在下面给出的四个函数示意图中(s为距离,t为时间),符合以上情况的是(  )?
【思路解析】 对位要清楚,注意时间和路程的变化关系.?
【答案】 C
19. 已知f(x)=x2+2x-3,用图象法表示函数g(x)=.
【思路解析】 知道函数g(x)的定义域、值域和对应法则,就能根据这三个要素画出函数g(x)的图象,所以要先求出函数g(x)的三要素.?
当f(x)≤0,x2+2x-3≤0,-3≤x≤1,g(x)=0.?
当f(x)>0,即x<-3或x>1,g(x)=f(x)=(x+1)2-4.?
【答案】
20. 函数在闭区间[-1,2]上的图象如图所示,求此函数的解析式.
【思路解析】 根据函数的图象求函数的解析式,关键是确定自变量在每一段上所对应的函数类型,然后由待定系数法求出每一段上的解析式,从而得出整个函数的解析式.?
【答案】 f(x)=
21. 已知函数y=则函数y的最大值是_______________.
【思路解析】 可根据函数图象直接观察函数的取值范围,如图,画出分段函数的图象,图象的最高点A的纵坐标就是函数的最大值.而点A的坐标就是方程组的解,解得
∴A(-1,4).
∴函数的最大值为4.?
【答案】 4
22. 判断下列两个对应是否是集合A到集合B的映射?
(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则f:x→2x+1;
(2)设A=N *,B={0,1},对应法则f:x→x除以2得到的余数;
(3)设X={1,2,3,4},Y={1,,,},f:x→x取?倒数?;?
(4)A={(x,y)||x|<2,x+y<3,x∈Z,y∈N},B={0,1,2},f:(x,y)→x+y;?
(5)A={x|x>2,x∈N},B=N,f:x→小于x的最大质数;
(6)A=N,B={0,1,2},f:x→x被3除所得余数.
【思路解析】 根据映射的概念判断对应是否是映射,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射.
【答案】(1)、(2)、(3)、(5)、(6)都是A到B的映射,(4)不是A到B的映射.
23. 是不是从A到B的映射?是不是函数??
(1)A=(-∞,+∞),B=(0,+∞),f∶x→y=|x|;
(2)A={x|x≥0},B=R,f∶x→y,y2=x;?
(3)A={x|x≥2,x∈Z},B={y|y≥0,y∈Z},f∶x→y=x2-2x+2;
(4)A={平面α内的矩形},B={平面α内的圆},f∶作矩形的外接圆.?
【思路分析】 按映射的特点可以判断:(1)不是映射,因为0∈A,但|0|=0∈B,当然更不是函数.(2)不是映射,更不是函数.因为y=±x,当x>0时,元素x的象不唯一.(3)是映射.因为y=(x-1)2+1≥0,又当x∈A时,y∈Z,所以(3)是映射.又因为A、B都是数集,所以也是函数.(4)是映射.因为每一个矩形都有唯一的外接圆,即A中每一元素在B中都有唯一的象,所以(4)是映射.但A、B不是数集,所以不是函数.
【答案】 (1)不是;不是. (2)不是;不是. (3)是;是. (4)是;不是.
24. 已知A={1,2,3,k},B={4,7,a4,a2+3a},a∈N,k∈N,x∈N,y∈B,f:x→y=3x+1是从定义域A到值域B的一个函数,求a、k、A、B.
【思路解析】 函数就是从定义域到值域的对应,因此值域中的每一元素,在定义域中一定能找到元素与之对应.?
【答案】 由对应法则:1→4,2→7,3→10,k→3k+1.?
∵a4≠10,∴a2+3a=10a=2(a=-5舍去).?
又3k+1=16,∴k=5.
故A={1,2,3,5},B={4,7,10,16}.
1.2 函数及其表示
知识导学
函数实质上是从集合A到集合B的一个特殊的映射,其特殊性在于集合A、B都是非空数集.自变量的取值集合叫做函数的定义域,函数值的集合C叫做函数的值域.这里应该注意的是,值域C并不一定等于集合B,而只能说C是B的一个子集.
构成函数的三要素:定义域A,对应法则f,值域B.其中核心是对应法则f,它是联系x和y的纽带,是对应得以实现的关键.对应法则可以由多种形式给出,可以是解析法,可以是列表法和图象法,不管是哪种形式,都必须是确定的,且使集合A中的每一个元素在B中都有唯一的元素与之对应.当一个函数的定义域和对应法则确定之后,值域也就唯一的确定了.因此,要确定一个函数,只要定义域与对应法则确定即可.
函数的定义域是函数研究的重要内容,在给定函数的同时应该给定函数的定义域.
一般地,如果不加说明,函数的定义域就是使函数的解析式有意义的实数的集合.据此,就可以“求出”函数的定义域了.
值域是全体函数值组成的集合,一般地,函数的定义域和对应关系确定,值域就随之确定了.
求函数值域是一个相当复杂的问题,常见的方法有(1)图象法;(2)反解x;(3)配方法;(4)换元法.以后还可用单调性、判别式法等.
所谓函数y=f(x)的图象,就是将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)).当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为{(x0,f(x0))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.
函数图象是函数部分运用数形结合思想方法的基础.函数图象部分应解决好画图、识图、用图这三个基本问题,即对函数的图象有三点要求:(1)会画各种简单函数的图象;(2)能以函数的图象识别相应函数的性质;(3)能用数形结合思想以图辅助解题.
根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式,一是要求出对应法则,二是要求出函数的定义域.
求函数的解析式常用的方法有直接法、代入法、待定系数法、换元法、配方法、方程或方程组法等.根据实际问题求函数表达式,是应用函数知识解决实际问题的基础,但要注意函数定义域还应由实际意义来确定.
函数是特殊的映射,即当两个集合A、B均为非空数集时,则从A到B的映射就是函数.所以函数一定是映射,而映射不一定是函数.
疑难导析
1.两个函数相同的充要条件是它们的定义域与对应关系分别相同,例如函数f(x)=|x|,与f(x)=是同一个函数.
2.函数的核心是对应关系.在函数符号y=f(x)中,f是表示函数的对应关系,等式y=f(x)表明,对于定义域中的任意x,在对应关系f的作用下,可得到y,因此,f是使“对应”得以实现的方法和途径.
函数符号y=f(x)是“y是x的函数”这句话的数学表示,它不表示“y等于f与x的乘积”.f(x)可以是解析式,也可以是图象或数表.符号f(a)与f(x)既有区别又有联系.f(a)表示当自变量x=a时函数f(x)的值,是一个常量;而f(x)是自变量x的函数,在一般情况下,它是一个变量.f(a)是f(x)的一个特殊值.
3.值域是全体函数值所组成的集合.在多数情况下,一旦定义域和对应关系确定,函数的值域也就随之确定.
映射作为函数概念的推广,只是把函数中的两个数集推广为两个任意的集合.所以说一个映射关系必为函数关系,反之不然.
映射要求原象必有象,至于象是不是有原象不需要考虑.
问题导思
关于函数的两个定义实质上是一致的.初中定义的出发点是运动变化的观点,而高中定义却是从集合、对应的观点出发.
初中阶段学习的函数的概念的优点是:直观,生动.
高中阶段学习的函数的概念的优点:更具一般性.比如按初中的定义就很难判断下面的表达式是不是函数:
f(x)=
现在用高中学的函数概念来判断则是没有问题的.
有些表达式中的自变量和函数值所用的字母不同,但也是同一个函数.比如:y=3x+2与s=3t+2就是同一个函数.
由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.
典题导考
绿色通道
判断两个函数或几个函数是不是同一个函数,有时是用定义域和对应关系是否相同来加以判别,但有时判别值域更方便些.比如本题中的第(4)小题.
黑色陷阱
对于函数是不是相同的判别,容易发生只看三要素中的其中之一的思维误区,从而造成解答错误.所以说认识函数对应法则必须认清它的本质,否则容易发生从表面上进行判别的错误.
典题变式 试判断以下各组函数中,是否表示同一函数?
(1)f(x)=,g(x)=;
(2)f(x)=,g(x)=
(3)f(x)=,
g(x)=() 2n-1(n∈N);
(4)f(x)=,
g(x)=.
答案:(1)不是;(2)不是;(3)是;(4)不是.
绿色通道
在求函数的解析式时,有时技巧上的变换对解题起到一定的作用,但通法更重要,因为通法是程式化的东西,解法二就是一种通法,这种变量替换在解数学题中占有重要的地位.
黑色陷阱
在进行变量替换时,易忽略替换变量后函数定义域的变化.所以解此类问题一定要细心缜密,不要慌张.
典题变式
1.求实系数的一次函数y=f(x),使f[f(x)]=4x+3.
答案:f(x)=2x+1或f(x)=-2x-3.
2.已知f(x)满足2f(x)+3f()=4x,求函数f(x)的解析式.
答案:f(x)=-x+.
绿色通道
这里的函数对于所给的解析式,要进行化简才能看出所给的函数都是分段函数,然后再画图象.
黑色陷阱
一是容易将图(1)画成直线,主要原因是没有认清定义域为Z和定义域为R的区别.二是容易只画出图象的某一段,从而造成整个图象的缺失.
典题变式 作出下列函数的图象:
(1)y=|x+1|+|x-2|;
(2)y=
解:(1)y=|x+1|+|x-2|=作出函数的图象如图1-2-1所示:
图1-2-1
(2)作二次函数y=x2的图象取x≥-1的部分,再作y=x+1的图象取x<-1的部分,就得到函数
y=的图象,如图1-2-6所示.
图1-2-6
绿色通道
给定两集合A、B及对应法则f,判断是否是从集合A到集合B的映射,其基本方法是利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”“一对一”及“一对多”,前两种对应是A→B的映射,而后一种不是A→B的映射.
典题变式 给出下列关于从集合A到集合B的映射的论述,其中正确的有________.
(1)B中任何一个元素在A中必有原象;(2)A中不同元素在B中的象也不同;(3)A中任何一个元素在B中的象是唯一的;(4)A中任何一个元素在B中可以有不同的象;(5)B中某一元素在A中的原象可能不止一个;(6)集合A与B一定是数集;(7)符号f:A→B与f:B→A的含义是一样的.
答案:(1)不对;(2)不对;(3)对;(4)不对;(5)对;(6)不对;(7)不对.
绿色通道
本题考查的是分段函数,这是一个实际问题,解题时要用到分类讨论思想及数形结合思想,这是多年的高考热点,也是今后高考命题的方向.
(1)画出草图帮助分析时,要明确哪些是关键量,以及这些量的特点(变与不变);
(2)对分段函数要选准线段的各端点.
(3)可以通过画图判断函数的值域,这也是一种数形结合的解题思想.
黑色陷阱
在分段函数的转折点上易发生取舍不当的问题.比如本题如把区间分成0≤x≤4,4≤x≤10,10≤x≤14,则是不对的.
典题变式如图1-2-9,某灌溉渠的横断面是等腰梯形,底宽2 m,渠深1.8 m,边坡的倾角是45°.
图1-2-9
(1)试用解析表达式将横断面中水的面积A(m2)表示成水深h(m)的函数;
(2)确定函数的定义域和值域;
(3)画出函数的图象.
答案:
(1)A= =h2+2h.
(2)定义域为{h|0值域为{A|0(3)函数图象如图1-2-10.
图1-2-10
黑色陷阱
对这类建模方面的问题,一是要经常留心生活中的人和事,不至于遇到类似的情景感到无从下手;二是遇到这类问题不要着急,要理清脉络,找到所对应的数学模型是解题的关键.
典题变式
1.如图1-2-12,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是________,这个函数的定义域为________.
图1-2-12
答案:V=x(a-2x) 2 {x|02.某家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:
月 份
用气量
煤气费
一月份
4米3
4元
二月份
25米3
14元
三月份35
米3
19元
该市煤气收费的方法是:煤气费=基本费+超额费+保险费.
若每月用量不超过最低限度A米3,只付基本费3元和每户每月的定额保险C元,若用气量超过A米3,超过部分每米3付B元,又知保险费C超不过5元,根据上面的表格求A、B、C.
答案:A=5,B=0.5,C=1.
3.如图1-2-14,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.
图1-2-14
答案:y=
1.2 函数及其表示
课堂探究
探究一 函数的概念
1.判断一个对应关系是否是函数,要从以下三方面去判断,即A,B必须是非空数集;A中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.
2.函数的定义中“任一个数x”与“有唯一确定的数f(x)”说明函数中变量x,y的对应关系是“一对一”或者是“多对一”,而不能“一对多”.
【典型例题1】 下列对应关系是否为A到B的函数.
(1)A=R,B={x|x>0},f:x→y=|x|;
(2)A=Z,B=Z,f:x→y=x2.
解:(1)A中的元素0在B中没有对应元素,故不是A到B的函数.
(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一一个确定的整数x2与其对应,故是集合A到集合B的函数.
【典型例题2】 下列式子能否确定y是x的函数?
(1)x2+y2=4;
(2)y=+.
解:(1)由x2+y2=4,得y=±.当x=1时,对应的y值有两个,故y不是x的函数.
(2)因为不等式组的解集是?,即x取值的集合是?,故y不是x的函数.
探究二 求函数的定义域
函数的定义域是自变量x的取值范围,它是构成函数的重要组成部分,如果没有标明定义域,则认为定义域是使函数解析式有意义的或使实际问题有意义的x的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约.
求函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;
(4)如果f(x)是由几个部分构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即求各部分自变量取值集合的交集).
函数的定义域要用集合或区间表示.
【典型例题3】 (1)求函数y=-的定义域;
(2)已知函数y=f(x)的定义域为[-1,1],求函数y=f(x-5)的定义域.
思路分析:分析所给函数的表达式→列不等式组→求x的范围,得定义域
解:(1)要使函数有意义,自变量x的取值需满足解得x≥-1,且x≠1,
即函数的定义域是{x|x≥-1,且x≠1}.
(2)∵y=f(x)的定义域为[-1,1],
∴-1≤x-5≤1,即4≤x≤6,
因此y=f(x-5)的定义域为[4,6].
方法总结(1)若已知f(x)的定义域(a,b),求f(g(x))的定义域,可由a探究三 判断函数相等
判断两个函数f(x)和g(x)是否相等的方法是:先求函数f(x)和g(x)的定义域,如果定义域不同,那么它们不相等;如果定义域相同,再化简函数的表达式,如果化简后的函数表达式相同,那么它们相等,否则它们不相等.
【典型例题4】 判断下列各组函数是否是相等函数:
(1)f(x)=x+2,g(x)=;
(2)f(x)=(x-1)2,g(x)=x-1;
(3)f(x)=x2+x+1,g(t)=t2+t+1.
思路分析:先求出定义域,根据定义域和表达式(即对应关系)来确定.
解:(1)f(x)的定义域为R,g(x)的定义域为{x|x≠2}.
由于定义域不同,故函数f(x)与g(x)不相等.
(2)f(x)的定义域为R,g(x)的定义域为R,即定义域相同.
由于f(x)与g(x)的表达式不相同,
故函数f(x)与g(x)不相等.
(3)两个函数的自变量所用字母不同,但其定义域和对应关系一致,故两个函数相等.
探究四 求函数值
1.已知f(x)的表达式时,只需用a替换表达式中的所有x即得f(a)的值.
2.求f(g(a))的值应遵循由内到外的原则.
3.用来替换表达式中x的数a必须是函数定义域内的值,否则函数无意义.
【典型例题5】 已知f(x)=,g(x)=x+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(3))的值;
(3)求g(a+1).
思路分析:(1)分别将f(x)与g(x)的表达式中的x换为2,计算得f(2)与g(2);(2)先求g(3)的值m,再求f(m)的值.
解:(1)∵f(x)=,∴f(2)==.
又∵g(x)=x+2,∴g(2)=2+2=4.
(2)∵g(3)=3+2=5,∴f(g(3))=f(5)==.
(3)g(a+1)=a+1+2=a+3.
探究五易错辨析
易错点 求函数的定义域时先化简函数的关系式
【典型例题6】 求函数y=的定义域.
错解:要使函数y==有意义,则x≠-3.
故所求函数的定义域为{x|x≠-3}.
错因分析:约分扩大了自变量的取值范围.由于同时约去了函数中分子、分母的公因式“x-2”,使原函数变形为y=,从而改变了原函数的自变量x的取值范围,也就是说,函数y=与函数y=不相等.
正解:要使函数有意义,必须使(x-2)(x+3)≠0,
即x-2≠0,且x+3≠0,解得x≠2,且x≠-3.
故所求函数的定义域为{x|x≠2,且x≠-3}.
1.2 函数及其表示
预习导航
课程目标
学习脉络
1.能够用集合与对应的语言给出函数的定义;知道构成函数的要素,清楚函数的定义中“任意一个数x ”和“唯一确定的数f(x)”的含义;明确符号“f(x)”表示的意义.
2.会判断两个函数是否相等;会求简单函数的函数值和定义域.
一、函数
名师点拨1.“A,B是非空的数集”,一方面强调了A,B只能是数集,即A,B中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.
2.函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A中的任意一个(任意性)元素x,在非空数集B中都有(存在性)唯一(唯一性)的元素y与之对应.这三个性质只要有一个不满足便不能构成函数.
3.符号f(x)与f(m)既有区别又有联系,当m是变量时,函数f(x)与函数f(m)相等;当m是常数时,f(m)表示当自变量x=m时对应的函数值,是一个常量.
4.符号f(x)是函数的记法,是一个整体,它不表示f与x相乘.
自主思考1如何判断从集合A到集合B的一个对应是函数?
提示:首先看集合A,B是否是非空数集,若不是,则不是函数;若是,然后看集合A中的每一个元素在集合B中是否有元素与之对应,若没有,则不是函数;若有,再看集合B中是否只有一个元素与之对应,若有多个与之对应,则不是函数;若只有一个与之对应,则是函数.
自主思考2若两个函数的对应关系相同,值域也相同,那么这两个函数是相等函数吗?
提示:不一定.若它们的定义域相同,则这两个函数为相等函数,否则,不是相等函数.如函数f(x)=x2(x∈{1,2,3}),与函数g(x)=x2(x∈{-1,-2,-3})的对应关系与值域相同,但不是相等函数.
二、区间
1.区间的概念:
设a,b是两个实数,且a定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
[a,b]
{x|a开区间
(a,b)
{x|a≤x半开半闭区间
[a,b)
{x|a半开半闭区间
(a,b]
这里的实数a与b都叫做相应区间的端点.
2.无穷大:
“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,满足x≥a,x>a,x≤a,x定义
R
{x|x≥a}
{x|x>a}
{x|x≤a}
{x|x符号
(-∞,+∞)
[a,+∞)
(a,+∞)
(-∞,a]
(-∞,a)
  自主思考3数集都能用区间表示吗?
提示:并不是所有的数集都能用区间来表示.例如,数集M={1,2,3,4}就不能用区间表示.由此可见,区间仍是集合,是一类特殊数集的另一种符号语言.只有所含元素是“连续不间断”的实数的集合,才适合用区间表示.
1.2 函数及其表示
课堂探究
探究一列表法表示函数
列表法是表示函数的重要方法,这如同我们在画函数图象时所列的表,它的明显优点是变量对应的函数值在表中可直接找到,不需计算.
【典型例题1】 已知函数f(x),g(x)分别由下表给出:
x
1
2
3
f(x)
2
1
1
x
1
2
3
g(x)
3
2
1
则f(g(1))的值为______;当g(f(x))=2时,x=______.
思路分析:这是用列表法表示的函数求值问题,在解答时,找准变量对应的值即可.
解析:由g(x)对应表,知g(1)=3,∴f(g(1))=f(3).
由f(x)对应表,得f(3)=1,
∴f(g(1))=f(3)=1.
由g(x)对应表,得当x=2时,g(2)=2.
又g(f(x))=2,
∴f(x)=2.
又由f(x)对应表,得x=1时,f(1)=2.
∴x=1.
答案:1 1
探究二 求函数的解析式
求函数解析式实际上就是寻找函数三要素中的对应关系,也就是在已知自变量和函数值的条件下求对应关系.解答此类问题时,可根据已知条件选择不同的方法求解.
求函数解析式的常用方法:
(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.
(2)换元法(有时可用“配凑法”):已知函数f(g(x))的解析式求f(x)的解析式可用换元法(或“配凑法”),即令g(x)=t,反解出x,然后代入f(g(x))中求出f(t),从而求出f(x).
【典型例题2】 (1)已知f(x+1)=x2-3x+2,求f(x);
(2)已知f=x2+,求f(x);
(3)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.
思路分析:(1)令x+1=t,代入f(x+1)=x2-3x+2可得f(x);(2)将x2+变形,使其变为关于x+的形式,可得f(x);(3)设出f(x)=ax2+bx+c(a≠0),再根据条件列出方程组求出a,b,c的值.
解:(1)令x+1=t,则x=t-1,将x=t-1代入f(x+1)=x2-3x+2,得f(t)=(t-1)2-3(t-1)+2=t2-5t+6,
∴f(x)=x2-5x+6.
(2)f=x2+=2-2,
∴f(x)=x2-2.
(3)设所求的二次函数为f(x)=ax2+bx+c(a≠0).
∵f(0)=1,∴c=1,则f(x)=ax2+bx+1.
又∵f(x+1)-f(x)=2x,对任意x∈R成立,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,
由恒等式性质,得∴
∴所求二次函数为f(x)=x2-x+1.
探究三 函数的图象
函数的图象能直观地反映出函数的一些性质,因此,解答函数问题时常常借助于图象.
1.作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,最后列表画出图象.
2.函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要注意关键点,如图象与坐标轴的交点、区间端点,二次函数的顶点等等,还要分清这些关键点是实心点还是空心圆圈.
【典型例题3】 作出下列函数图象并求其值域.
(1)y=1-x(x∈Z);
(2)y=2x2-4x-3(0≤x<3).
解:(1)因为x∈Z,所以图象为一直线上的孤立点(如图(1)),由图象知,y∈Z.
(2)因为x∈[0,3),故图象是一段抛物线(如图(2)),
由图象知,y∈[-5,3).
方法总结(1)中函数的图象是一些离散的点,故该函数的值域是各点纵坐标组成的集合.
(2)中函数的图象是一条连续不间断的曲线,故该函数的值域就是图象上所有点纵坐标的取值范围.
探究四 易错辨析
易错点 忽略变量的实际意义
【典型例题4】 如图所示,在矩形ABCD中,BA=3,CB=4,点P在AD上移动,CQ⊥BP,Q为垂足.设BP=x,CQ=y,试求y关于x的函数表达式,并画出函数的图象.
错解:由题意,得△CQB∽△BAP,
所以=,
即=.
所以y=.
故所求的函数表达式为y=,其图象如图所示.
错因分析:没有考虑x的实际意义,扩大了x的取值范围,导致出错.
正解:由题意,得△CQB∽△BAP,
所以=,即=.所以y=.
因为BA≤BP≤BD,而BA=3,CB=AD=4,
所以BD==5,
所以3≤x≤5,
故所求的函数表达式为y= (3≤x≤5).
如图所示,曲线MN就是所求的函数图象.
反思从实际问题中得到的函数,求其定义域时,不仅要使函数有意义,而且还要使实际问题有意义.
1.2 函数及其表示
预习导航
1.掌握函数的三种表示法:解析法、列表法、图象法,以及各自的优缺点.
2.在实际问题中,能够选择恰当的表示法来表示函数.
3.能利用函数图象求函数的值域,并确定函数值的变化趋势.
一、解析法
自主思考1任何一个函数都能用解析法表示吗?
提示:不一定.每天的平均气温与日期之间的关系由于受各种因素的影响就无法用解析法表示.
二、图象法
自主思考2画函数f(x)图象的方法有哪些?
提示:(1)若函数f(x)是正比例函数、反比例函数、一次函数、二次函数等常见的基本初等函数,则依据各种函数的图象特点,直接画出f(x)的图象.
(2)若函数f(x)不是基本初等函数,则用描点法画出f(x)的图象,其步骤是:列表、描点、连线.注意连线时,若是曲线,则曲线要光滑;若是孤立的点,则此时不要连接各点.
三、列表法
1.2 函数及其表示
课堂探究
探究一 求分段函数的值
1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得.若题目含有多层“f”,应按“由内到外”的顺序层层处理.
2.如果所给变量范围不明确,计算时要采用分类讨论的思想.
3.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.
【典型例题1】 已知函数f(x)=
(1)求f的值;
(2)若f(x)=2,求x的值.
思路分析:(1)由内到外,先求f,再求f,最后求f;
(2)分别令x+2=2,x2=2,x=2,分段验证求x.
解:(1)f=+2=,
∴f=f=2=,
∴f=f=×=.
(2)当f(x)=x+2=2时,x=0,不符合x<0.
当f(x)=x2=2时,x=±,其中x=符合0≤x<2.
当f(x)=x=2时,x=4,符合x≥2.
综上,x的值是或4.
探究二 分段函数的图象
1.分段函数的解析式的特点是可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段,而分段函数的定义域与值域的最好求法也是“图象法”.
2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象.
【典型例题2】 画出下列函数的图象,并写出它们的值域:
(1)y=
(2)y=|x+1|+|x-3|.
思路分析:先化简函数式,再画图象,在画分段函数的图象时,要注意对应关系与自变量范围的对应.
解:(1)函数y=的图象如图①,观察图象,得函数的值域为(1,+∞).
(2)用零点分段法将原函数式中的绝对值符号去掉,化为分段函数y=它的图象如图②.观察图象,得函数的值域为[4,+∞).
探究三 映射的判断
判断是否为映射的几大要点:
(1)集合A,B的元素是任意的,没有任何限制;(2)映射是有方向的,A到B的映射与B到A的映射往往是不一样的;(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而且这个与之对应的元素是唯一的,这样集合A中元素的任意性和集合B中与其对应的元素的唯一性就构成了映射的核心;(4)映射允许集合B中存在元素在A中没有元素与其对应;(5)映射是特殊的对应,即“多对一”或“一对一”的对应,而对应不一定是映射,其中“一对多”的对应不是映射.
【典型例题3】 下列对应是A到B的映射的有(  )
①A=R,B=R,f:x→y=;
②A={2016年里约热内卢奥运会的火炬手},B={2016年里约热内卢奥运会的火炬手的体重},f:每个火炬手对应自己的体重;
③A={非负实数},B=R,f:x→y=±.
A.0个 B.1个 C.2个 D.3个
解析:①中,对于A中元素-1,在B中没有与之对应的元素,则①不是映射;②中,由于每个火炬手都有唯一的体重,则②是映射;③中,对于A中元素4,在B中有两个元素2和-2与之对应,则③不是映射.
答案:B
探究四 易错辨析
易错点 错误理解分段函数
【典型例题4】 已知函数f(x)=若f(x)=3,求x的值.
错解:由x2-1=3,得x=±2;由2x+1=3,得x=1.
故x的值为2,-2或1.
错因分析:本题是一个分段函数问题,在解决此类问题时,要紧扣“分段”的特征,即函数在定义域的不同部分,有不同的对应关系,它不是几个函数,而是一个函数.求值时不能忽视x的取值范围,因此错解中x=-2和x=1都应舍去.
正解:当x≥0时,由x2-1=3,得x=2,或x=-2(舍去);
当x<0时,由2x+1=3,得x=1(舍去).
故x的值为2.
反思分段函数是一个函数而不是几个函数,处理分段函数体现了数学的分类讨论思想,“分段求解”是解决分段函数问题的基本原则.
1.2 函数及其表示
预习导航
课程目标
学习脉络
1.了解分段函数的概念,会求分段函数的函数值,能画出分段函数的图象.
2.了解映射的概念,会判断给出的对应是否是映射.
3.能在实际问题中列出分段函数,并能解决有关问题.
一、分段函数
所谓分段函数,是指在定义域的不同部分,有不同的对应关系的函数.
名师点拨分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.各段的图象合起来就是分段函数的图象.
二、映射
一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.
自主思考1如何判断一个对应是映射?
提示:首先,判断两个集合是否为非空集合,若不是非空集合,则不是映射;其次,再判断集合A中的任意一个元素在集合B中是否有元素与之对应,若没有,则不是映射;最后,再判断是否只有一个元素与之对应,若是,则是映射,否则不是映射.
自主思考2函数与映射有怎样的关系?
提示:函数是特殊的映射,即当两个集合A,B均为非空数集时,从A到B的映射就是函数,所以函数一定是映射,而映射不一定是函数,映射是函数的推广.
1.3.1 函数的基本性质
课堂导学
三点剖析
一、函数单调性
【例1】 证明函数y=x-在(0,+∞)上单调递增.
思路分析:作为证明单调性的要求,不能只作简单定性分析,还要用定义严格证明.
证明:设任意x1、x2∈(0,+∞)且x1f(x1)-f(x2)=x1--(x2-)=(x1-x2)+-=(x1-x2)+=(x1-x2)(1+).
∵0 ∴x1-x2<0,x1x2>0,1+>0.
因此(x1-x2)(1+1x1x2)<0,
∴f(x1)-f(x2)<0,即f(x1) ∴f(x)=x-在(0,+∞)上单调递增.
温馨提示
1.函数单调性的证明不同于对它判断,应严格按单调性定义加以证明.
2.利用定义证明单调性,一般要遵循:(1)取值(任取给定区间上两个自变量);(2)作差变形〔将f(x1)-f(x2)进行代数恒等变形,一般要出现乘积形式,且有(x1-x2)的因式〕;(3)判断符号(根据条件判断差式的正负);(4)得出结论.
3.有时需要通过观察函数的图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,这是研究函数性质的一种常用方法.
【例2】 f(x)是二次函数,且在x=1处取得最值,又f()思路分析:解决此题的关键是将f(-2)与f(2)置于某一单调区间内再进行比较大小.
解:由于f(x)是二次函数,且在x=1处取得最值,因此x=1是二次函数的对称轴.
又∵1<<π,f() 由于0与2关于x=1对称,∴f(2)=f(0).
∵-2<0,∴f(-2)>f(0),即f(-2)>f(2).
温馨提示
利用函数的单调性比较两函数值的大小,关键是将所比较的数值对应的自变量转化到同一单调区间上,才能进行比较.
二、函数的最值
【例3】 求f(x)=x+的最小值.
思路分析:该题函数f(x)由x与相加构成,x与具有相同的单调性,因此该题可借助单调性直接解决,同时由于x的次数不一致,出现了相当于2倍的关系,因此该题也可先转化为二次函数再利用二次函数的单调性解决.
解法一:f(x)=x+的定义域为[1,+∞],在[1,+∞]上x、同时单调递增,因此f(x)=x+在[1,+∞]上单调递增,最小值为f(1)=1+=1.
解法二:f(x)=x+的定义域为[1,+∞],令=t≥0,x=t2+1,
∴f(x)=g(t)=t2+1+t=t2+t+1=(t+)2+(t≥0).
由于g(t)的对称轴t=-在[0,+∞)的左侧,g(t)的开口方向向上,如右图所示.二次函数在[0,+∞)上单调递增,当t=0时,g(t)min=1,∴f(x)的最小值为1.
温馨提示
1.本题的两种解法都是利用函数的单调性求最值,其中解法二是利用换元法,将原函数转化为已知二次函数在给定区间上的最值问题,该方法要特别注意正确确定中间变量的取值范围.
2.利用单调性求最值,其规律为:若f(x)在[a,b]上单调递增,则f(a)≤f(x)≤f(b),即最大值为f(b),最小值为f(a);若f(x)在[a,b]上单调递减,则f(b)≤f(x)≤f(a),即最大值为f(a),最小值为f(b).
三、函数单调性的应用
【例4】 (1)若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围;
(2)y=kx2-x+1在[0,+∞)上单调递减,求实数k的取值范围.
思路分析:(1)二次函数的单调区间依赖于其对称轴的位置,处理二次函数的单调性问题需对对称轴进行讨论.(2)y=kx2-x+1中的k是否为零要注意讨论.
解:(1)f(x)=x2+2(a-1)x+2,其对称轴为x==1-a,若要二次函数在(-∞,4]上单调递减,必须满足1-a≥4,即a≤-3.如图所示.
(2)k=0时,y=-x+1满足题意;k>0时,抛物线开口向上,在[0,+∞)上不可能单调递减;k<0时,对称轴x=<0在[0,+∞]上单调递减.
综上,k≤0.
温馨提示
f(x)在(-∞,4]上是减函数,只说明区间(-∞,4]是函数f(x)在定义域上单调递减区间的一个子集.
各个击破
类题演练1
证明二次函数f(x)=ax2+bx+c(a<0)在区间(-∞,-)上是增函数.
证明:设x1、x2∈(-∞,-),且x1 ∵x1,x2∈(-∞,-),
∴x1+x2<-,∴a(x1+x2)>-b,
∴a(x1+x2)+b>0.
∵x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1) ∴y=ax2+bx+c在(-∞,-]上单调递增.
变式提升1
若函数f(x)=x+定义在(0,+∞)上,试讨论函数的单调区间.
解析:设任意x1、x2∈(0,+∞)且x1 则f(x1)-f(x2)=x1+-(x2+)
=(x1-x2)+
=(x1-x2)(1-)
=(x1-x2)·.
由于x1-x2<0,x1x2>0,只有x1x2-1>0或x1x2-1<0时,f(x)才具有单调性,而显然00,即f(x1)>f(x2).∴f(x)在(0,1)上单调递减.
当1≤x11,从而x1x2-1>0,f(x1)-f(x2)<0,即f(x1) 当0综上,f(x)在(0,1)上单调递减,在[1,+∞]上单调递增.
类题演练2
f(x)在(0,+∞)上单调递减,那么f(a2-a+1)与f()的大小关系是_______________.
解析:∵a2-a+1=(a-)2+>,
又∵f(x)在(0,+∞)上单调递减,
∴f(a2-a+1)答案:f(a2-a+1)变式提升2
如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小.
解析:∵f(2+t)=f(2-t),
∴f(x)的对称轴为x=2.
故f(x)在[2,+∞]上是增函数,且f(1)=f(3).
∴f(2) 即f(2)类题演练3
已知函数f(x)=,x∈[1,+∞],求函数f(x)的最小值.
解析:f(x)=x++2,
设1≤x1 2x1x2>1,0<<1,得1->0,
又x2-x1>0,
∴f(x2)-f(x1)>0,f(x1) ∴f(x)在区间[1,+∞]上为增函数,
∴f(x)在区间[1,+∞]上的最小值为f(1)=.
变式提升3
求函数f(x)=-x2+2ax+1在[0,2]上的最大值.
解析:f(x)=-x2+2ax+1=-(x2-2ax+a2)+a2+1=-(x-a)2+a2+1.
由于f(x)的对称轴x=a对于[0,2]有三种位置关系,如下图所示.
当a<0时,f(x)在[0,2]上单调递减,则最大值为f(0)=1;
当0≤a≤2时,x=a∈[0,2],则最大值在顶点处取得,为f(a)=a2+1;
当a>2时,f(x)在[0,2]上单调递增,则最大值为f(2)=4a-3.
综上,f(x)在[0,2]上的最大值为
g(a)=
类题演练4
二次函数y=x2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,则:
(1)m的值是多少?
(2)此函数的最小值是多大?
解析:(1)由于y=x2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,∴其对称轴为x=-1,故m=2.
(2)ymin=3.
变式提升4
已知f(x)=在区间(-2,+∞)上单调递增,求a的取值范围.
解析:f(x)=
=
=a+.
∴y-a=与y′=比较,知f(x)要在区间(-2,+∞)上单调递增只须1-2a<0即可.
∴a>.
温馨提示
本题关键是将它化为y=m+型,再根据函数y=的单调性来考虑a应满足的条件,从而求出a的取值.
1.3.2 奇偶性
课堂导学
三点剖析
一、函数的奇偶性概念
【例1】 判断下列论断是否正确:
(1)如果一个函数的定义域关于坐标原点对称,则这个函数为奇函数;
(2)如果一个函数为偶函数,则它的定义域关于坐标原点对称;
(3)如果一个函数的图象关于y轴对称,则这个函数为偶函数.
思路分析:通过本题的研究,深刻理解函数的奇偶性的内涵.
解:(1)一个函数的定义域关于原点对称,是一个函数成为奇偶函数的必要条件,还必须要看f(-x)与-f(x)是否相等,故(1)是错误的,(2)(3)正确.
二、函数奇偶性的判断
【例2】 判断下列函数的奇偶性.
(1)f(x)=+;
(2)f(x)=+;
(3)f(x)=;
(4)f(x)=kx+b(k≠0);
(5)f(x)=x+(a≠0);
(6)f(x)=ax2+bx+c(a≠0).
解:(1)由得x=1,函数定义域为{x|x=1}.定义域不关于原点对称,为非奇非偶函数.
(2)由得x2=1,函数定义域为{x|x=±1}.f(x)=0,f(-x)=f(x)且f(-x)=-f(x).函数是既奇又偶函数.
(3)函数定义域为{x|x≠0}且f(-x)==-f(x).f(x)为奇函数.
(4)函数定义域为R,当b=0时,f(-x)=-f(x),为奇函数;当b≠0时,为非奇非偶函数.
(5)函数定义域为{x|x≠0},且f(-x)=-x-=-f(x).函数为奇函数.
(6)函数定义域为R,当b=0时,f(-x)=f(x)为偶函数;b≠0时,为非奇非偶函数.
温馨提示
1.判断函数奇偶性的步骤:先看定义域是否关于原点对称;再看f(-x)与f(x)的关系,即f(-x)=±f(x)或f(-x)±f(x)=0.
也可以通过图象是否关于原点、y轴对称来判断.
2.若定义域关于原点对称,且f(x)=0,则函数是既奇又偶的函数.
3.一次函数y=kx+b为奇函数b=0.
4.二次函数y=ax2+bx+c为偶函数b=0.
【例3】 已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x>0时,f(x)=x(1+),求:
(1)f(-8);
(2)x<0时,f(x)的解析式.
思路分析:已知条件中的解析式是x>0,f(x)=x(1+),所求的f(-8)、x<0时的f(x)最终要利用奇偶性化归为f(8)、f(-x)来表示.
解:由于函数是定义在(-∞,+∞)上的奇函数,因此对于任意的x都有f(-x)=-f(x),即f(x)=-f(-x).
(1)f(-8)=-f(8),f(8)=8(1+)=8×(1+2)=24,
∴f(-8)=-f(8)=-8(1+)=-8(1+2)=-24.
(2)当x<0时,f(x)=-f(-x).
∵-x>0,f(-x)=-x(1+)=-x(1-),
∴f(x)=-[-x(1-)]=x(1-).
三、函数奇偶性的应用举例
【例4】 已知f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并加以证明.
思路分析:利用函数奇偶性及图象特征比较容易对函数单调性进行判断,但是证明单调性必须用定义证明.
解:f(x)在(-∞,0)上是增函数.证明如下:
设x1-x2>0,
∴f(-x1) 由于f(x)是偶函数,因此f(-x1)=f(x1),f(-x2)=f(x2).
∴f(x1)温馨提示
利用函数的奇偶性研究关于原点对称区间上的问题,需特别注意求解哪个区间的问题,就设哪个区间的变量,然后利用函数的奇偶性转到已知区间上去,进而利用已知去解决问题.
【例5】 判断下面函数的奇偶性:f(x)=∵f(-x)=
=,故f(x)为非奇非偶函数.
错因分析:上述解法产生错误的原因是忽略了函数的定义域,导致错误.
正解:由得-2≤x≤2且x≠0,∴函数的定义域为[-2,0]∪(0,2),此时f(x)= ,有f(-x)===-f(x),∴函数f(x)为奇函数.
温馨提示
1.判断函数的奇偶性首先求函数的定义域,初学者最容易忽略这一点,若定义域关于原点对称再进一步判断f(-x)与f(x)的关系.
2.当判断f(-x)与f(x)的关系比较困难时,有时可以改为判断f(x)±f(-x)是否为0或是否为1.
各个击破
类题演练1
下面四个结论中正确命题的个数是( )
①偶函数的图象一定与y轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y轴对称 ④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)
A.1 B.2 C.3 D.4
解析:偶函数的图象关于y轴对称,但不一定与y轴相交.
反例:y=x-2,y=x0等.故①错误,③正确.
奇函数的图象关于原点对称,但不一定经过原点.
反例:y=x-1,故②错误.
若y=f(x)既是奇函数又是偶函数,由定义可得f(x)=0,但未必x∈R.
反例:f(x)=·,其定义域为{-1,1},故④错误.从而选A.
答案:A
类题演练2
判断下列函数的奇偶性.
(1)f(x)=|x|-;
(2)f(x)=-;
(3)f(x)=;
(4)f(x)=-x.
答案:(1)既奇又偶函数; (2)奇函数; (3)奇函数; (4)非奇非偶函数.
温馨提示
判断函数的奇偶性,首先求出函数的定义域,在此基础上,可对函数解析式进行化简,化简后再判断.如(3)若不化简解析式,则判断不出奇偶性,只能得出非奇非偶的判断.
变式提升2
判断的奇偶性.
解析:当x>0时,则-x<0,
∴f(-x)=-x[1+(-x)]=-x(1-x)=-f(x),
当x<0时,则-x>0,∴f(-x)=-x[1-(-x)]=-x(1+x)=-f(x).
于是f(-x)=
∴f(-x)=-f(x),故f(x)是奇函数.
类题演练3
若f(x)是定义在(-∞,+∞)上的奇函数,且x>0时,f(x)=2x(1-x),求f(x)的解析式.
解析:设x<0时,则-x>0,
∵f(x)是奇函数,∴f(-x)=-2x(1+x),∴f(x)=2x(1+x).
∵f(0)=0,∴f(x)=
变式提升3
设函数y=f(x)是定义在R上的奇函数,当x>0,f(x)=x2-2x+3,试求出f(x)在R上的表达式,并画出它的图象,根据图象写出单调区间.
解析:∵f(x)是R上的奇函数,∴f(0)=0.
当x<0时,则-x>0,
∴f(x)=-f(-x)=-(x2+2x+3),
∴f(x)=
其图象如右上图所示.
由图象得单调增区间是(-∞,-1),[1,+∞],
单调减区间是[-1,0],(0,1).
类题演练4
已知f(x)是偶函数,而且f(x)在[a,b]上是增函数,判断f(x)在[-b,-a]上是增函数还是减函数,并证明.
解析:减函数.证明如下:
设[-b,-a]上任意两个自变量x1,x2,且x1-x1>-x2>a,
∵f(x)在[a,b]上是增函数,
∴f(-x1)>f(-x2).
∵f(x)是偶函数,
∴f(x1)>f(x2),∴f(x)在[-b,-a]上是减函数.
变式提升4
若f(x)是R上的偶函数,且在[0,+∞]上是减函数,求满足f(π)解析:f(π) ∵f(x)在[0,+∞]上是减函数,
∴π>|m|,∴-π类题演练5
(2006全国Ⅱ文,13)已知函数f(x)=a-,若f(x)为奇函数,则a=_______________.
解析:由奇函数的定义:f(-x)=-f(x),解a-=-(a-),得a=.
答案:
变式提升5
已知奇函数y=f(x)在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.
解:减函数.证明如下:
任取x1,x2∈(-∞,0),且x1 则有:-x1>-x2>0,
∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,
∴f(-x2) 又∵f(x)是奇函数,
∴f(-x2)=-f(x2),f(-x1)=-f(x1),
∴-f(x2)<-f(x1)<0,
∴f(x2)>f(x1)>0,F(x1)-F(x2)=-=>0,即F(x1)>F(x2),
∴F(x)=在(-∞,0)上是减函数.
1.3 函数的基本性质
互动课堂
疏导引导
1.3.1 单调性与最大(小)值?
1.函数的单调性?
单调性和单调区间的定义?
如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有?f(x1)<f(x2),那么就说f(x)在区间D上是增函数.
如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有?f(x1)>f(x2),那么就说f(x)在区间D上是减函数.
如果函数f(x)在区间D上是增函数或减函数,那么就说函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
疑难疏引 (1)函数是增函数还是减函数,是对定义域内的某一个区间而言的,有的函数在整个定义域里是增函数(减函数),也有的函数在定义域的某个区间上是增函数,而在另外区间上又是减函数,也存在一些函数,根本就没有单调区间.如函数:f(x)=5x,(x∈{1,2,3}).再者,因为一个固定点的函数值不会发生变化,所以函数的单调性不在某一个点去讨论,即使在定义域内,也不可以随便把单调区间写成闭区间(比如一些函数的区间端点正好是不连续的点).
(2)函数的单调性与单调区间的关系
函数的单调性是对区间而言的,它是“局部”性质,对某一函数y=f(x),它在某区间上可能有单调性,也可能没有单调性;即使是同一个函数它在某区间上可能单调增,而在另外一区间上可能单调减;对某一函数y=f(x),它在区间(a,b)与(c,d)上都是单调增(减)函数,不能说y=f(x)在(a,b)∪(c,d)上一定是单调增(减)函数.即函数的单调性是针对定义域内的某个区间而言的,而有些函数在整个定义域内具有单调性.而有些函数在定义域内某个区间上是增函数,在另一些区间上是减函数.?
(3)函数的单调性所刻画的是当自变量变化时其对应的函数值的变化趋势,是函数在区间上的整体性质,函数图象能直观地显示函数的这个性质.在单调区间上的增函数,它的图象是沿x轴正方向逐渐上升的;在单调区间上的减函数,它的图象是沿x轴正方向逐渐下降的.
●案例1
如何证明函数y=x+在(1,+∞)上为增函数?
【探究】 证明函数的增减性,先在定义域上取x1<x2,然后作差f(x1)-f(x2),判断这个差的符号即可.?
设x1、x2是(1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=x1+-(x2+)=x1-x2+(-)=x1-x2-=(x1-x2)().
∵x1-x2<0,x1x2-1>0,x1x2>0,?
∴f(x1)-f(x2)<0,即f(x1)<f(x2).?
∴函数y=x+在(1,+∞)上为增函数.?
【溯源】 证明函数的单调性主要是利用定义来证明,其步骤为:?
(1)取值:设x1、x2为该区间内任意的两个值,且x1<x2;
(2)作差变形:作差f(x1)-f(x2),并通过因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;?
(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论;?
(4)判断:根据定义作出结论.?
疑难疏引 讨论函数y=f[φ(x)]的单调性时要注意两点:
(1)若u=φ(x),y=f(u)在所讨论的区间上都是增函数或都是减函数,则y=f[φ(x)]为增函数;?
(2)若u=φ(x),y=f(u)在所讨论的区间上一个是增函数,另一个是减函数,则y=f[φ(x)]为减函数.
若函数f(x)、g(x)在给定的区间上具有单调性,利用增(减)函数的定义容易证得,在这个区间上:
(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.
(2)C>0时,函数f(x)与C·f(x)具有相同的单调性;C<0时,函数f(x)与C·f(x)具有相反的单调性.
(3)若f(x)≠0,则函数f(x)与具有相反的单调性.
(4)若函数f(x)、g(x)都是增(减)函数,则f(x)+g(x)仍是增(减)函数.
(5)若f(x)>0,g(x)>0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)也是增(减)函数;若f(x)<0,g(x)<0,且f(x)与g(x)都是增(减)函数,则f(x)·g(x)是减(增)函数.
●案例2
求下列函数的单调增区间:?
(1)y=-x2+2|x|+3;?
(2)y=x-;
(3)已知函数f(x)在其定义域[-4,4]上是增函数,求f(x2-2x)的增区间.
【探究】 (1)可画图判断,(2)和(3)都不能画图,(2)可看成两个基本函数g(x)=x和t(x)=-相加得到,(3)是复合函数f[u(x)]的形式,其中u(x)=x2-2x.
(1)如图.?
可判断函数的单调增区间是(-∞,-1),(0,1).?
(2)g(x)=x在R上是增函数,t(x)=-在区间(-∞,0),(0,+∞)上是增函数,所以y=x-的增区间是(-∞,0)和(0,+∞).
(3)由函数定义域知-4≤x2-2x≤4,所以1-≤x≤1+,二次函数y=x2-2x的单调增区间为(1,+∞),所以原函数的增区间为(1,1+).
【溯源】 判断复合函数单调性的步骤:?
(1)分解函数成简单函数的形式;
(2)求出函数的定义域;
(3)利用同增异减判断.
(4)找出区间和定义域取交集.
2.函数的最值?
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M.那么我们称M是函数y=f(x)的最大值.?
●案例3
已知函数f(x)=,x∈[1,+∞).
(1)当a=时,求函数的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.?
【探究】 先来解决第(1)问,当a的值给定时,函数变为?f(x)=x++2,它类似于函数f(x)=x+,所以可以利用函数的单调性来判断最值.
(1)当a=时,f(x)=x++2.?
f(x)在[1,+∞)上为增函数,所以f(x)在[1,+∞)上的最小值为f(1)=.
(2)f(x)=x++2,x∈[1,+∞).
当a≥0时,函数f(x)的值恒为正.
当a<0时,函数f(x)在[1,+∞)上为增函数,故当x=1时,f(x)有最小值3+a,于是当3+a>0时,函数f(x)>0恒成立,故0>a>-3.
综上,可知当a>-3时,f(x)>0恒成立.
【溯源】 如果一个函数在某个区间内单调,那么根据函数的单调性就可以判断出函数的极值,并结合函数的自变量在区间端点的函数值判断出函数的最值.容易对a分类不全面,而造成解题失误.有时不考虑在区间端点的值,也会造成解题错误.?
●案例4
二次函数y=x2+2ax-3,x∈[1,2],试求函数的最小值.
【探究】 首先观察到函数图象过(0,-3),再考虑对称轴的位置,由于对称轴在不同的位置会出现不同的结果,所以需要分三种情况讨论.?
y=x2+2ax-3=(x+a)2-a2-3,
当-a∈(2,+∞),即a<-2时,函数在[1,2]上为减函数,故此时的最小值为f(2)=4a+1;
当-a∈(-∞,1),即a>-1时,函数的最小值为f(1)=2a-2;
当-a∈[1,2],即-2≤a≤-1时,函数的最小值为f(-a)=-a2-3.?
【溯源】 二次函数带参求最值常见题型有两类,一是对称轴是定值,给出区间含参不确定,另一类则是对称轴含参不确定,给出区间确定,一般这样的问题都要对区间分轴左、轴右、和轴两边分类讨论,然后利用单调性求解.
●案例5
设函数f(x)在定义域R+上是单调递减函数,且满足f(xy)=f(x)+f(y),f()=1,求:f(1)及f().
【探究】 这里的函数f(x)没有给出具体的解析式,要求?f(1)?的值,就需要对已知条件f(xy)=f(x)+f(y)中的x、y进行恰当的赋值,于是令x=,y=1,得f(1)=0.
∵f()=1,∴f()=2.
【溯源】 函数的单调性反映的是函数值y随自变量x的变化而变化的一种规律.对于抽象函数问题,尽管它没有给出具体的解析式,但我们仍可以通过赋值去把握它,具体赋值时可结合式子不断赋于特殊值,如0、1等.
1.3.2 奇偶性?
1.定义
一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
函数的奇偶性是针对函数的整个定义域而言的,因此奇偶性是函数在定义域上的整体性质.
由于任意x和-x均要在定义域内,故奇函数或偶函数的定义域一定关于原点对称.所以,我们在判定函数的奇偶性时,首先要确定函数的定义域(函数的定义域关于原点对称是函数具有奇偶性的必要条件.如果其定义域关于原点不对称,那么它没有奇偶性).然后再判断f(-x)与f(x)的关系,从而确定其奇偶性.
2.奇偶性函数的几个性质?
(1)对称性:奇偶函数的定义域关于原点对称;?
(2)整体性:奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;?
(3)可逆性:f(-x)=f(x)f(x)是偶函数,f(-x)=-f(x)f(x)是奇函数;?
(4)等价性:f(-x)=f(x)f(x)-f(-x)=0,f(-x)=-f(x)f(x)+f(-x)=0;??
(5)奇函数的图象关于原点对称,偶函数的图象关于y轴对称;
(6)可分性:根据奇偶性可将函数分为四类:奇函数,偶函数,既是奇函数又是偶函数,非奇非偶函数.
疑难疏引
(1)判断函数的奇偶性有时可用定义域的等价形式f(-x)±f(x)=0或=±1(f(x)≠0)来代替.
(2)存在既奇且偶函数,例如f(x)=.
当f(-x)与f(x)之间的关系较隐蔽时,容易产生“非奇非偶”的错觉,万万不可草率下结论.
函数的图象能够直观地反映函数的奇偶性.f(x)为奇函数的充要条件是函数f(x)的图象关于原点对称,f(x)为偶函数的充要条件是函数f(x)的图象关于y轴对称.
3奇函数和偶函数的判断?
(1)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.?
(2)奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数.?
(3)奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.
(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)=+.
(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0.?
(6)记忆口诀:
增函数,减函数,函数作差要记住;
正号增,负号减,增减函数很简单.?
往上增,往下减,增减趋势正相反;?
奇函数,偶函数,函数奇偶看f.?
同号偶,异号奇,非奇非偶不离奇.?
对折偶,旋转奇,图象重合在一起.?
疑难疏引 判断奇偶函数的常见方法:?
(1)定义法,先看定义域是否关于原点对称,如y=x2,x∈[-1,1),既非奇函数又非偶函数.
(2)特值法,起探路及判定否命题等作用,一方面,若f(-1)=f(1)〔f(-1)=-f(1)〕,则f(x)可能是偶(奇)函数.另一方面,若f(-1)≠f(1)〔f(-1)≠-f(1)〕,则f(x)一定不是偶(奇)函数.
(3)和、差法,若f(x)+f(-x)=0,则f(x)为奇函数;若f(-x)-f(x)=0,则f(x)为偶函数.该方法应用的前提是用“特值法”先探路.
(4)比值法,若f(x)/f(-x)=1(或-1),则f(x)为偶(或奇)函数.?
(5)图象法,可直接根据图象的对称性来判定奇偶性.?
●案例1
已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2-1,求f(x)在R上的表达式.
【探究】 题目已经给出x>0时的解析式,只要求出x<0和x=0时的解析式就可以了.f(x)=x3+2x2-1.
∵f(x)为奇函数,∴f(0)=0.?
设x<0,则-x>0,f(-x)=(-x)3+2(-x)2-1=-x3+2x2-1.
又根据f(x)为奇函数,∴有f(-x)=-f(x).
∴-f(x)=-x3+2x2-1.?
∴f(x)=x3-2x2+1.?
因此,
【溯源】 把最后结果写成f(x)=x3+2x2-1和f(x)=x3-2x2+1就错了.原因在于没有真正理解分段函数的定义,错把分段函数当成是两个函数.另外,漏掉x=0也是常见错误.
●案例2
已知f(x)是奇函数,在(-1,1)上是减函数,且满足f(1-a)+f(1-a2)<0,求实数a的范围.?
【探究】 要求a的取值范围,先要列出关于a的不等式,这需要根据原条件,然后根据减函数的定义由函数值逆推出自变量的关系.
由f(1-a)+f(1-a2)<0,得f(1-a)<-f(1-a2).?
∵f(x)是奇函数,∴-f(1-a2)=f(a2-1).?
于是f(1-a)<f(a2-1).?
又由于f(x)在(-1,1)上是减函数,因此解之,得0【溯源】 利用赋值法解题时,特殊值一定要取准.否则将导致解题失败.容易遗漏对每个函数定义域的限定条件的讨论,从而导致解题失误.
1. 证明函数f(x)=x在[0,+∞)上是增函数.?
【思路解析】 判断函数在某一区间上的单调性,从图象上观察是一种常用而又较为粗略的方法,严格证明,需要从单调函数的定义入手.?
【答案】 证明:设x1≥0,x2>0,且x1<x2,?
则f(x1)-f(x2)=x1-x2=.
∵0≤x10.
∴f(x1)-f(x2)<0,即f(x1)由定义,知f(x)=x在[0,+∞)上是增函数.
2. 判断函数f(x)=-x3+1在(-∞,0)上是增函数还是减函数,并证明你的判断;如果x∈(0,+∞),函数f(x)是增函数还是减函数??
【思路解析】 本题考查利用函数单调性的定义证明函数的单调性.一般地,若k>0,f(x)与kf(x)具有一致的单调性;若k<0,则f(x)与kf(x)的单调性相反;f(x)与f(x)+b具有一致的单调性.从f(x)=-x3+1?上可直接得出f(x)是减函数,用单调性的定义证明,应注意对差式的变形及分解因式.?
【答案】 f(x)=-x3+1在(-∞,0)上是减函数,证明如下:
在(-∞,0)上任取x1、x2,且x1<x2.
∵f(x1)-f(x2)=(-x13+1)-(-x23+1)=(x2-x1)(x22+x1x2+x12)=(x2-x1)[(x2+)2+x12],?
又x2-x1>0,(x2+)2+x12>0,?
∴f(x1)-f(x2)>0,即f(x1)>f(x2).?
故f(x)=-x3+1在(-∞,0)上是减函数.?
同理,可证当x∈(0,+∞)时,函数f(x)仍然是减函数.
3. 函数f(x)=-x2+2x+8,则下列说法正确的是 …(  )
A. f(x)是增函数?
B. f(x)在(-∞,1)上是增函数?
C. f(x)是减函数?
D. f(x)在(-∞,1)上是减函数?
【思路解析】 本题是已知函数解析式,确定单调区间的典型题.由于函数f(x)=-x2+2x+8是二次函数,∴在整个定义内不是严格单调函数.在对称轴的两侧是严格单调的.
所以解答此题的关键是确定对称轴.
根据二次函数对称轴的公式x=-可求.
解法一:(综合法)依题意得,函数f(x)=-x2+2x+8的对称轴方程为x=-=1.
又∵二次项系数为-1<0,∴开口方向向下.
∴f(x)在(-∞,1)上是增函数,在(1,+∞)上是减函数.因此,选B.
解法二:(数形结合法,图象法)如图所示,便知f(x)在(-∞,1)上是增函数.因此,选B.
【答案】 B
4. 设f(x)、g(x)都是单调函数,下列四个命题中正确的是(  )?
①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;
②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增;?
③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减;?
④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减.?
A.①③
B.①④
C.②③
D.②④
【答案】 C
5. 讨论函数f(x)=(a≠)在(-2,+∞)上的单调性.
【思路解析】 只需按证明函数单调性的步骤进行即可,最后讨论差值的符号.
【答案】 设-2f(x)==a+.
∴Δy=f(x2)-f(x1)?
=(a+)-(a+)
=(1-2a)(-)
=(1-2a)·.
又∵-2∴当1-2a>0,即a<时,Δy<0,即f(x2)当1-2a<0,即a>时,Δy>0,即f(x2)>f(x1).?
∴当a<时,f(x)=在(-2,+∞)上为减函数;
当a>时,f(x)=在(-2,+∞)上为增函数.
6. 已知函数f(x)=2x2-5x-3,求函数y=f(x)的单调区间.
【思路解析】 可利用函数单调性的定义求解,也可利用复合函数的单调性判断法则来求解,复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集.
【答案】 当x∈[3,+∞)时,函数f(x)=为增函数;
当x∈(-∞,-]时,函数f(x)= 为减函数.
7. 求函数y=x-x-1的值域.?
【答案】 原函数定义域为{x|x≥1}.?
因为y==在定义域上是单调减函数,所以函数的值域是(0,1].
8. 利用单调性求函数y=x-的值域.
【思路解析】 本题考查利用单调性求函数值域.先求出函数的定义域,再判断函数的单调性,最后求值域.?
【答案】 定义域为{x|x≤},y=x以及y=-1-2x均在(-∞,)上递增,
∴y=x-1-2x在(-∞,)上递增,f(x)≤f()=.?
∴y=x-1-2x的值域为(-∞,].
9. 已知二次函数y=-x2+2ax+(a-2)在x∈[-1,2]上有最大值4,求实数a的值.?
【思路解析】 该二次函数的图象开口向下,因而若x∈R,则y=-(x-a)2+a2+a-2,即当x=a?时,y max=a2+a-2,目前规定x∈[1,2],解题时应分a∈[1,2]以及a<1,a>2三种情况讨论(三种情况中最大值的取值均不同).
【答案】 y=-x2+2ax+(a-2)=―(x―a)2+a2+a-2,?
①若a∈[-1,2],则当x=a时,y max=a2+a-2,由题意知a2+a-2=4,而a2+a-6=0,a=-3或a=2,
∵a∈[-1,2],∴a=2符合条件.?
②若a<-1,∵二次函数y=f(x)在[a,+∞)上单调递减,即在[-1,2]上单调递减,∴当x=-1时,y max=―1,―2a+a-2=―a―3,由―a―3=4,得a=-7(<-1),?
∴a=-7符合条件.
③若a>2,则二次函数y=f(x)在[-1,2]上单调递增,∴当x=2时,y max=-4+4a+a-2=5a―6.由5a―6=4得a=2(≯2),∴此时不存在符合条件的a,综上,符合条件的a的值为2或-7.
10. 已知函数f(x)=x5+ax3+bx-8,若f(-2)=10,求f(2)的值.
【思路解析】 观察函数的解析式可知函数x5,ax3,bx都是奇函数,所以x+ax3+bx也是奇函数,因此可构造一个新的奇函数来求解.
【答案】 构造函数g(x)=f(x)+8,则g(x)=x5+ax3+bx一定是奇函数.?
又∵f(-2)=10,∴g(-2)=18.
11. 若函数y=x2-3x-4的定义域为[0,m],值域为[-,-4],则m的取值范围是(  )?
A. (0, 4]
B. [, 4]
C. [, 3]
D. [, +∞)
【思路解析】 首先判断二次函数的对称轴,然后根据定义与该函数的增减性判断最值情况. y=x2-3x-4=(x-)2-.?
对称轴为x=,∴m∈[,3].?
【答案】 ?C?
12. 若函数f(x)在区间(a,b)上为增函数,在区间(b,c)上也是增函数,则函数f(x)在区间(a,c)上(  )?
A. 必是增函数?
B. 必是减函数?
C. 是增函数或是减函数?
D. 无法确定增减性?
【思路解析】 考查单调性定义,即x=b时可能无定义.?
【答案】 D
13. 下列四个函数中是奇函数的是(  )?
A. f(x)=
B. f(x)=x3+x
C. f(x)=x -2+x -1
D. f(x)=2x+1
【思路解析】 判断一个函数是不是奇函数,首先要判断定义域是否关于原点对称,然后再根据已知条件给定的函数解析式用定义法判断f(-x)与-f(x)是否相等,如果相等就是奇函数,如果不相等就不是奇函数.或者画出函数的图象进行判断.
∵A选项的定义域是(-∞,0)∪(0,+∞)关于原点对称,又∵f(-x)== =f(x)≠-f(x),∴A不是奇函数;?
∵B的定义域是R,关于原点对称,又∵f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),∴B是奇函数;
∵C的定义域是(-∞,0)∪(0,+∞)关于原点对称,又∵f(-x)=(-x) -2+(-x) -1=x -2-x -1≠-f(x),
∴C不是奇函数;?
∵D的定义域关于原点对称,又∵f(-x)=2·(-x)+1=-2x+1≠-f(x),∴D不是奇函数.因此,选B.
【答案】 B
14. 已知f(x)在R上是奇函数,当x≥0时,f(x)=x2-2x;当x<0时,求f(x)的表达式.?
【思路解析】 已知函数的奇偶性和原点右侧的函数解析式,求原点左侧的函数解析式,是函数奇偶性类型题目中比较典型的.其解题思路是:设待求原点左侧的自变量为x,则已知原点右侧的自变量就为-x,代入已知原点右侧的函数解析式,整理便得待求原点左侧的函数解析式.?
【答案】 设x′<0,则-x′>0,∵f(x)在R上是奇函数,?
∴f(-x)=-f(x).?
∴f(-x′)=-f(x′).?
又∵当x≥0时,f(x)=x2-2x,把-x′代入f(x)=x2-2x,得f(-x′)=(-x′)2-2·(-x′)=x′2+2x′=-f(x),即f(x′)=-x′2-2x′.因此当x<0时,f(x)=-x2-2x.当x=0时,符合题意.
15. 对定义域内的任意x1、x2都有f(x1·5x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
【思路解析】 本题的中心就是构造,如何利用已知条件构造出f(x)和f(-x)的关系,此题可用特值法.?
【答案】(1)令x1=x2=1,得f(1)=2f(1).∴f(1)=0.?
令x1=x2=-1,得f(-1)=0.
又f(-x)=f(-1·x)=f(-1)+f(x)=f(x),?
∴f(x)是偶函数.
(2)设x2>x1>0,则?
f(x2)-f(x1)?
=f(x1·)-f(x1)
=f(x1)+f()-f(x1)?
=f().?
∵x2>x1>0,∴>1,f()>0,即f(x2)-f(x1)>0.?
∴f(x2)>f(x1).
∴f(x)在(0,+∞)上是增函数.
(3)∵f(2)=1,?
∴f(4)=f(2)+f(2)=2.?
∵f(x)是偶函数,?
∴不等式f(2x2-1)<2可化为f(|2x2-1|)又∵函数在(0,+∞)上是增函数,∴|2x2-1|<4.?
解得-即不等式的解集为(-,).
16. 已知偶函数f(x)在[0,4]上单调递增,那么f(-π)和f(3.1)中较大的一个是     .
【思路解析】 要想比较f(-π)和f(3.1)的大小,最好的是能把它们两个放在同一个单调区间中进行.但是已知条件中并没有给出它们两个是否在一个单调区间,∴要把其中的一个进行转化.由于f(x)是偶函数,∴f(-π)=f(π),转化成功.?
∵f(x)是偶函数,
∴f(-π)=f(π).
又∵f(x)在[0,4]上单调递增,而π∈[0,4],3.1∈[0,4].
又π>3.1,∴f(π)>f(3.1).
因此f(-π)>f(3.1).
故较大的是f(-π).
【答案】 f(-π)
1.3 函数的基本性质
知识导学
函数的单调性是对区间而言的,它是“局部”性质,不同于函数的奇偶性,函数的奇偶性是对整个定义域而言的,即是“整体”性质.对某一函数y=f(x),它在某区间上可能有单调性,也可能没有单调性;即使是同一个函数它在某区间上可能单调递增,而在另外一区间上可能单调递减;对某一函数y=f(x),它在区间(a,b)与(c,d)上都是单调增(减)函数,不能说y=f(x)在(a,b)∪(c,d)上一定是单调增(减)函数,即函数的单调性是针对定义域内的某个区间而言的.例如函数y=在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说它在整个定义域即(-∞,0)∪(0,+∞)上是减函数,因为当取x1=-1,x2=1时,对应的函数值为f(x1)=-1,f(x2)=1,显然有x1 函数的单调性所刻画的是当自变量变化时其对应的函数值的变化趋势,是函数在区间上的整体性质,函数图象能直观地显示函数的这个性质.在单调区间上的增函数,它的图象是沿x轴正方向逐渐上升的;在单调区间上的减函数,它的图象是沿x轴正方向逐渐下降的.
关于函数的奇偶性的判断,应该注意以下几点:(1)定义域不关于原点对称的函数一定不是奇偶函数;(2)定义域关于原点对称的函数也不一定是奇偶函数;(3)定义域关于原点对称,且满足f(-x)=f(x)或f(-x)=-f(x)的函数才是偶函数或奇函数.
函数奇偶性的应用:(1)利用奇偶性求有关函数值;(2)利用奇偶性求有关函数的解析式;(3)利用奇偶性研究函数的其他性质.
另外,由奇(偶)函数图象的特征并结合函数单调性的定义不难得到:(1)奇(偶)函数在关于原点对称的区间上,具有相同(反)的单调性;(2)若奇函数f(x)在区间[a,b](0疑难导析
也存在一些函数,根本就没有单调区间,如函数:f(x)=5x,x∈{1,2,3}.
再者,因为一个固定点的函数值不会发生变化,所以函数的单调性不在某一个点去讨论,即使在定义域内,也不可以随便把单调区间写成闭区间(比如一些函数的区间端点正好是不连续的点).
(1)在这个区间上的x1、x2必须是任意的.
(2)增函数自变量和函数值的关系是“大对大,小对小”,可以用“荣辱与共”这个词形容.
(3)说增函数必须谈及区间,脱离区间谈增函数是没有意义的.
(4)定义的内涵与外延:
内涵是用自变量的大小变化来刻画函数值的变化情况;
外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.
②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.
若f(x)、g(x)都为增函数(减函数),则f(x)+g(x)为增函数(减函数).
若f(x)为增函数,g(x)为减函数,则f(x)-g(x)为增函数;若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数.
奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.
奇函数和偶函数还具有以下性质:
(1)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.
(2)奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数.
(3)奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.
(4)定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)=.
(5)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0.
问题导思
函数的单调性是针对定义域内某个区间而言的,是函数的“局部”性质.
在几个不同区间的单调性并不意味着在这几个区间并集上也具有同样的单调性,必须严格按照函数单调性的定义加以证明才可以得出结论.
一个函数具有奇偶性的前提条件是它的定义域关于原点对称,即定义域关于原点对称是函数为偶(或奇)函数的必要条件,这是奇、偶函数的本质属性之一.
奇函数在其定义域的对称区间上单调性相同,偶函数在其定义域的对称区间上单调性相反.
关于奇偶性的几个命题:
命题1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件.
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出.
命题2 函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数.
由函数奇偶性易证.
命题3 已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0.
由奇函数的定义易证.
命题4 已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)=0的所有实根之和为零;若f(x)是定义在实数集上的奇函数,则方程f(x)=0有奇数个实根.
方程f(x)=0的实数根即为函数f(x)与x轴的交点的横坐标,由奇偶性的定义可知:若f(x0)=0,则f(-x0)=0.对于定义在实数集上的奇函数来说,必有f(0)=0.故原命题成立.
典题导考
绿色通道
应该严格按照求差法的步骤,一步步地走,这个步骤也是个程式化的东西,不能为了省事而对其中的步骤加以简化.这个函数的图象(如图1-3-2所示):
图1-3-2
典题变式判断f(x)=在x∈(1,+∞)上的单调性.
答案:减函数.
绿色通道
如果一个函数在某个区间内单调,那么根据函数的单调性就可以判断出函数的极值,并结合函数的自变量在区间端点的函数值判断出函数的最值.
黑色陷阱
容易对a的分类不全面,造成解题失误.有时不考虑在区间端点的值,也会造成解题错误.
典题变式
1.函数f(x)=ax2-2ax+2+b(a≠0)在[2,3]上有最大值5和最小值2,求a、b的值.
答案:
2.已知函数f(x)=.
(1)判断f(x)的奇偶性.
(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.
答案:(1)f(x)为偶函数.
(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.
绿色通道
根据奇函数以及偶函数的定义,判断是不是有关系f(-x)=f(x)或f(-x)=-f(x),前者是偶函数,后者是奇函数;如果这两个都不成立,则是非奇非偶函数.
对于一个命题若是假命题,只要举一反例来说明即可.比如,说一个函数是非奇非偶函数,只要说明它的定义域不合要求即可,而不必套用作差法进行检验.
有时根据函数图象的对称性进行判断也是捷径之一.
黑色陷阱
要注意的是,有的函数既不是奇函数又不是偶函数,解题中容易忽视这一点.
典题变式判断下列函数的奇偶性:
(1)f(x)=
(2)f(x)=(x-1).
答案:(1)奇函数.
(2)偶函数.
典题变式
1.若f(x)是偶函数,当x∈[0,+∞时,f(x)=x-1,则f(x-1)<0的解集是_________.
答案:{x|02.设定义在[-2,2]上的偶函数在区间[0,2]上单调递减,若f(1,m)答案:-1≤m<.
绿色通道
函数的单调性反映的是函数值y随自变量x的变化而变化的一种规律.本题给出的是个抽象函数问题,尽管它没有给出具体的解析式,但我们仍可以通过赋值去把握它,具体赋值时可结合式子不断赋于特殊值,如0、1等.
典题变式对定义域内的任意x1、x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
答案:(1)(2)略;
(3)(-,).
1.3 函数的基本性质
课堂探究
探究一利用图象确定函数的单调区间,函数单调性的几何意义:在单调区间上,若函数的图象“上升”则为增函数,图象“下降”则为减函数.因此借助于函数图象来求其单调区间,是直观且有效的方法.
【典型例题1】 作出函数f(x)=的图象,并指出函数f(x)的单调区间.
解:f(x)=的图象如图所示,由图可知,函数f(x)=的单调递减区间为(-∞,1]和(1,2),单调递增区间为[2,+∞).
反思(1)对于初等函数y=kx+b(k≠0),y=ax2+bx+c(a≠0),y= (k≠0) 常借助函数图象去探求函数的单调区间.
(2)对于含有绝对值的函数,往往转化成分段函数,画出其图象,借助图象的变化趋势分析函数的单调性(区间).
(3)求函数的单调区间应在函数的定义域内进行,即函数的单调区间一定是函数定义域的子集.
探究二 证明函数的单调性
1.关于函数单调性的定义要注意以下几点:
(1)单调性是与“区间”紧密相关的概念,一个函数在定义域的不同区间上可以有不同的单调性.
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2有以下几个特征:一是任意性,即任意取x1,x2,“任意”二字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x1(3)单调性能使自变量取值之间的不等关系和函数值的不等关系正逆互推,即f(x)是增(减)函数且f(x1)x2).
2.证明或判断函数的单调性,主要是利用定义法,其基本步骤是:
【典型例题2】 求证:函数f(x)=x+在(0,1)上为减函数.
思路分析:在(0,1)上任取x1,x2,且x1f(x2)即可.
证明:设x1,x2是(0,1)上的任意两个实数,且x1=(x1-x2)+=(x1-x2)
=.
∵0∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴f(x)=x+在(0,1)上是减函数.
规律总结利用定义证明函数的单调性时,常用的变形技巧:
(1)因式分解.当原函数是多项式函数时,作差后的变形通常进行因式分解.如f(x)=x2-2x-3.
(2)通分.当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.如本例.
(3)配方.当所得的差式含有x1,x2的二次三项式时,可以考虑配方,便于判断符号.
(4)分子有理化.当原函数是根式函数时,作差后往往考虑分子有理化.
探究三 函数单调性的应用
1.利用函数的单调性可以比较函数值或自变量的大小.在利用函数的单调性解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.
2.(1)若f(x)在区间D上是增函数,x1,x2是区间D内的任意两个实数,则f(x1)>f(x2)?x1>x2;
f(x1)(2)若f(x)在区间D上是减函数,x1,x2是区间D内的任意两个实数,则f(x1)>f(x2)?x1f(x1)x2.
3.当抽象函数的不等式或函数式很复杂时,要注意考虑函数单调性的应用.
【典型例题3】 已知函数f(x)在区间(0,+∞)上是单调递减的,试比较f(a2-a+1)与f的大小.
思路分析:要比较两个函数值的大小,需先比较自变量的大小.
解:∵a2-a+1=2+≥,
∴与a2-a+1都是区间(0,+∞)上的值.
又∵f(x)在区间(0,+∞)上是单调递减的,
∴f≥f(a2-a+1).
探究四 易错辨析
易错点 对“单调区间是……”和“在区间……上单调……”理解错误
【典型例题4】 已知函数f(x)=x2+2(a-1)x+2,
(1)若函数f(x)的单调递减区间是(-∞,4],则实数a的值(或取值范围)是__________.
(2)若函数f(x)在区间(-∞,4]上单调递减,则实数a的值(或取值范围)是__________.
错解:(1)函数f(x)的图象的对称轴为直线x=1-a.由于函数f(x)的单调递减区间是(-∞,4],因此1-a≥4,即a≤-3.故应填(-∞,-3].
(2)函数f(x)的图象的对称轴为直线x=1-a.由于函数f(x)在区间(-∞,4]上单调递减,因此1-a=4,即a=-3.故应填-3.
错因分析:函数的单调递减区间是I,指的是函数递减的最大范围为区间I.而函数在某一区间上单调递减,则指此区间是相应单调递减区间的子集.错解颠倒了这两种说法的含义,从而导致出错.
正解:(1)因为函数f(x)的单调递减区间是(-∞,4],且函数f(x)图象的对称轴为直线x=1-a,所以有1-a=4,即a=-3.故应填-3.
(2)因为函数f(x)在区间(-∞,4]上单调递减,且函数f(x)图象的对称轴为直线x=1-a,所以1-a≥4,即a≤-3.故应填(-∞,-3].
1.3 函数的基本性质
预习导航
课程目标
学习脉络
1.理解增函数和减函数的定义,明确定义中“任意”两字的重要性,以及图象的特征.
2.知道函数单调性的含义,能够利用定义证明函数的单调性.
3.能够利用定义或图象求函数的单调区间,能够利用函数的单调性解决有关问题.
一、增函数和减函数
增函数
减函数
定义
一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(x1)f(x1)>f(x2)
那么就说函数f(x)在区间D上是增函数.区间D称为函数f(x)的单调递增区间
那么就说函数f(x)在区间D上是减函数.区间D称为函数f(x)的单调递减区间
图象特征
函数f(x)在区间D上的图象是上升的
函数f(x)在区间D上的图象是下降的
图示
名师点拨(1) 函数f(x)在区间D上是增函数,x1,x2∈D,且x1≠x2?(x1-x2)[f(x1)-f(x2)]>0?>0.
(2)函数f(x)在区间D上是减函数,x1,x2∈D,且x1≠x2?(x1-x2)[f(x1)-f(x2)]<0?<0.
自主思考1 对于函数f(x),若区间[a,b]上存在两个数x1,x2,且x1f(x2)成立,则能否说f(x)在[a,b]上是减函数?
提示:不能.
对于自变量的选取一定是任意的,而不能是特殊值,如函数y=x2,x∈[-1,1],-1,0∈[-1,1],显然-1<0,且f(-1)=1>0=f(0),但并不能由此就说函数y=x2在[-1,1]上是减函数.
自主思考2已知函数f(x)在定义域[a,b]上是增函数,且f(x1)提示:当f(x)是增函数时,x1,x2满足a≤x1当f(x)是减函数时,x1,x2满足a≤x2二、单调性
名师点拨(1) 函数的单调性是函数的一个局部性质,即我们说函数单调性的时候一定要指出是在哪个区间上,而不能笼统地说函数是单调的,有些时候,函数并不一定在整个定义域上单调.
(2)并不是所有的函数都具有单调性,例如,分段函数y=它的定义域为R,但显然不具有单调性.
  (3)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接或用“,”隔开.如函数y=在(-∞,0)和(0,+∞)上单调递减,却不能表述为函数y=在(-∞,0)∪(0,+∞)上单调递减.
(4)函数的单调区间,在书写时,只要在端点处有定义,用开区间或闭区间都可以,但若在端点处没有定义,必须用开区间.
(5)函数的单调性反映了函数值在某个区间上的变化趋势.例如,函数f(x)在区间D上是增(减)函数,则说明在区间D上,函数值随自变量的增大而增大(减少),图象是上升(下降)的.
归纳总结 基本初等函数的单调性如下表所示:
函数
条件
单调递增区间
单调递减区间
正比例函数
(y=kx,k≠0)
与一次函数
(y=kx+b,k≠0)
k>0
R

k<0

R
反比例函数
k>0

(-∞,0)和(0,+∞)
k<0

(-∞,0)和(0,+∞)
二次函数
(y=ax2+bx+c,a≠0)
a>0
a<0
1.3 函数的基本性质
课堂探究
探究一 利用函数的图象求函数的最值
函数的最大值就是函数图象最高点的纵坐标,最小值就是函数图象最低点的纵坐标,因而只要作出函数的图象就可以求出函数的最值,这是求函数最值的常用方法之一.
【典型例题1】 已知函数f(x)=|x+1|+|x-1|.
(1)画出f(x)的图象;
(2)根据图象写出f(x)的最小值.
思路分析:(1)讨论x与±1的大小,化函数f(x)为分段函数形式;
(2)函数图象的最低点的纵坐标是f(x)的最小值.
解:(1)f(x)=|x+1|+|x-1|=其图象如图所示.
(2)由图象,得函数f(x)的最小值是2.
方法小结用图象法求函数y=f(x)的最值的步骤:
(1)画出函数y=f(x)的图象;
(2)依据函数最值的几何意义,借助图象写出最值.
探究二 利用函数的单调性求最值
1.函数的单调性是其定义域的子集上的性质,是“局部”性质,而函数的最值是整个定义域上的性质,是“整体”性质.
2.若函数f(x)在[a,b]上是增(减)函数,则f(x)在[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
3.若函数f(x)在[a,b]上是增(减)函数,在[b,c]上是减(增)函数,则f(x)在[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.
函数f(x)在闭区间[a,b]上的图象是一条连续不断的曲线,则函数f(x)在[a,b]上一定有最值.
【典型例题2】 已知函数f(x)=x+,x∈[1,3].
(1)判断f(x)在[1,2]和[2,3]上的单调性;
(2)根据f(x)的单调性写出f(x)的最值.
分析:(1)证明单调性的流程:取值→作差→变形→判断符号→结论;
(2)借助最值与单调性的关系,写出最值.
解:(1)设x1,x2是区间[1,3]上的任意两个实数,且x1则f(x1)-f(x2)=x1-x2+-
=(x1-x2)
=.
∵x1当1≤x1即x1x2-4<0.
∴f(x1)>f(x2),
即f(x)在[1,2]上是减函数.
当2≤x10.
∴f(x1)(2)由(1)知f(x)的最小值为f(2),f(2)=2+=4.
又∵f(1)=5,f(3)=3+=∴f(x)的最大值为5.
方法总结利用函数的单调性求函数最值的步骤:
(1)判断函数f(x)的单调性;
(2)借助最值与单调性的关系写出最值.
探究三 二次函数在闭区间上的最值
对于二次函数f(x)=a(x-h)2+k(a>0)在区间[m,n]上的最值可作如下讨论.
对称轴x=h与[m,n]的位置关系
f(x)的单调性
最大值
最小值
h[m,n]
f(n)
f(m)
h>n
[m,n]
f(m)
f(n)
m≤h≤n
m≤h<
[m,h]
[h,n]
f(n)
f(h)
h=
f(m)或f(n)
f(h)
f(m)
f(h)
【典型例题3】 求函数y=x2-2ax-1在[0,2]上的最值.
解:y=(x-a)2-1-a2.
当a<0时,[0,2]是函数的递增区间,如图(1).
故函数在x=0时,取得最小值-1,
在x=2时取得最大值3-4a.
当0≤a≤1时,结合函数图象(如图(2))知,
函数在x=a时取得最小值-a2-1,
在x=2时取得最大值3-4a.
当1函数在x=a时取得最小值-a2-1,
在x=0时取得最大值-1.
当a>2时,[0,2]是函数的递减区间,如图(4).
函数在x=0时取得最大值-1,
在x=2时取得最小值3-4a.
规律总结探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的草图,然后根据图象的增减性进行研究.特别要注意二次函数图象的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据.
二次函数图象的对称轴与定义域区间的位置通常有三种关系:(1)对称轴在定义域区间右侧;(2)对称轴在定义域区间左侧;(3)对称轴在定义域区间内.
探究四 易错辨析
易错点 求函数的最值忽视定义域
【典型例题4】 已知函数f(x)=-3x+5,x∈[0,1],则函数f(x)(  )
A.有最大值2,有最小值5 B.有最大值5,有最小值2
C.有最大值1,有最小值0 D.不存在最值
错解:f(x)=-3x+5是一次函数,值域是R,不存在最值,故选D.
错因分析:错解中,忽视了f(x)的定义域是[0,1],不是R.
正解:f(x)=-3x+5在[0,1]上是减函数,则函数f(x)的最大值是f(0)=-3×0+5=5,最小值是f(1)=-3×1+5=2.
答案:B
1.3 函数的基本性质
预习导航
课程目标
学习脉络
1.理解函数的最大值和最小值的概念,明确定义中“任意”和“存在”表达的含义.
2.能借助函数的图象和单调性,求一些简单函数的最值.
3.能利用函数的最值解决有关的实际应用问题.
一、最大值和最小值
最大值
最小值
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有
f(x)≤M
f(x)≥M
存在x0∈I,使得f(x0)=M
结论
称M是函数y=f(x)的最大值
称M是函数y=f(x)的最小值
几何意义
f(x)图象上最高点的纵坐标
f(x)图象上最低点的纵坐标
名师点拨 (1)定义中M首先是一个函数值,它是值域的一个元素,如函数f(x)=-x2(x∈R)的最大值为0,有f(0)=0.
(2)最大(小)值定义中的“任意”是说对定义域内的每一个值都必须满足不等式,即对于定义域内的全部元素,都有f(x)≤M(f(x)≥M)成立,也就是说,y=f(x)的图象不能位于直线y=M的上(下)方.
  (3)最大(小)值定义中的“存在”是说定义域中至少有一个实数满足等式,也就是说y=f(x)的图象与直线y=M至少有一个交点.
自主思考1已知函数f(x)=x2的定义域是(0,+∞),函数的最小值是0吗?它的值域又是什么?
提示:函数f(x)的最小值不是0.函数没有最小值,因为0不是该函数的值,它的值域是(0,+∞).
自主思考2函数的最值与值域是什么关系?
提示:(1)函数的最值和值域反映的是函数的整体性质,针对的是整个定义域.
(2)函数的值域一定存在,而函数的最大(小)值不一定存在.
(3)若函数的最值存在,则一定是值域中的元素,即此时函数的最大值是其值域中的最大值,函数的最小值是其值域中的最小值.
1.3 函数的基本性质
课堂探究
探究一 判断函数的奇偶性
1.函数根据奇偶性分为:奇函数,偶函数,既奇又偶函数,非奇非偶函数.
2.用定义判断函数奇偶性的步骤为:
(1)求函数f(x)的定义域;
(2)判断函数f(x)的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;
(3)结合函数f(x)的定义域,化简函数f(x)的解析式;
(4)求f(-x);
(5)根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性.
3.函数的奇偶性也可以用图象法判断,即若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.此法多用在解选择题、填空题中.
【典型例题1】 判断下列函数的奇偶性:
(1)f(x)=;
(2)f(x)=x3-2x;
(3)f(x)=+;
(4)f(x)=
思路分析:先求出定义域,再判断f(-x)与f(x)的关系.
解:(1)∵函数的定义域为{x|x≠-1},不关于原点对称,∴f(x)既不是奇函数又不是偶函数.
(2)函数的定义域为R,关于原点对称,
f(-x)=(-x)3-2(-x)=2x-x3=-f(x),
∴f(x)是奇函数.
(3)由得x2=1,即x=±1.
∴函数的定义域为{-1,1},关于原点对称.
又f(1)=f(-1)=0,
∴f(x)既是奇函数又是偶函数.
(4)函数的定义域关于原点对称.
方法一:当x>0时,-x<0,f(-x)=-x[1-(-x)]=-x(1+x)=-f(x).
当x<0时,-x>0,f(-x)=(-x)[1+(-x)]=-x(1-x)=-f(x).
∴f(-x)=-f(x).
∴f(x)是奇函数.
方法二:函数f(x)=的图象如图.
图象关于原点对称,∴f(x)是奇函数.
方法总结(1)用定义法判断函数的奇偶性时,为了判断f(-x)与f(x)的关系,既可以从f(-x)开始化简,也可以去考虑f(-x)+f(x)或f(-x)-f(x)是否为0,当f(x)不等于0时也可考虑 ,与1或-1的关系.
(2)在选择题、填空题中,也可以用如下性质判断函数奇偶性:
①偶函数的和、差、积、商(分母不为零)仍为偶函数;
②奇函数的和、差仍为奇函数;
③奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;
④一个奇函数与一个偶函数的积为奇函数.
探究二 利用函数的奇偶性求解析式
对于偶函数f(x)有f(-x)=f(x),对于奇函数f(x)有f(-x)=-f(x),所以已知函数的奇偶性和函数在某区间上的解析式,可求该函数在与已知区间关于原点对称的区间上的解析式,求解时,先设出所求区间上的自变量,利用奇函数、偶函数的定义域关于原点对称的特点,把它转化到已知解析式的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.
【典型例题2】 已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,求f(x)的解析式.
思路分析:若x>0的解析式是已知的,则利用奇函数的定义,即可求得x<0时的解析式.注意不要忽略x=0时f(x)的解析式.
解:当x<0时,-x>0,则
f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.
由于f(x)是奇函数,故f(x)=-f(-x),
所以f(x)=2x2+3x-1.
当x=0时,f(-0)=-f(0),则f(0)=-f(0),
即f(0)=0.
所以f(x)的解析式为f(x)=
规律总结(1)这类问题常见的情形是:
已知当x∈(a,b)时,f(x)=φ(x),求当x∈(-b,-a)时f(x)的解析式.
若f(x)为奇函数,则当x∈(-b,-a)时,
f(x)=-f(-x)=-φ(-x).
若f(x)为偶函数,则当x∈(-b,-a)时,
f(x)=f(-x)=φ(-x).
(2)若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,不能漏掉.
探究三 函数单调性与奇偶性的综合应用
利用函数的单调性与奇偶性可以解一类抽象不等式问题.
解决此类问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f(x1)【典型例题3】 设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.
思路分析:f(m)+f(m-1)>0→f(1-m)解:由f(m)+f(m-1)>0,
得f(m)>-f(m-1),即f(1-m)又∵f(x)在[0,2]上为减函数且f(x)在[-2,2]上为奇函数,∴f(x)在[-2,2]上为减函数.
∴即
解得-1≤m< .
温馨提示当遇到抽象不等式或函数式很复杂时,一般要利用函数的单调性去掉“f”再求解.
探究四 易错辨析
易错点 忽视定义域,错判函数的奇偶性
【典型例题4】 判断函数f(x)=(x-1) 的奇偶性.
错解:f(x)=-=-=-,
∴f(-x)=-=-=f(x),
∴f(x)为偶函数.
错因分析:错解中,忽视函数f(x)的定义域,盲目化简变形,误认为定义域为[-1,1],扩大x的取值范围.
正解:函数f(x)的定义域为{x|-1≤x<1},不关于原点对称,故此函数既不是奇函数又不是偶函数.
1.3 函数的基本性质
预习导航
课程目标
学习脉络
1.了解奇函数、偶函数的定义,明确定义中“任意”两字的意义.
2.了解奇函数、偶函数图象的特征.
3.会用定义判断函数的奇偶性.
一、偶函数
二、奇函数
名师点拨 由奇偶函数的定义可得:
(1)函数f(x)是偶函数?对定义域内任意一个x,有f(-x)-f(x)=0?f(x)的图象关于y轴对称.
(2)函数f(x)是奇函数?对定义域内任意一个x,有f(-x)+f(x)=0?f(x)的图象关于原点对称.
(3)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0,有时可以用这个结论来否定一个函数为奇函数.
(4)如果函数f(x)是偶函数,那么f(x)=f(|x|)=f(-x)=f(-|x|).
自主思考1 奇、偶函数的定义域有什么特点?
提示:奇函数和偶函数的定义中的“任意”是指定义域中所有的实数;由于f(-x)与f(x)有意义,则-x与x同时属于定义域,即具有奇偶性的函数的定义域关于原点对称.
自主思考2 有没有既是奇函数又是偶函数的函数?若有,有多少个?
提示:有,如函数f(x)=0,x∈D(其中定义域D是关于原点对称的非空数集)既是奇函数又是偶函数,这样的函数有无数个,只要定义域是关于原点对称的任一个非空数集即可.
2.1.1 指数函数
课堂导学
三点剖析
一、根式、分数指数幂与无理数指数幂的意义
【例1】 计算下列各式的值:
(1); (2);
(3)(n∈N*,且n>1);
(4); (5);
(6)++.
思路分析:的意义是n为奇数时,a∈R;n为偶数时,a≥0.n为奇数时,=a;n为偶数时, =|a|=
解:(1)==3.
(2)==-3.解析:(1)===53=125.
(2)==32=9.
(3)==()-3=()3=.
(4)(a>0)=··===.
(5)2(-2)=2××-2×2×=1-4x-1=1-.
温馨提示
进行根式运算时,通常将根式化为幂的形式,再利用分数指数幂的运算法则进行运算.
【例3】 已知+=3,求下列各式的值.
(1)a+a-1;(2)a2+a-2;(3).
解析:(1)将+=3,两边平方得a+a-1+2=9,所以a+a-1=7.
(2)a2+a-2=(a+a-1)2-2=72-2=47.
(3)==8.
温馨提示
给值求值问题应结合已知条件,将所求式子变形,寻求与已知条件的联系.
三、分数指数幂的运算性质
【例4】 下列等式成立吗?说明理由:
(1)a0=1;(2)=;
(3)=.
解析:(1)不一定成立,当a≠0时成立,当a=0时不成立.
(2)不一定成立,只有当x+y为非负数时才成立,否则不成立.
(3)不成立,因为当-bm2≤0时,不适合分数指数幂的运算性质.
温馨提示
在进行根式、分数指数幂的运算时,要特别注意其使用的条件,否则导致错误.如=成立的条件是a>0,初学者最容易忽视条件导致错误.如同学们经常出现 如下的错误:===1;=x-y.
各个击破
类题演练1
求下列各式的值:
(1);
(2)+.
答案:(1) (2)-6-
变式提升1
(1)化简:+.
解析:|m-n|+(m-n)=
答案:
(2)化简:+.
解析:原式=+=-+-=-.
答案:-
类题演练2
计算下列各式的值:
(1)()6(x>0,y>0);
(2)
解析:(1)原式=x3y-2=.
(2)原式===ab2.
答案:(1) (2)ab2
变式提升2
化简:(1)7-3-6+;
(2).
解析:(1)原式=7×-3××2-6×+=-6×+=2×-2×3×=2×-2×=0.
(2)原式=··===
答案:(1)0 (2)
温馨提示
化为分数指数幂是化简根式的重要方法.化简题的最后结论习惯上常与题干的结构形式一致.
类题演练3
已知-=.求:
(1)+;(2)x+x-1;(3)x-x-1.
解析:(1)(+)2=(-)2+4=5+4=9,∴+=3.
(2)x1+x-1=(+)2-2=7.
(3)x-x-1=(+)(-)=3.
答案:(1)3 (2)7 (3)3
变式提升3
若x+x-1=3,求-.
解析:∵(-)2=x+x-1-2=1,
∴-=±1.
答案:±1
类题演练4
a∈R,下列各式中正确的是( )
A.= B.()2= C.()n=a D.(a4)3=(a3)4
解析:A项中,当a≥0时,=,运算错;当a<0时,无意义,∴A项错.B项中,当a=0时,无意义;若a>0时,指数运算也是错的,∴B项错. C项中,当a<0时,n为大于1的偶数时,没有意义,∴C项错,D项成立.
答案:D
变式提升4
有下列命题,其中正确命题的个数是( )
①=a ②若a∈R,则(a2-a+1)0=1 ③=+y ④=
A.0个 B.1个 C.2个 D.3个
解析:①中缺少a>0的条件;
②中,a2-a+1=(a-)2+>0,故(a2-a+1)0=1成立;
③=≠+y,故③错误;
④=-=≠,故④错误.
答案:B
(3)=
(4)==.
(5)=|a-3|=
(6)++=-2+π-2+2-π=-2.
温馨提示
运算时要分清与()n这两种形式,对于后者利用()n=a(n>1且n∈N*)计算.对于前者,要注意n的奇偶数.
二、分数指数幂再讨论
【例2】 计算下列各式的值:
(1); (2); (3); (4)(a>0);
(5)2(-2).
2.1.2 指数函数及其性质
课堂导学
三点剖析
一、指数函数的概念图象及性质
【例1】 下列函数是指数函数吗?分别求函数的定义域、值域.
(1)y=56x+1; (2)y=()3x;
(3)y=; (4)y=π-x;
(5)y=(2a-1)x(a>,且a≠1); (6)y=.
思路分析:一个函数是否为指数函数要根据定义进行判断,不是指数函数的函数,求其定义域、值域时,先求定义域,再按复合函数结构特征去求值域.
解:(1)y=56x+1=5·(56)x不是指数函数,其定义域为R,设t=6x+1,则t∈R,y=5t∈(0,+∞).
(2)y=()3x=[()3]x=()x是指数函数,定义域为R,值域为(0,+∞).
(3)y=不是指数函数,要使解析式有意义,必须x≠0,定义域为{x|x≠0}.
设t=,则t∈(-∞,0)∪(0,+∞),y=0.7t∈(0,1)∪(1,+∞).
(4)y=π-x=()x是指数函数,其定义域为R,值域为(0,+∞).
(5)y=(2a-1)x(a>且a≠1)是指数函数,其定义域为R,值域为(0,+∞).
(6)y=不是指数函数,要使函数有意义,必须1-2-x≥0,
即1-()x≥0,也就是()x≤1=()0,得x≥0,定义域为{x|x≥0}.
令t=1-()x,当x≥0时,0<()x≤1,0≤1-()x<1,因此t∈[0,1],y=∈[0,1].
【例2】 比较下列各组数的大小:
(1)-;
(2)π0.3,0.923.5.
思路分析:利用指数函数单调性可直接比较aα与aβ的大小.当底数不同时,往往需要插入中间值如1进行大小比较.
解:(1)由于y=0.35x在(-∞,+∞)上是减函数,又->-,
因此,<.
(2)由于π>1,因此π0.3>π0=1,0<0.92<1,则0.923.5<0.920=1,从而有π0.3>0.923.5.
温馨提示
因为a0=b0=1,当aα、bβ比较大小时(a、b>0,且a、b≠1),往往插入中间值1,使aα、bβ能够通过与1的比较进而区别大小.
二、指数函数性质的应用
【例3】 根据所给条件,确定x的取值范围.
(1)()-3x+5<2;
(2)(2a-1)x-5>(2a-1)2x-1(a>且a≠1).
思路分析:此类题目解决的依据是指单调性.
解:(1)()-3x+5<2(2-1)-3x+5<223x-5<2.
由单调性可知3x-5<1,
即x<2.
(2)当0<2a-1<1,
(2a-1)x-5>(2a-1)2x-1x-5<2x-1,得x>-4;
当2a-1>1,
即a>1.
(2a-1)x-5>(2a-1)2x-1x-5>2x-1,得x<-4.
温馨提示
求解指数中含有未知数的不等式时,必须注意底数是大于1还是大于零且小于1,然后再利用相应指数函数单调性进行解答,可归纳为:当a>1时,>f(x)>g(x);当0<a<1时,>f(x)<g(x).
三、指数函数的单调性
【例4】 试判断函数f(x)=的单调性.
错解:设x1、x2∈R,且x1<x2,则
f(x1)-f(x2)=-=.
∵x1<x2,
∴-x1>-x2.
∴ax1<ax2,a-x1>a-x2.
∴ax1-ax2<0,a-x2-a-x1<0.
∴f(x1)-f(x2)<0.
∴f(x1)<f(x2),
即f(x)=是增函数.
错因分析:上述解法错误的原因是忽略了指数函数的单调性,应在a>1与0<a<1中分别讨论.
正解:设x1、x2∈R,且x1<x2,则
f(x2)-f(x1)=-=.
∵x1<x2,
∴-x1>-x2.
当a>1时,ax1<ax2,a-x1>a-x2,
∴ax2-ax1>0,a-x1-a-x2>0,
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
此时f(x)是增函数.
当0<a<1时,ax1>ax2,a-x1<a-x2,
∴ax2-ax1<0,a-x1-a-x2<0,
∴f(x2)-f(x1)<0,
即f(x2)<f(x1)此时f(x)是减函数.
故当a>1时,f(x)是增函数,
当0<a<1时,f(x)是减函数.
温馨提示
指数函数y=ax单调性与底数a有关,当a>1时,单调递增;当0<a<1时,单调递减.初学者,在解题时最容易忽视这一点,如>()xx2-x>x,再如,若x2-x>x得>ax.应熟练掌握如下等价式:当a>1时,>=f(x)g(x)当0<a<1时,>f(x)<g(x).
各个击破
类题演练1
(1)指出下列函数哪些是指数函数:
(1)y=x4; (2)y=-4x;
(3)y=(-4)x; (4)y=xx;
(5)y=2x2; (6)y=πx.
答案:(6)是指数函数.
(2)求下列函数的定义域和值域:
(1)y=;
(2)y=;
(3)y=0.2-x+25x+1;
(4)y=.
解析:(1)∵-x+1≥0,∴x≤1.∴定义域为{x|x≤1},值域[1,+∞].
(2)∵3x-9≥0,∴x≥2,∴定义域为{x|x≥2},值域为[0,+∞].
(3)y=(5x)2+5x+1,定义域为R,值域为(1,+∞).
(4)y=,∵1-x2≥0,
∴-1≤x≤1,故定义域为[-1,1],值域为[,1].
变式提升1
求函数y=(a>0且a≠1)的定义域.
解析:当a>1时,
∵ax-1≥0,
∴x≥0,此时,函数的定义域为[0,+∞].
当0<a<1时,
∵ax-1≥0即ax≥1.
∴x≤0,此时函数的定义域为(-∞,0).
类题演练2
比较下列各组数的大小:
(1)()-1.8与()-2.6;
(2)与1;
(3)(0.8)-2与;
(4)与.
答案:(1)(23)-1.8<()-2.6.
(2)>()0=1.
(3)0.8-2>1,<1,故0.8-2>.
(4)=(+1)-1=-1<,故<.
变式提升2
a∈(1,+∞)时,aα>aβ,则α、β间的大小关系是( )
A.|α|>|β| B.α>β C.α≥0≥β D.β>0>α
解析:∵由于a∈(1,+∞),
∴y=ax为增函数.∵aα>aβ,
∴α>β.故选B.
答案:B
类题演练3
设23-2x<,则x的取值范围是__________________________.
解析:原不等式(0.5)2x-3<2x-3>3x2-4-<x<1.
答案:(-,1)
变式提升3
已知函数f(x)=πx,x1x2>0,试比较与f()的大小.
解析:∵f(x)=πx,
∴f(x1)=πx1,f(x2)=πx2,
∴=,f()=.
又∵x1x2>0,∴x1与x2同号.
当x1>0,x2>0时,-=(-)2≥0,又π>1,
∴≥,
即有≥f().
当x1<0,x2<0时,-=-[-x1+2-x2]
=-·(+)2<0,
∴<,
即有<f().
类题演练4
判断y=(a>0,且a≠1)在[,+∞]上的单调性.
答案:用函数单调性定义可证得:当a>1时,原函数在[,+∞]上单调递减;
当0<a<1时,原函数在[,+∞)上单调递增.
变式提升4
求函数y=(a>0,a≠1)的单调区间.
解析:设μ=-x2+3x+2=-(x-)2+,∴y=aμ.
当x∈(-∞,),时,μ(x)是增函数;
当x∈[,+∞]时,μ(x)是减函数;
故当a>1时,y(μ)是增函数,那么在区间(-∞,)上,函数y=递增;
当0<a<1时,y(μ)是减函数,
∴当0<a<1时,函数y=在区间[,+∞]上递增.
∴当a>1时,增区间为(-∞,);
当0<a<1时,增区间为[,+∞].
同理可知:当a>1时,y=的减区间为[,+∞];
当0温馨提示
本题利用复合函数的单调性.即对于y=f[g(x)],如果y=f(μ)与μ=g(x)的增减性相同,则为增函数,若y=f(μ)与μ=g(x)的增减性相反,则为减函数,即“同增”“异减”.
2.1 指数函数
互动课堂
疏导引导
2.1.1 指数与指数幂的运算?
1.根式?
一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,n∈N *.当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n次方根用符号表示,负的n次方根用符号-表示,方根可以合并成± (a>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作n0=0.
式子叫做根式,n叫根指数,a叫做被开方数.?
结论:当n是奇数时, =a;
当n是偶数时, =|a|=
疑难疏引 在初中代数的学习过程中,我们接触过平方根和立方根的概念.对于平方根的定义我们在上面复习时已经提到了.立方根的定义是:如果x 3=a,那么x就叫a的立方根.如此类推,我们便得出了n次实数方根的定义:如果x n=a(n∈N且n>1),那么x就叫a的n次方根.
2.分数指数幂?
正数的分数指数幂的意义:?
规定:a=(a>0,m、n∈N *,n>1);
a-= = (a>0,m、n∈N *,n>1).
0的正分数指数幂等于0,0的负分数指数幂没有意义;指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.?
疑难疏引
(1)当根式的被开方数的指数能被根指数整除时,根式可以写成分数指数幂的形式,并由此引出了正数的正分数指数幂的意义,然后依照负整数指数幂的意义规定了负分数指数幂的意义,从而将指数幂的概念推广到有理数.?
除此之外,还可将有理数指数幂推广到实数指数幂,有理数指数幂的运算性质对实数指数幂同样适用.?
(2)指数幂与根式运算的统一性.?
指数幂与根式运算的统一性是指化简需要先将小数化为分数,根式化为分数指数幂,结果要化为最简形式.在最简结果中,不能既有根式又有分数指数幂的形式,同时,也不能出现既有指数幂又有根式的形式.
(3)有理指数幂的运算性质的记忆口诀.?
①a r·a s=a r+ s
同底两数作乘法,底数不变指数加.?
②(a r) s=a r s
幂的乘方要记明,底数不变指数乘.?
③(ab) r=a r b r
积的乘方大不同,变为幂后再相乘.
3.有理指数幂的运算性质?
(1)a r·a s=a r+ s(a>0,r、s∈Q);?
(2)(a r) s=a rs(a>0,r、s∈Q);?
(3)(ab) r=a r b r(a>0,b>0,r∈Q).
4.无理指数幂
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.
●案例1化简:?
(1);
(2)-(|x||y|)
【探究】 对题(1),要化简的式子中有根式及幂式,可将根式化成幂式后进行幂的运算;对题(2),要化简的式子中全是指数式的运算,注意运用乘法公式使其分子分母能够产生公因式,从而可通过约分化简.?
(1)
=[xy 2(xy) 3]
=[xy 2xy]
=(xy)
=xy
=y.
(2) -=-.
∵|x|≠|y|,?
∴原式=(x-)2-x-y-+(y-)2-(x-+x-y-+y-)=-2x-y-=-.
【溯源】 对多个根式组成的式子进行化简.我们解题的一般原则是先算根号内的,后进行根式运算.进行根式、分数指数幂的乘、除、乘方、开方等混合运算时,一般是先将根式化成分数指数幂,按指数运算法则计算比较简洁;对根式、分数指数幂的混合运算,最后结果一般用最简根式表示;在指数式的运算中,要注意乘法公式的相应形式,注意灵活运用乘法公式进行化简.
●案例2 已知a=-,b=,求的值.
【探究】 由于此题式子结构复杂,先根据公式化简然后代入求值.?
∵a≠0,
∴原式=.
又∵a-27b≠0,
∴原式=
【溯源】 化简、求值一类问题,往往是先将被求代数式化简,然后再代入已知字母的值,求得代数式的值.首先应化简被求式,遇到小数应化成分数;遇到指数是负数,可以对调底数的分子和分母,将负指数化为正指数.
2.1.2 指数函数及其性质?
1.定义?
一般地,函数y=a x(a>0且a≠1)叫做指数函数.它的定义域为R.?
疑难疏引 (1)指数函数的解析式y=ax中,ax的系数是1.有些函数貌似指数函数,实际上却不是,如y=ax+ k(a>0且a≠1,k∈Z);有些函数看起来不像指数函数,实际上却是,如y=a -x(a>0,且a≠1),因为它可以化为y=,其中>0,且≠1.
(2)在指数函数的定义中我们限定底数的范围为a>0且a≠1,这主要是使函数的定义域为实数集,且具有单调性.?
①若a=0,当x>0时,a x=0,当x≤0时,a x没有意义;?
②若a<0,如y=(-2) x对于x=、等都是没有意义的;?
③若a=1,则函数为y=1 x=1是一个常数函数,它的性质没有研究的必要,且不具有单调性.
2.性质?
y=a x
图象
0a>1时的图象
性质
(1)定义域为R,值域为(0,+∞)
(2)a 0=1,即x=0时,y=1,图象都经过(0,1)点
(3)ax=a,即x=1时,y等于底数a,图象都经过(1,a)点
(4)在定义域上是单调减函数在定义域上是单调增函数
(5)x<0时,a x>1;x>0时,0x<0时,00时,a x>1
(6)既不是奇函数,也不是偶函数
3.单调性是指数函数的重要性质,特别是由函数图象的无限伸展,x轴是函数图象的渐近线.
当01时,x→-∞,y→0;?
当a>1时,a的值越大,图象越靠近y轴,递增速度越快;?
当0记忆口诀:?
指数增减要看清,抓住底数不放松,?
反正底数大于0,不等于1已表明;?
底数若是大于1,图象从下往上增;?
底数0到1之间,图象从上往下减.?
无论函数增和减,图象都过(0,1)点.?
●案例1如何判断三个数1.5 -0.2,1.3 0.7,()的大小关系??
【探究】 先比较1.5 -0.2即()0.2和()的大小,考察指数函数y=() x,由于底数在区间(0,1)内,所以指数函数y=() x在(-∞,+∞)上是减函数.故由0.2= <,得1>()0.2>().?
另一方面,由于1.3>1,y=1.3 x在?(-∞,+∞)上是增函数,由0.7>0,得1.3 0.7>1.所以?()<1.5 -0.2<1.3 0.7.于是()<1.5 -0.2<1.3 0.7.?
【溯源】 在进行数的大小比较时,若底数相同,则可根据指数函数的性质得出结果.若底数不相同,则首先考虑能否化成同底数,然后根据指数函数的性质得出结果;不能化成同底数的,要考虑引进第三个数(如0,1等)分别与之比较,从而得出结果.总之比较时要尽量转化成同底的形式,根据指数函数的单调性进行判断.
●案例2求下列函数的定义域与值域:?
(1)y=2;
(2)y=() |x|;?
(3)y=4 x+2 x+1+1;
(4)y=2.
【探究】 (1)因为指数函数y=2 x的定义域为x∈R时,值域为y∈(0,+∞);若x≠0,则y≠1;由于y=2中的≠0,所以y≠2 0=1.所以所求函数的定义域是{x|x∈R且x≠3},值域为{y|y>0且y≠1}.
(2)因为y=() |x|中的|x|≥0,所以x∈R,0(3)将已知函数整理成y=4 x+2 x+1+1=(2 x) 2+2(2 x)+1=(2 x+1) 2.由此可知定义域为R,值域为{y| y>1}.
(4)已知函数可化为y=2,由≥0,得x>1;又由>0,得y=2>1.所以定义域为{x| x>1},值域为{y| y>1}.
【溯源】
求自然定义域的问题,即要求表达式有意义时相应的x的取值范围(集合);求值域的问题均为复合函数的值域问题,而求复合函数值域的一般步骤是先求出定义域,然后求出内层函数的值域,由内层函数的值域求出相应的外层函数的值域,即是复合函数的值域.?
●案例3
某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字).
【探究】
通过恰当假设,将剩留量y表示成经过年数x的函数,并列表、描点、作图,进而求得所求.
设这种物质最初的质量是1,经过x年,剩留量是y.?
经过1年,剩留量y=1×84%=0.84;?
经过2年,剩留量y=1×84%×84%=0.71;
……
一般地,经过x年,剩留量y=0.84x.?
根据这个函数关系式可以列表如下:
x
0
1
2
3
4
5
6
y
1
0.84
0.71
0.59
0.50
0.42
0.35
  用描点法画出指数函数y=0.84x的图象.从图上看出y=0.5只需x≈4.?
答:约经过4年,剩留量是原来的一半.?
【溯源】
在解决实际应用问题时,首先判断函数模型,再根据函数性质和图象解决问题,此题就是指数函数图象的应用,也是数形结合思想的体现.?
●案例4
讨论函数y=() x-() x+1(x∈[-3,2])的单调区间,并求出它的值域.?
【探究】
通过代换u=() x,则y就成了关于u的二次函数.?
令u=() x,则y=u 2-u+1=(u-) 2+.?
∵x∈[-3,2],∴≤u=() x≤8.
∴≤y≤57.
∴值域为[,57].再求单调区间.?
(1) ≤u≤,即≤()x≤,故x∈[1,2]时,u=() x是单调减函数,y=(u-) 2+是单调减函数,∴y=[()x-]2+是单调增函数.
(2) ≤u≤8,即≤()x≤8,故x∈[-3,1]时,u=() x是单调减函数,y=(u-) 2+是单调增函数,∴y=[()x-]2+是单调减函数.
∴函数的单调增区间是[1,2],单调减区间是[-3,1].?
【溯源】
在解决指数和其他函数相复合构成的新函数的性质问题时,一般采取换元的做法,无论是求值域还是单调性,都要注意内层函数的取值范围和对指数底的讨论,在解决单调性问题时,要记清复合函数单调性的规律,即“内外层单调性相同,则函数在此区间上递增,如果内外层单调性相反,则此函数在此区间上递减”.
活学巧用
1. 计算下列各式.?
(1);
(2)(2) 0+2 -2·(2)-(0.01) 0.5.
【思路解析】 第(1)小题将根式变为分数指数幂,也可以把分数指数化为根式去做;第(2)小题将负分数指数化为正分数指数,将小数指数化为分数指数.?
(1)【解法一】 = = = =(9) =9 =3.
【解法二】=====3
(2)【解】 (2) 0+2 -2·(2)- -(0.01) 0.5
=1+×()-()=1+×-=.
2. 计算:?
(1)();
(2)0.008;
(3)();
(4)(2a+1) 0;
(5)[-() -1]-1.
【思路解析】 在幂的运算中,首先观察幂的底数,如果幂的底数能化成幂的形式时〔如(1)(2)(3)〕,就先把幂的底数写成幂的形式,再进行幂的乘、除、乘方、开方运算,这样比较简便.
在幂的运算中,对于形如m 0的式子,要注意对底数m是否为零进行讨论,因为只有在m≠0时,m 0才有意义;而对于形如()-n的式子,我们一般是先变形为()n,然后再进行运算.
【答案】(1)()-=()= = =.
(2)0.008=(0.2 3) =0.2 -2=() -2=5 2=25.
(3)()=()-===.
(4)(2a+1) 0=1, a≠-,无意义,a=-.
(5)[-() -1]-1
=(-) -1
=(-) -1
=-.
3. 把根式-25(a-b) -2改写成分数指数幂的形式为… (  )?
A.-2(a-b)-
B.-2(a-b)-
C.-2(a- -b-)
D.-2(a--b-)
【思路解析】 考查根式与分数指数幂的转化.原式可化为-2×(a-b) -=-2(a-b) -.故选A.
【答案】 A
4. 化简下列各式:?
(1)(x -1+x+ x 0)(x--x);
(2);
(3).
【思路解析】
注意题中各式的结构特点,善于识别平方差、立方差等公式.?
【答案】
(1)原式=(x) 3-(x) 3=x-x.
(2)原式=-=
(x-)2-x-y-+(y-)2-[((x-)2-x-y-+(y-)2)]=2(xy)-=-2.
(3)原式=.
5. 下列各等式中,正确的是(  )?
A. =a
B. =
C.a0=1?
D. =(-1)
【思路解析】
要想判断等式是否正确,首先要使等式两边都有意义,然后计算两边的值,如果相等则正确,如果不等,则不正确,在计算时要充分应用幂的运算法则.?
【解】=|a|,由于不知道a的符号,因此A不正确;?
∵,<0,
∴≠.
因此B不正确;?
如果a=0,则a0没有意义,因此C也不正确;?
∵>1,∴=(-1)=(-1).?
∴D正确.因此,选D.
【答案】 D
6. 已知a +a- =2,求下列各式的值.?
(1) a2 +a -2;
(2) a3 +a -3;
(3) a4 +a -4.
【思路解析】 本题主要考查的是已知条件与所求式子之间的联系.由(a+a-)2=a+ a -1+2=4可知a+ a -1=2.
同理可知
(a+ a -1)2=a2+a -2+2,?
(a2+a -2)2=a4+a -4+2.?
【答案】
(1)2;(2)2;(3)2.
7. 已知x+x =3,求x+ x -1与的值.?
【思路解析】
由(x+x)2=9,
可得x+ x -1=7.?
∵(x+x)3=27,?
∴x+3x·x +3xx -1+x-=27.
∴x+ x-=18.?
故原式=2.
8. 关于函数(1)y=x2和(2)y=2x的下列说法正确的是(  )?
A. (1)和(2)都是指数函数?
B. (1)和(2)都不是指数函数?
C. (1)是指数函数,(2)不是?
D. (2)是指数函数,(1)不是?
【思路解析】
由指数函数特征知(1)不是,(2)是.?
【答案】 D
9. 已知对不同的a值,函数f(x)=2+a x-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是(  )
A. (0, 3)
B. (0, 2)
C. (1, 3)
D. (1, 2)
【思路解析】
函数图象过定点,则函数解析式中含有待定系数(也叫参数)的“项”或“部分表达式”一定为常数,本题要想使a x-1为常数,又∵a取不同的值,因此x-1=0.从而得解.
为使y为定值,应使x-1=0,则此时y=2+a0=3,故P点坐标为(1,3).
因此,选C.
【答案】 C
10. 设y 1=4 0.9,y 2=8 0.44,y 3=() -1.5,则(  )?
A. y 3?>y 1?>y 2
B. y 2?>y 1?>y 3
C. y 1?>y 2?>y 3
D. y 1?>y 3?>y 2
【思路解析】 把给出的三个函数化为同底的指数式,y 1=2 1.8,y 2=2 1.32,y 3=2 1.5,再根据指数函数y=2 x是增函数即可判断y 1>y 3>y 2.?
【答案】 D
11. 当x>0时,函数f(x)=(a 2-1) x的值总大于1,则实数a的取值范围是(  )?
A. 1<|a|<2
B. |a|<1
C. |a|>1
D. |a|>2
【思路解析】 由指数函数的性质可知f(x)在(0,+∞)上是递增函数,所以a 2-1>1,a 2>2,|a|>2.
【答案】 D
12. 函数y=3 (x2+1)的值域为.?
【思路解析】 考查指数函数的性质、函数值域的求法.?
由于x 2+1≥1,而y=3 x在(-∞,+∞)?上是增函数,所以y=3 x2+1≥3,即y=3 x2+1的值域为[3,+∞).
【答案】 [3,+∞)
13. 求函数y=f(x)=() x-() x+1,x∈[-3,2]的值域.?
【思路解析】 将()x看作一个未知量t,把原函数转化为关于t的二次函数求解.?
【答案】
∵f(x)=[()x]2-() x+1,x∈[-3,2],?
∴()2≤()x≤()-3,即≤()x≤8.
设t=() x,则≤t≤8.?
将函数化为f(t)=t 2-t+1,t∈[,8].?
∵f(t)=(t-) 2+,
∴f()≤f(t)≤f(8).?
∴≤f(t)≤57.
∴函数的值域为[,57].
14. 曲线C 1、C 2、C 3、C 4分别是指数函数y=a x、y=b x、y=c x和y=d x的图象,则a, b, c, d与1的大小关系是(  )?
A. aB. aC. bD. b【思路解析】
首先可以根据指数函数单调性,确定c>1,d>1,0【答案】 D
15. 函数f(x)=(a 2-1) x是减函数,则a的取值范围是_____________.?
【思路解析】 如果此函数是减函数则00,a2-1<1.
解得a∈(-2, -1)∪(1,2).?
【答案】 (-2,-1)∪(1,2)
16. 下图所示的是某池塘中的浮萍蔓延的面积y(m2)与时间t(月)的关系:y=a t,有以下叙述,其中正确的是… (  )
①这个指数函数的底数为2?
②第5个月时,浮萍面积就会超过30 m2
③浮萍从4 m2蔓延到12 m2需要经过1.5个月?
④浮萍每月增加的面积都相等
⑤若浮萍蔓延到2 m2、3 m2、6 m2所经过的时间分别为t 1、t 2、t 3,则t 1+t 2=t 3
A.①②
B.①②③④?
C.②③④⑤
D.①②⑤?
【思路解析】 本题综合考查学生的识图能力及指数函数的性质.
由图形得函数解析式应为y=2 x(x≥0).?
【答案】 D
17. 求函数y=a -x2+2x+2(a>0,且a≠1)的单调区间和值域.?
【思路解析】
本题是一个复合函数,而且还有未知参数,因此首先要分类讨论,但是在分类讨论之前还要对指数部分的二次函数进行分析判断,在二次函数的单调区间中分类讨论未知参数以确定函数的单调区间和值域.?
【解】
y=a -x2+2x+2=a -(x-1)2+3.?
令t=g(x)=-(x-1)2+3,t在区间(-∞,1]上递增,在区间[1,+∞)上递减.?
y=f(t)=a t=f[g(x)].?
当a>1时,y=f(t)=a t递增,??
∴y=f[g(x)]在区间(-∞,1]上递增,在区间[1, +∞)上递减.?
当x=1时,y max=a3,
又y=a t>0,?
∴函数的值域为(0,a3].?
当0∴y=f[g(x)]在区间(-∞,1]上递减,在区间[1,+∞)上递增,当x=1时,y min=a3,函数的值域为[a3,+∞).
18. 函数y=(-1) (x+1)(x-3)的单调递增区间是(  )?
A. (1, +∞)
B. (-∞, 1)
C. (1, 3)
D. (-1, 1)
【思路解析】
此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求内层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.?
【答案】 B
21. 集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.判断函数f1(x)=2-x及f2(x)=1+3·()x(x≥0)是否在集合A中?若不在集合A中,试说明理由.?
【答案】
∵f1(49)=2-=-5(1,4],?
∴f1(x)不在集合A中.?
又∵x≥0,
∴0<()x≤1.
∴0<3·()x≤3.
从而1<1+3·()x≤4.
∴f2(x)∈(1,4].
又f2(x)=1+3·()x在[0,+∞)上为减函数,?
∴f2(x)=1+3·()x在集合A中.
2.1 指数函数
知识导学
在初中代数的学习过程中,我们接触过平方根和立方根的概念.对于平方根的定义我们在上面复习时已经提到了.立方根的定义是:如果x3=a,那么x就叫a的立方根.如此类推,我们便得出了n次实数方根的定义.
当根式的被开方数的指数能被根指数整除时,根式可以写成分数指数幂的形式,并由此引出了正数的正分数指数幂的意义,然后依照负整数指数幂的意义规定了负分数指数幂的意义,从而将指数幂的概念推广到有理数.除此之外,还可将有理数指数幂推广到实数指数幂,有理数指数幂的运算性质对实数指数幂同样适用.
比较大小是指数函数性质应用的常见题型.当底数相同时,直接比较指数即可;当底数和指数不同时,要借助于中间量进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.
指数函数的图象和性质分别从形和数两个方面对指数函数加以剖析,因此在考查指数函数的题目中有关数形结合的思想有着广泛的应用.关于函数的图象和性质,需注意的几个问题:
(1)单调性是指数函数的重要性质,特别是由函数图象的无限伸展,x轴是函数图象的渐近线.
当01时,x→-∞,y→0.
当a>1时,a的值越大,图象越靠近y轴,递增速度越快;当0 (2)熟悉指数函数y=10x,y=2x,y=()x,y=()x在同一直角坐标系中的图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.
记忆口诀:
(1)方根口诀
正数开方要分清,根指奇偶大不同,
根指为奇根一个,根指为偶双胞生.
负数只有奇次根,算术方根零或正,
正数若求偶次根,符号相反值相同.
负数开方要慎重,根指为奇才可行,
根指为偶无意义,零取方根仍为零.
(2)指数函数性质口诀
指数增减要看清,抓住底数不放松,
反正底数大于0,不等于1已表明;
底数若是大于1,图象从下往上增;
底数0到1之间,图象从上往下减.
无论函数增和减,图象都过(0,1)点.
疑难导析
用语言叙述这三个公式:
(1)非负实数a的n次方根的n次幂是它本身.
(2)n为奇数时,实数a的n次幂的n次方根是a本身;n为偶数时,实数a的n次幂的n次方根是a的绝对值.
(3)若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.
在指数函数的定义中我们限定底数的范围为a>0,且a≠1,这主要是使函数的定义域为实数集,且具有单调性.
判断一个函数是否是指数函数,关键是看它是否能写成y=ax(a>0,a≠1)的形式.
问题导思
指数函数是同学们完全陌生的一类函数,也是一类非常重要的函数,对指数函数的性质的理解和掌握是学习的关键,找出函数的共同特征,把共同的特点和性质归纳和总结出来.
另外,底数a对图象特征的影响也可这样来叙述:当a>1时,底数越大,函数图象就越靠近y轴;当0典题导考
绿色通道
根据第(1)题的思考,在这里把计算中的不同运算形式统一成分数指数幂更方便些.
第(1)题能把式中的数化成3的指数幂的形式来做吗?
黑色陷阱
做这类带有指数幂和根式的混合运算,容易发生解答过程中的形式混乱,从而影响解题.
典题变式
1.计算下列各式(式中字母都是正数):
(1)(2)(-6)÷(-3);
(2)()8.
答案:(1)4a;(2).
2.已知+=3,求a2+a-2的值.
答案:47.
3.已知函数f(x)=ax+a-x(a>0且a≠1),f(1)=3,则f(0)+f(1)+f(2)的值为_________.
答案:12
绿色通道
比较而言,还是第二种方法更简便些.但对学生的思维要求较高,不仅要求迅速画出略图,而且能对m、n的定位进行判断.
黑色陷阱
如果不注意原题中的条件:1>n>m>0,而取m=2,n=3,将会出现误选B的情形.
典题变式 如图2-1-5,曲线C1、C2、C3、C4分别是指数函数y=ax、y=bx、y=cx和y=dx的图象,则a、b、c、d与1的大小关系是( )
图2-1-5
A.a答案:D
绿色通道
1.对同底数幂大小的比较用的是指数函数的单调性.
首先,必须要明确所给的两个值是哪个指数函数的两个函数值;
其次,必须要明确所给指数函数的底与1的大小关系;再根据指数函数图象的性质来判断.
2.对不同底数幂的大小的比较可以与中间值1进行比较.
典题变式
1.设y1=40.9,y2=80.44,y3=()-1.5,则( )
A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2
答案:D
2.当x>0时,函数f(x)=(a2-1)x的值总大于1,则实数a的取值范围是( )
A.1<|a|<2 B.|a|<1 C.|a|>1 D.|a|>2
答案:D
绿色通道
本题实际上是一个平均增长率的问题,求解非常简单,但是该题从科学家富兰克林的介绍入手设置了一个情景.这是一个比较典型的模型,背景也可以更换为增长率问题.
典题变式
1.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )
A.增加7.84% B.减少7.84%
C.减少9.5% D.不增不减
答案:B
2.某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留1个有效数字).
答案:约经过4年,剩留量是原来的一半.
黑色陷阱
解这类题容易出现的问题是,对于个体问题生搬硬套公式,从而导致解题失误.
典题变式 家用电器(如冰箱)使用的氟化物的释放破坏了大气上层的臭氧层.臭氧含量Q呈指数函数型变化,满足关系式Q=Q0e-0.002 5t,其中Q0是臭氧的初始量,t的单位是年.
(1)随时间的增加,臭氧的含量是增加了还是减少了?
(2)多少年以后将会有一半的臭氧消失?
答案:(1)减少;(2)用计算器完成,大约277年.
2.1 指数函数
课堂探究
探究一 利用根式的性质化简、求值
利用根式的性质化简求值,就是利用与()n的结果进行去根号化简,所以在运算时要特别注意:
(1)n为奇数时,对任意a∈R都有意义,并且表示a在实数范围内的唯一的一个n次方根.即()n=a.
(2)n为偶数时,只有当a≥0时才有意义, (a>0)表示a在实数范围内的一个正的n次方根,也叫n次算术根,但a还有另一个负的n次方根是-,即(±)n=a.
(3)( )n与的意义不同. 对任意a∈R都有意义;当n为奇数时,=a,当n为偶数时,=|a|=
【典型例题1】 求下列各式的值:
(1) +;
(2)( )5+()6(b>a).
思路分析:先利用根式的性质化简各个根式,再进行运算.
解:(1)原式=-8+|3-π|=-8+π-3=π-11.
(2)原式=(a-b)+(b-a)=a-b+b-a=0.
方法总结化简时,首先明确根指数n是奇数还是偶数,然后再依据根式的性质进行化简;化简()n时,关键是明确是否有意义,只要有意义,则()n=a.
探究二条件根式的化简
在对根式进行化简时,若被开方数中含有分母,则要注意分母的取值范围,即确定中a的正负,再结合n的奇偶性给出正确结果.
若根式的根指数是偶数,可由被开方数不小于0确定出字母的取值范围,再进行化简.
【典型例题2】 化简:
(1)设-3(2)( )2++=__________;
(3) =__________.
思路分析:(1)去根号,化为含绝对值的形式,然后讨论x的范围去绝对值;(2)(3)由根式得出a的范围,再去根号化简.
解:(1)原式=-=|x-1|-|x+3|.
∵-3原式=-(x-1)-(x+3)=-2x-2;
当1≤x<3时,原式=(x-1)-(x+3)=-4.
∴原式=
(2)由知a-1≥0,
∴原式=a-1++1-a=a-1.
(3)由原式知即a=-1.
∴原式==-.
温馨提醒当n为偶数,化简时,先写成绝对值形式,再去绝对值.
探究三易错辨析
易错点 忽略n的范围导致式子化简出错
【典型例题3】 计算:+.
错解:+
=(1+)+(1-)=2.
错因分析:≠1-,而是=|1-|=-1.其出错原因是忽略了=a成立的条件是n为正奇数,如果n为正偶数,那么=|a|.
正解:+
=(1+)+|1-|=1++-1=2.
2.1 指数函数
预习导航
课程目标
学习脉络
1.理解n次方根及根式的概念,掌握根式的性质.
2.能利用根式的性质对根式进行化简.
一、n次方根
二、根式
名师点拨1.对()n的理解
()n是实数a的n次方根的n次幂,其中实数a的取值范围由n的奇偶性来决定:
(1)当n为大于1的奇数时,a∈R.例如,()3=27,()5=-32,()7=0,则()n=a.
(2)当n为大于1的偶数时,a≥0.例如,()4=27,()2=3,()6=0,则()n=a;若a<0,例如,由于x2=-2,x4=-54均不成立,则,均无意义,所以()2,()4均无意义,则式子()n无意义.
由此看来,只要()n有意义,其值就恒等于a,即()n=a.
2.对的理解
是实数an的n次方根,是一个恒有意义的式子,an不受n的奇偶性限制,a∈R,但是式子的值受n的奇偶性限制:
(1)当n为大于1的奇数时,例如,=-2,=6.1,即=a.
(2)当n为大于1的偶数时,例如,=3,=3,即=|a|.
自主思考-3是9的平方根,对吗?9的平方根是-3吗?
提示:“-3是9的平方根”是正确的,但“9的平方根是-3”是错误的,因为9的平方根有两个是±3.
2.1 指数函数
课堂探究
探究一 根式与分数指数幂的互化
根式与分数指数幂是同一个问题的两种不同表示形式,但用分数指数幂表示运算时更方便.因此,在很多情况下,需要对根式与分数指数幂进行互化.
(1)分数指数幂与根式可以相互转化,其化简的依据是公式:=(a>0,m,n∈N*,且n>1).
(2)当所要化简的根式含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后用性质进行化简.
(3)化简过程中要明确字母的范围,以免出错.
【典型例题1】 将下列根式化为分数指数幂的形式.
(1) (a>0);
(2) ;
(3)( ) (b>0).
解:(1)原式====
(2)原式===
===.
(3)原式===.
探究二 分数指数幂的运算
当一个式子中既含有根式又含有分数指数幂时,通常,我们需要对其化简,这时一般先统一化为分数指数幂,运用幂的运算性质进行运算.对分数指数幂进行化简时,常将负指数幂化为正指数幂,带分数化为假分数.
【典型例题2】 (1)计算:-++16-0.75+;
(2)化简:÷ (a>0).
解:(1)原式=-1+(-2)-4++=0.4-1-1+++0.1=.
(2)原式=[·]÷[·]==a0=1.
温馨提示 此类题目的运算结果,可以是根式也可以是分数指数幂,但不能两者混合,也不能既含有分母又含有负指数.
探究三 条件求值
已知某些代数式的值,求另外代数式的值是代数式求值中的常见题型.解答这类题目,可先分析条件式与所求式的区别与联系,有时通过化简变形把已知条件整体代入,有时需根据已知条件求出某字母的值再代入.
【典型例题3】 已知+=,求下列各式的值:
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
思路分析:解答本题可从整体上寻求各式与条件+=的联系,进而整体代入求值.
解:(1)将+=的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,
∴a2+a-2=7.
(3)设y=a2-a-2,两边平方,得
y2=a4+a-4-2=(a2+a-2)2-4=72-4=45.
∴y=±3,即a2-a-2=±3.
方法总结整体代换是解答这类问题的重要方法,另外还要注意隐含条件的挖掘与应用.
探究四 易错辨析
易错点 忽略有意义的条件导致计算出错
【典型例题4】 化简:
错解:

=(1-a)(a-1)-1=
错因分析:错解中忽略了题中有意义的条件,若有意义,则-a≥0,故a≤0,这样=(1-a)-1.
正解:由有意义,可知-a≥0,故a≤0,
所以

=(1-a)(1-a)-1=.
2.1 指数函数
预习导航
课程目标
学习脉络
1.理解分数指数幂的含义,掌握根式与分数指数幂的互化.
2.掌握指数幂的运算性质,并能对代数式进行化简或求值.
一、分数指数幂
自主思考1我们知道an(n∈N*)表示n个a相乘,那么(n∈N*,m∈N*)还表示个a相乘吗?
提示:在中,当不是正整数时,它不表示个a相乘,它是根式的另一种写法.
自主思考2 与一定相等吗?
提示:不一定.当a≥0时,=;
当a<0时,两者不相等,如a=-4时,=(-4)===2,而=(-4)=无意义,此时,两者显然不相等.
二、无理数指数幂
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.
名师点拨 幂指数概念的扩展过程
如下表所示:
幂指数
定义
底数的取值范围
有理数指数
整数指数
正整数指数
(n∈N*)
a∈R
零指数
a0=1
a≠0且a∈R
负整数指数
a-n= (n∈N*)
a≠0且a∈R
分数指数
正分数指数
= (m,n∈N*,且m>1)
m为奇数
a∈R
m为偶数
a≥0
负分数指数
= (m,n∈N*,且m>1)
m为奇数
a≠0且a∈R
m为偶数
a>0
无理数指数
ap是一个确定的实数(其中p为无理数)
a>0
2.1 指数函数
课堂探究
探究一 指数函数的概念
判断一个函数是否是指数函数,关键是看解析式是否符合y=ax(a>0,且a≠1)这一结构形式.指数函数具有以下特征:
(1)底数a为大于0且不等于1的常数,不含有自变量x;
(2)指数位置是自变量x,且x的系数是1;
(3)ax的系数是1.
【典型例题1】 (1)下列函数中,哪些是指数函数?
①y=(-8)x;②y=2x2-1;
③y=(2a-1)x;④y=2·3x.
(2)函数y=(a2-3a+3)ax是指数函数,求a的值.
思路分析:依据指数函数解析式满足的三个特征来判断.
解:(1)①中,底数-8<0,故不是指数函数.
②中,指数不是自变量x,故不是指数函数.
③中,∵a>,且a≠1,∴2a-1>0,且2a-1≠1.
∴y=(2a-1)x是指数函数.
④中,3x前的系数是2,而不是1,故不是指数函数.
综上所述,仅有③是指数函数.
(2)由y=(a2-3a+3)ax是指数函数,可得?a2-3a+3=1,,a>0,且a≠1,
解得∴a=2.
探究二 指数函数的图象问题
1.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0在y轴右侧,图象从上到下相应的底数由大变小;
在y轴左侧,图象从下到上相应的底数由大变小;
即无论在y轴的左侧还是右侧,底数按逆时针方向变大.
实际上,无论指数函数的底数a如何变化,指数函数y=ax(a>0,且a≠1)的图象与直线x=1相交于点(1,a),因此,作出直线x=1,则该直线与各图象交点的纵坐标即为底数,由此可得底数的大小.
2.因为函数y=ax的图象恒过点(0,1),所以对于函数f(x)=kag(x)+b(k,a,b均为常数,且k≠0,a>0,且a≠1),若g(m)=0,则f(x)的图象过定点(m,k+b).
3.指数函数y=ax与y=x(a>0,且a≠1)的图象关于y轴对称.
4.处理函数图象问题的常用方法:一是抓住图象上的特殊点;二是利用图象的变换;三是利用函数的奇偶性与单调性.
【典型例题2】 函数y=|x|的图象有什么特征?你能根据图象指出其值域和单调区间吗?
思路分析:先讨论x,将函数写为分段函数,然后画出函数的图象,最后根据图象写出函数的值域和单调区间.
解:∵y=|x|=
∴其图象由y=x(x≥0)和y=2x(x<0)的图象合并而成.
而y=x(x>0)和y=2x(x<0)的图象关于y轴对称,所以原函数图象关于y轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是[0,+∞).
探究三 求函数的定义域、值域
对于y=af(x)(a>0,且a≠1)这类函数:
(1)定义域是使f(x)有意义的x的取值范围;
(2)值域问题,应分以下两步求解:
①由定义域求出u=f(x)的值域;
②利用指数函数y=au的单调性求得此函数的值域.
【典型例题3】 求下列函数的定义域与值域.
(1) ; (2)y=-|x|.
思路分析:因为指数函数y=ax(a>0,且a≠1)的定义域是R,所以函数y=af(x)(a>0,且a≠1)与函数f(x)的定义域相同,在定义域内可利用指数函数的单调性来求值域.
解:(1)∵由x-4≠0,得x≠4,
∴定义域为{x|x∈R,且x≠4}.
∵≠0,∴≠1.
∴的值域为{y|y>0,且y≠1}.
(2)定义域为R.
∵|x|≥0,
∴y=-|x|=|x|≥0=1.
故y=-|x|的值域为{y|y≥1}.
方法总结 求指数型函数y=af(x)的值域主要是利用指数函数的单调性求解,因而求函数y=f(x)的值域就成为求函数y=af(x)值域的关键.
探究四 易错辨析
易错点 利用换元法时,忽视中间变量的取值范围
【典型例题4】 求函数y=x+x+1的值域.
错解:令t=x,则原函数可化为y=t2+t+1=2+≥,故当t=-时,ymin=,故原函数的值域是.
错因分析:原函数的自变量x的取值范围是R,换元后t=x>0,而不是t∈R,错解中,t的取值范围扩大了.
正解:令t=x,t∈(0,+∞),则原函数可化为y=t2+t+1=2+.因为函数y=2+在(0,+∞)上是增函数,所以y>1,故原函数的值域是(1,+∞).
方法总结求形如f(ax)的函数的值域时,常利用换元法,设ax=t,根据f(ax)的定义域求得t的取值范围,再转化为求f(t)的值域.
2.1 指数函数
预习导航
课程目标
学习脉络
1.理解指数函数的概念,能画出指数函数图象的草图,会判断指数函数.
2.初步掌握指数函数的性质,并能解决与指数函数有关的定义域、值域、定点问题.
指数函数
名师点拨 对指数函数中底数取值范围的理解
(1)若a<0,则对于x的某些数值,可使ax无意义.如,(-2)x,当x=时无意义.
(2)若a=0,则当x>0时,ax=0;当x≤0时,ax无意义.
(3)若a=1,则对于任何x∈R,ax是一个常量1,没有研究的必要性.
为了避免上述各种情况,所以规定a>0,且a≠1,这样对于任何x∈R,ax都有意义.
自主思考函数y=ax与y=x(a>0,且a≠1)的图象有怎样的对称关系?
提示:观察课本第56页图2.1-4知,两函数的图象关于y轴对称.事实上,函数y=ax图象上任一点P(x,y)关于y轴的对称点P1(-x,y)都在函数y=x的图象上,所以这两个函数的图象关于y轴对称.
2.1 指数函数
课堂探究
探究一 比较两个幂的大小
对于两个幂的大小比较,可从以下两个方面来考虑:
(1)对于底数相同但指数不同的两个幂的大小的比较,可以利用指数函数的单调性来判断.
(2)对于幂值,若底数不相同,则首先考虑能否化为同底数,然后根据指数函数的性质得出结果;不能化成同底数的,要考虑引进第三个数(如0或1等)分别与之比较,借助中间值比较.
【典型例题1】 比较下列各题中两个值的大小:
(1)1.72.5,1.73;
(2)1.5-7,;
(3)2.3-0.28,0.67-3.1.
思路分析:(1)构造指数函数,利用其单调性比较大小;(2)化为同底,再比较;(3)利用中间值1比较大小.
解:(1)(单调性法)由于1.72.5与1.73的底数是1.7,
故构造函数y=1.7x,而函数y=1.7x在R上是增函数.
又2.5<3,∴1.72.5<1.73.
(2)(化同底)1.5-7==,==,
考察函数y=.
∵0<<1,∴y=在R上是减函数.
又7<12,∴>,
即1.5-7>.
(3)(中间量法)由指数函数的性质,知2.3-0.28<2.30=1,0.67-3.1>0.670=1,则2.3-0.28<0.67-3.1.
探究二 解指数不等式
解指数不等式问题,需注意三点:
(1)形如ax>ay的不等式,借助y=ax的单调性求解,如果a的取值不确定,需分a>1与0(2)形如ax>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=ax的单调性求解;
(3)形如ax>bx的形式利用图象求解.
【典型例题2】 解下列关于x的不等式:
(1) ≤16;
(2)a2x+1≤ax-5(a>0,且a≠1).
思路分析:(1)将16写为,再利用指数函数的单调性求解;(2)讨论a的取值范围,利用指数函数的单调性求解.
解:(1)∵≤16,∴≤.
∵0<<1,∴x+5≥-4,即x≥-9.
故原不等式的解集为{x|x≥-9}.
(2)当0∴2x+1≥x-5,解得x≥-6.
当a>1时,∵a2x+1≤ax-5,
∴2x+1≤x-5,解得x≤-6.
综上所述,
当0当a>1时,不等式的解集为{x|x≤-6}.
探究三指数型函数的单调性
对于形如y=af(x)(a>0,且a≠1)的函数,有以下结论:
(1)函数y=af(x)(a>0,且a≠1)的定义域与f(x)定义域相同;
(2)若求值域,则先确定f(x)的值域,再根据指数函数的值域、单调性,确定y=af(x)的值域;
(3)当a>1时,函数y=af(x)与函数y=f(x)的单调性相同;当0【典型例题3】 已知函数y=,
(1)求函数的定义域及值域;
(2)确定函数的单调区间.
思路分析:将函数y=分解为y=与u=x2-6x+17,再根据u=x2-6x+17的定义域、值域、单调性确定原函数的定义域、值域、单调性.
解:(1)设u=x2-6x+17,由于函数y=及u=x2-6x+17的定义域为(-∞,+∞),故函数y=的定义域为R.
∵u=x2-6x+17=(x-3)2+8≥8,
∴≤.
又>0,∴函数的值域为.
(2)函数u=x2-6x+17在[3,+∞)上是增函数,即对任意x1,x2∈[3,+∞),且x1,即y1>y2,∴函数y=在[3,+∞)上是减函数.
同理可知y=在(-∞,3]上是增函数.
规律总结函数y=af(x)可看作是函数y=au与u=f(x)复合而成的,其中函数u=f(x)称为内函数,函数y=au为外函数.函数y=af(x)的单调性遵循“同增异减”的原则,即内外函数单调性一致时,函数y=af(x)为增函数,内外函数单调性相反时,函数y=af(x)是减函数.
探究四 易错辨析
易错点 因忽略换元后新变量的取值范围而导致错误
【典型例题4】 设a>0,且a≠1,如果函数y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值.
错解:∵y=(ax+1)2-2,
又∵y在[-1,1]上单调递增,∴x=1时,y取得最大值.
∴a2+2a-1=14,即a2+2a-15=0,
∴a=3,或a=-5(舍去).
∴a=3.
错因分析:当a>1时,在x∈[-1,1]内,ax∈;
当0而y=(t+1)2-2在(-1,+∞)上是单调递增的,
故当t取最大值时,y取最大值.
综上,应分两种情况求解才是正确的.
正解:设t=ax,若a>1,则t∈,
若0∵y=(t+1)2-1,它关于t在(-1,+∞)上单调递增.
∴当a>1时,y在t=a处取得最大值,
∴a2+2a-1=14,∴a=3.
当0∴+-1=14,∴a=.
∴a=3或a=.
反思 指数函数y=ax(a>0,且a≠1)的值域是(0,+∞),在利用换元法解题时,若假设t=ax,则t>0,一定要注意换元后新变量的范围.
2.1 指数函数
预习导航
课程目标
学习脉络
1.能利用指数函数的单调性解不等式、比较大小、求最值.
2.掌握指数函数在实际生活中的简单应用.
指数函数的图象和性质
y=ax(0y=ax(a>1)
图 象
性 质
定义域:R
值域:(0,+∞)
过定点(0,1),即当x=0时,y=1
当x>0时,01
当x>0时,y>1;当x<0时,0在R上是减函数
在R上是增函数
  自主思考 底数对指数函数的影响?
提示:(1)对指数函数变化趋势的影响.
①当底数a>1时,指数函数y=ax是R上的增函数,且当x>0时,底数a的值越大,函数图象越“陡”,说明其函数值增长得越快,如图(1)所示.
②当底数0(2)对函数值大小的影响.
①若a>b>1,当x<0时,总有00时,总有ax>bx>1.
②若0ax>1;当x=0时,总有ax=bx=1;当x>0时,总有0综上所得,当x>0,a>b>0时,ax>bx;当x<0,a>b>0时,ax2.2.1 对数函数
课堂导学
三点剖析
一、对数的概念
【例1】 将下列指数式写成对数式.
(1)2-2=;
(2)102=100;
(3)a0=1(a>0且a≠1);
(4)a1=a(a>0且a≠1);
(5)ea=16;
(6)=.
思路分析:指数式与对数式互化的依据是ab=NlogaN=b(a>0且a≠1).
解:(1)log2=-2;
(2)log10100=2,即lg100=2;
(3)loga1=0;
(4)logaa=1;
(5)loge16=a,即ln16=a;
(6)log64=-.
温馨提示
对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段和重要思想方法.
二、对数的运算性质
【例2】 求值:(1)lg-lg+lg;
(2)lg8+log39+lg125+log3;
(3)[log2(log216)](2log36-log34);
(4)()3-45×2-11.
解析:(1)解法一:原式=(5lg2-2lg7)-·lg2+(2lg7+lg5)
=lg2-lg7-2lg2+lg7+lg5
=lg2+lg5=(lg2+lg5)
=lg10=.
解法二:原式=lg-lg4+lg7=lg=10·=lg=.
(2)原式=lg8+lg125+log39+log3
=lg(8×125)+log3(9×)
=lg1 000+log31=3+0=3.
(3)原式=(log24)(log336-log34)
=2log3=2log39
=4.
(4)原式=()3-210×2-11
=()3-2-1=-1-=-.
温馨提示
这类问题的处理方法一般有两种:
(1)将式中真数的积、商、幂运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;(2)将式中的对数的积、差、积、商运用对数的运算法则将它们化为真数的积、商、幂,然后化简求值.
【例3】 计算下列各式的值:
(1)(log43+log83)log32;
(2);
(3)2+log279.
思路分析:由于对数运算法则中的各公式都是同底的,因此凡作对数运算,若所给式不同底则一般先化成同底.
解:(1)原式=(+)log32
=(+)log32=+=.
(2)原式===-.
(3)原式=+
=+=2+=.
三、对数运算性质的应用
【例4】 已知log189=a,18b=5,求log3645.
思路分析:18b=5log185=b,将log3645如何化为以18为底的对数成为解决本题的关键.
解:解法一:∵18b=5,∴log185=b,
于是log3645=====.
解法二:由于log189=a,18b=5log185=b,
因此,log3645===.
解法三:由于log189=a,18b=5,因此,=a,blg18=lg5.
∴log3645==
===.
【例5】 若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,求的值.
解析:由已知等式得lg[(x-y)(x+2y)]=lg(2xy)
∴(x-y)(x+2y)=2xy,
即x2-xy-2y2=0,
∴(x-2y)(x+y)=0,
∴x-2y=0或x+y=0.
∴=2或=-1.
由题意x>0,y>0,
∴=-1(舍),
所求=2.
各个击破
类题演练1
已知lg3=α,lg4=β,求10α+β、10α-β、10-2α、.
解析:由条件得10α=3,10β=4,
则10α+β=10α·10β=12,10α-β=.
10-2α=(10α)-2=,==.
答案:12
变式提升1
设x,y,z∈R+,且3x=4y=6z,
求证:-=.
证明:首先将指数式转化为对数式.
设3x=4y=6z=k,
∵x,y,z∈R+,
∴k>1.
∴x=log3k=,y=log4k==,z=log6k=.
∴+=logk3+logk2=logk6=,
即-=.
类题演练2
计算下列各式的值:
(1)log3;
(2)4lg2+3lg5-lg+[log2(log4256)].
解析:(1)原式=log327+log39-log3=3+-=.
(2)原式=4-4lg5+3lg5+lg5+[log24]=4+2=6.
答案:(1) (2)6
变式提升2
求值:(1)log535-2log5+log57-log51.8;
(2)(log43+log83)(log32+log92)-;
(3)lg25+lg2lg5+lg2;
(4).
解析:(1)原式=log5(5×7)-2(log57-log53)+log57-log5
=log55+log57-2log57+2log53+log57-2log53+log55=2.
(2)原式=(log23+log23)(log32+log32)+log2
=×log23log32+=+=.
(3)原式=lg5(lg5+lg2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.
(4)原式===1.
答案:(1)2 (2) (3)1 (4)1
类题演练3
(1)(log43+log83)(log32+log92);
(2)log23·log34·log45·log52.
解析:(1)原式=;(2)原式=1.
答案:(1) (2)1
变式提升3
计算下列各式的值:
(1)(lg5)2+2lg2-(lg2)2;
(2)(log23+log49+log827+…+log2n3n)×log9.
解析:(1)原式=(lg5+lg2)(lg5-lg2)+2lg2=lg5-lg2+2lg2=lg10=1.
(2)原式=
(log23+log2232+…+log2n3n)×log9
=(log23+++…+)×log9
=×log932=×=.
类题演练4
已知lg2=0.301 0,lg7=0.845 1.求lg35.
解析:lg35=lg5×7=lg5+lg7=1-lg2+lg7=1.544 1.
答案:1.544 1
变式提升4
已知log53=a,log54=b,
求证:log2512=(a+b).
证明:证法一:log2512=log253+log254=+=(a+b).
证法二:(a+b)=(log53+log54)=log512=log5==2 log25=log2512.
类题演练5
已知log23=a,log37=b,则log4256=________________________________.
答案:
变式提升5
已知lg(x+y)+lg(2x+3y)-lg3=lg4+lgx+lgy.求x∶y的值.
解析:原式化为lg=lg(4xy)
=4xy2x2-7xy+3y2=02x=y或x=3y,
∴=或=3.
2.2.2 对数函数及其性质
课堂导学
三点剖析
一、对数函数的概念、性质及其图象
【例1】 分别求下列函数的定义域:
(1)y=;
(2)y=;
(3)y=.
思路分析:求函数的定义域关键是找出自变量满足的各个约束条件,解不等式组.
解:(1)要使函数有意义,必须loga(1-x)2≠0,即则得到
函数的定义域为{x|x∈R且x≠1,x≠2,x≠0}.
(2)要使函数有意义,则有>01-3x>03x<1x<0.
因此函数的定义域为(-∞,0).
(3)要使函数有意义,则有logx(3-x)>0 ①或 ②
解①得1 因此,函数的定义域为(1,2).
温馨提示
求函数的定义域一般地根据其解析式列出其约束条件,然后解不等式(组).分式中,分母不为零;偶次根式被开方数大于或等于零;对数式中,真数大于零,底数大于0且不于1等.
【例2】 比较下列各组数的大小.
(1)loga2+a+3π,loga2+a+3;
(2)loga4.7,loga5.1(a>0且a≠1);
(3)log34,log43;
(4)log32,log50.2;
(5)log20.4,log30.4;
(6)3log45,2log23.
思路分析:观察各组数的特征,看其是否直接可以利用对数单调性比较大小.
解:(1)底数相同,且为a2+a+3=(a+)2+>1,根据单调递增性,得loga2+a+3π>loga2+a+3.
(2)底数相同,但大小不定,所以需对a进行讨论.当a>1时,loga4.7loga5.1.
(3)底数不同,但是log34>log33=1,log43log43.
(4)底数不同,但是log32>log31=0,log50.2log50.2.
(5)底数不同,但真数相同,此类问题有两种方法.
解法一:根据y=logax的图象在a>1时,a越大,图象越靠近x轴,如图所示,知
log30.4>log20.4.
解法二:换底.log20.4=,log30.4=.由于log0.43=log20.4.
(6)利用换底公式化同底.3log45=3=log25=log2.2log23
=log29温馨提示
常见的对数比较大小有以下三种类型:
(1)底数相同,可直接利用单调性比较;
(2)底数不同,看是否可用插值法,如插入1=logaa,0=loga1进行间接比较;
(3)底数不同,真数相同,则可用图象关系或进行换底后比较.
二、运算性质的应用
【例3】 (1)作出y=lg|x|的图象,并指出单调区间;
(2)作出y=|lgx|的图象,并指出单调区间.
解析:(1)∵f(-x)
=lg|(-x)|
=lg|x|=f(x),
∴f(x)是偶函数,其图象关于y轴对称.先画出x>0时的图象,再利用其对称性完成整个函数的图象.
f(x)=lg|x|=如上图.
∴f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)当lgx≥0,即x≥1时,y=lgx;
当lgx<0,即0<x<1时,y=-lgx.
其图象如下图:
由图象可知其单调增区间为[1,+∞),单调减区间为(0,1].
三、对数函数的单调性
【例4】 求函数y=(1-x2)的单增区间.
思路分析:求复合函数单调区间时,必须首先考虑其定义域,单调区间必是定义域的子区间.
解:要使函数有意义,则有1-x2>0x2<1|x|<1-1 ∴函数的定义域为x∈(-1,1).
令t=1-x2,x∈(-1,1).
画出t=1-x2在(-1,1)上的图象,图略.
在x∈(-1,0)上,x↗,t↗,y=t↘,
即在(-1,0)上,y随x增大而减小,为减函数;
在[0,1]上,x↗,t↘,y=t↗,即在[0,1]上,y随x的增大而增大,为增函数.
∴y=(1-x2)的增区间为[0,1).
温馨提示
1.求复合函数的单调区间一般有如下几个步骤:(1)首先求出函数的定义域.(2)研究里层函数和外层函数在定义域上的单调性.(3)根据复合函数“同增异减”的原则,判断出函数的增减性求出单调区间.
2.复合函数y=f[g(x)]与里层函数μ=g(x)与外层函数y=f(μ)单调性之间的关系(见下表)
函数
单调性
Y=f(μ)
增函数
增函数
减函数
减函数
μ=g(x)
增函数
减函数
增函数
减函数
y=f[g(x)]
增函数
减函数
减函数
增函数
【例5】已知函数f(x)=lg(x2-2x+a),若函数f(x)的定义域为R,求实数a的取值范围.
思路分析:f(x)的定义域为R,即x2-2x+a>0恒成立,转化为二次函数来说明容易理解,二次函数的最小值大于零即可.
解:f(x)的定义域为R,即t=x2-2x+a>0恒成立,也即二次函数图象在x轴上方.
由于t=x2-2x+a=(x-1)2+a-1,只要a-1>0即可,
∴a的取值范围为a>1.
温馨提示
y=lg(x)的定义域为R等价转化为g(x)>0的解集为R,本题中g(x)=x2-2x+a开口向上,解集为R.于是等价转化为g(x)=x2-2x+a的判别式Δ<0,或转化为g(x)min>0.
各个击破
类题演练1
求下列函数的定义域:
(1)y=log2x-1;(2)y=.
解析:(1)
解得x>且x≠1,
∴函数的定义域为(,1)∪(1,+∞).
(2)x2即
解得x>,且x≠1.
∴函数的定义域为(,1)∪(1,+∞).
变式提升1
(2006广东,1)函数f(x)=+lg(3x+1)的定义域是( )
A.(-,+∞) B.(- ,1) C.(-,) D.(-∞,-)
解析:解得
-答案:B
类题演练2
比较下列各组数的大小:
(1),16,lg9;
(2)(0.3)-0.4,log0.30.4,log0.34;
(3)log2(x+1)与log2(2x+3);
(4)logax与2log2ax(1答案:(1)>lg9>16 (2)(0.3)-0.4>log0.30.4>log0.34 (3)log2(x+1)<log2(2x+3) (4)当0<x<1时,logax<2log2ax;当x=1时,logax=2log2ax;当x>1时,logax>2log2ax
变式提升2
(1)若0<a<b<1,试确定logab,logba,a,b的大小关系.
解析:∵0<a<b<1,由对数函数,y=logax的性质可知0<logab<1;logba=>1;
a==-,
∴a为负值且|a|>1,b==-logab,
∴b为负值且|b|<1.∴logba>logab>b>a.
答案:logba>logab>b>a
(2)已知logn5>logm5,试确定m和n的大小关系.
解析:令y1=logm5,y2=logn5,由于logn5>logm5,它们的图象可能有如下三种情况:(如下图)
由对数函数在第一象限的图象规律知,m>n>1;0<n<m<1;n>1,0<m<1.
类题演练3
作出函数y=lg(-x)的图象,并指出其单调区间.
解析:y=lg(-x)的图象与y=lgx的图象关于y轴对称,如下图所示,单调减区间是(-∞,0).
变式提升3
作出y=|lg|x||的图象
解析:先作出y=lg|x|的图象,然后将x轴下方的图象对折到x轴的上方,图象如图:
类题演练4
求函数y=log0.1(2x2-5x-3)的递减区间.
解析:先求这个函数的定义域,由2x2-5x-3=(2x+1)(x-3)>0,得x<-,或x>3.
μ=2x2-5x-3,y=log0.1μ
由于对数的底数0.1<1,故已知函数y=log0.1μ是减函数,欲求它的递减区间,只要求出函数.μ=2x2-5x-3(x<-,或x>3)的递增区间,由于μ=2(x-)2-6,可得μ=2x2-5x-3(x<-或x>3)的递增区间为(3,+∞),从而可得y=log0.1(2x2-5x-3)的递减区间为(3,+∞).
答案:(3,+∞)
变式提升4
已知y=log4(2x+3-x2),
(1)求定义域;
(2)求f(x)的单调区间;
(3)求y的最大值,并求取得最大值时的x值.
解:(1)由真数2x+3-x2>0,解得-1 ∴定义域是{x|-1 (2)令μ=2x+3-x2,则μ>0,y=log4μ,
由于μ=2x+3-x2=-(x-1)2+4.
考虑到定义域,其增区间是(-1,1),减区间是[1,3].
又y=log4μ在μ∈(0,+∞)上是增函数,故该函数的增区间是(-1,1),减区间是[1,3].
(3)∵μ=2x+3-x2=-(x-1)2+4≤4,
∴y=log4(2x+3-x2)≤log44=1.
∴当x=1,μ取得最大值4时,y就取得最大值1.
类题演练5
已知函数f(x)=lg(ax2+2x+1).
若f(x)的定义域是R,求实数a的取值范围.
解析:设μ(x)=ax2+2x+1,若f(x)的定义域为R,即对任意x,都有μ(x)>0则解之得a>1.
答案:(1,+∞)
变式提升5
设函数f(x)=|log3x|,若f(a)>f(2),则a的取值范围为___________________.
解析:当log3a>0时:log3a>log32,则a>2;
当log3a<0时:f(a)>f(2)-log3a>log32log3>log32
∴0答案:(0,)
2.2 对数函数
互动课堂
疏导引导
2.2.1 对数与对数运算
1.对数的定义?
一般地,如果ax=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=loga N,其中a叫做对数的底数,N叫做真数.通常我们将以10为底的对数叫做常用对数,并把log 10N记为lg N,以e(e=2.718 28…)为底的对数称为自然对数,并且把logeN记为lnN.?
疑难疏引 (1)因为a>0,所以不论b是什么数,都有a b>0,即不论b是什么数,N=a b永远是正数,这说明在相应的对数式b=loga N中真数N永远是正数,换句话说负数和零没有对数.?
(2)指数与对数的关系:
ax=N(a>0,a≠1)x=loga N.?
(3)负数和零没有对数.
2.对数的运算?
(1)换底公式:?
①logab=,即有logca·logab=logcb;
②logba=,即有logab·logba=1;?
③logambn=logab;?
(2)对数恒等式:alogaN=N.?
疑难疏引 换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.
3.对数式与指数式的关系?
【探究思路】 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可用下图表示.
●案例1下列四个命题中,真命题是(  )?
A. lg2lg3=lg5
B. lg23=lg9
C.若logaM+ N=b,则M+N=a b
D.若log2M+ log3N=log2N+log3M,则M=N
【探究】 解答本题的关键是熟练掌握对数概念及对数运算的有关性质.将选项中提供的答案一一与相关的对数运算性质相对照,不难得出应选D.
【溯源】 初学对数运算性质,容易犯下面错误:loga(M±N)=logaM±logaN, loga(M×N)=logaM×logaN, loga=,logaN n=(logaN) n.要注意:积的对数变为加,商的对数变为减,幂的乘方取对数,要把指数提到前.
●案例2求值:?
(1);?
(2)lg5·lg20+lg22;?
(3)已知log23=a,3 b=7,求log1256的值.?
【探究】 (1)(2)严格按照指数、对数的运算法则计算,(3)先将3 b=7转化为log37=b,然后设法将log1256化成关于log23和log37的表达式即可求值.?
(1) = =.
(2)lg5·lg20+lg22=lg5(lg4+lg5)+lg22=2lg2·lg5+lg25+lg22=(lg2+lg5) 2=1.?
(3)解法一:
∵log23=a,∴2 a=3.
又3 b=7,∴7=(2 a) b=2 ab.
故56=2 3+ab.
又12=3·4=2 a·4=2 a+2,
从而56=(2 a+2) =12.故log1256=log1212=.
解法二:
∵log23=a,∴log32=.
又3 b=7,∴log 37=b.从而log1256====
=.
解法三:
∵?log23==a,∴?lg3=alg2.
又3 b=7,∴?lg7=blg3.?
∴?lg7=ablg2.从而log1256= == =.
【溯源】 (1)lg2+lg5=1在对数计算中经常用到.?
(2)第三小题中解法一借助指数变形来解;解法二与解法三是利用换底公式来解,显得较简明.应用对数换底公式解这类题的关键是适当选取新的底数,从而把已知对数和所求对数都换成新的对数,再代入求值即可.?
2.2.2 对数函数及其性质?
1.概念
一般地,我们把函数y=logax(a>0且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
2.对数函数的性质
a>1
0图象
性质
(1)定义域:(0,+∞)
(2)值域:R
(3)图象过定点(1,0)
(4)在(0,+∞)上是增函数
在(0,+∞)上是减函数
疑难疏引 对数函数的图象特征和对数函数的性质之间有以下对应关系:?
(1)图象都位于y轴右侧,且以y轴为渐近线→函数定义域为(0,+∞);??
(2)图象向上、向下无限延展→函数值域为R;
(3)图象恒过定点(1,0)→1的对数是零,即loga1=0;?
(4)当a>1时,图象由左向右逐渐上升,即当a>1时,y=logax在(0,+∞)上是增函数;
当0(5)当a>1时,在直线x=1的右侧,图象位于x轴上方;在直线x=1与y轴之间,图象位于x轴下方,即当a>1时,x>1,则y=logax>0;0当01,则y=logax<0;00.?
对数函数y=logax(a>0且a≠1)的性质的助记口诀:?
对数增减有思路,函数图象看底数,?
底数只能大于0,等于1来也不行,?
底数若是大于1,图象从下往上增;?
底数0到1之间,图象从上往下减.?
无论函数增和减,图象都过(1,0)点.?
●案例1比较大小:?
(1)log0.27和log0.29;?
(2)log35和log65;?
(3)(lgm) 1.9和(lgm) 2.1(m>1);?
(4)log85和lg4.
【探究】 (1)log0.27和log0.29可看作是函数y=log0.2x,当x=7和x=9时对应的两函数值,由y=log0.2x在(0,+∞)上单调递减,得log0.27>log0.29.
(2)考查函数y=logax底数a>1的底数变化规律,函数y=log3x(x>1)的图象在函数y=log6x(x>1)的上方,故log 35>log 65.
(3)把lgm看作指数函数的底数,要比较两数的大小,关键是比较底数lgm与1的关系.若lgm>1即m>10,则(lgm) x在R上单调递增,故(lgm) 1.9<(lgm) 2.1.若0(lgm) 2.1.若lgm=1即m=10,则(lgm) 1.9=(lgm) 2.1.
(4)因为底数8、10均大于1,且10>8,所以log85>lg5>lg4,即log 85>lg4.?
【溯源】 两数(式)大小的比较主要是找出适当的函数,把要比较的两数作为此函数的函数值,然后利用函数的单调性等来比较两数的大小.一般采用的方法有:?
(1)直接法:由函数的单调性直接作答;?
(2)作差法:把两数作差变形,然后判断其大于、等于、小于零来确定;?
(3)作商法:若两数同号,把两数作商变形,判断其大于、等于、小于1来确定;?
(4)转化法:把要比较的两数适当转化成两个新数大小的比较;
(5)媒介法:选取适当的“媒介”数,分别与要比较的两数比较大小,从而间接地求得两数的大小.?
●案例2已知函数y=lg(x2+1-x),求其定义域,并判断其奇偶性、单调性.?
【探究】 注意到+x=,即有lg(-x)=-lg(+x),从而f(-x)=lg(+x)=-lg(-x)=-f(x),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性.
由题意-x>0,解得x∈R,即定义域为R.
又f(-x)=lg[-(-x)]=lg(+x)?
=lg=lg(-x) -1
=-lg(-x)=-f(x).?
∴y=lg(-x)是奇函数.?
任取x 1、x 2∈(0,+∞)且x 1则<+x 1<+x 2
>,
即有-x 1>-x2>0,
∴lg(-x 1)>lg(-x 2),
即f(x 1)>f(x 2)成立.?
∴f(x)在(0,+∞)上为减函数.?
又f(x)是定义在R上的奇函数,
故f(x)在(-∞,0)上也为减函数.?
【溯源】
研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性.?
●案例3作出下列函数的图象:?
(1)y=|log4x|-1;
(2)y=log|x+1|.
【探究】 (1)y=|log4x|-1的图象可以看成由y=log4x的图象经过变换而得到:将函数y=log4x的图象在x轴下方部分以x轴为对称轴翻折上去,得到y=|log4x|的图象,再将y=|log4x|的图象向下平移1个单位,横坐标不变,就得到了y=|log4x|-1的图象.
(2)y=log|x+1|的图象可以看成由y=logx的图象经过变换而得到:将函数y=logx的图象作出,然后关于y轴对称,即得到函数y=log|x|的图象,再将所得图象向左平移一个单位,就得到所求的函数y=log|x+1|的图象.?
函数(1)的图象作法如图①~③所示.?
函数(2)的图象作法如图④~⑥所示.?
【溯源】 画函数图象是研究函数变化规律的重要手段,画函数图象通常有两种方法:列表法和变换法.变换法有如下几种:?
平移变换:y=f(x+a),将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;y=f(x)+a,将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位而得到.
翻折变换:y=|f(x)|,将y=f(x)的图象在x轴下方部分沿x轴翻折到x轴的上方,其他部分不变;y=f(|x|),它是一个偶函数,x≥0时,图象与y=f(x)的图象完全一样;当x≤0时,其图象与x≥0时的图象关于y轴对称.?
对称变换:y=-f(x),它的图象与函数y=f(x)的图象关于x轴对称;y=f(-x),它的图象与y=f(x)的图象关于y轴对称;y=-f(-x),它的图象与y=f(x)的图象关于原点成中心对称.
伸缩变换:y=f(ax)(a>0),将y=f(x)图象上各点的横坐标压缩(a>1)或伸长?(00),将y=f(x)图象上各点的横坐标不变,纵坐标压缩(01)到原来的a倍而得到.
●案例4已知f(x)=2+log3x, x∈[1,9],求y=[f(x)]2+f(x 2)的最大值,及y取最大值时,x的值.
【探究】 要求函数y=[f(x)]2+f(x 2)的最大值,一是要求其表达式;二是要求出它的定义域,然后求值域.
【解】 ∵f(x)=2+log3x,?
∴y=[f(x)]2+f(x 2)=(2+log3x) 2+2+log3x 2
=(2+log3x) 2+2+2log3x
=log32x+6log3x+6?
=(log3x+3) 2-3.
∵函数f(x)的定义域为[1,9],?
∴要使函数y=[f(x)]2+f(x 2)有意义,就需1≤x2≤9,?1≤x≤9.?
∴1≤x≤3.∴0≤log3x≤1.
∴6≤y=(log3x+3) 2-3≤13.?
∴当x=3时,函数y=[f(x)]2+f(x 2)取最大值13.?
【溯源】 在处理有关对数的复合函数的问题时,定义域的求解往往是解题的关键所在,同时要注意对数单调性的应用.?
●案例5某工厂2006年生产一种产品2万件,计划从2007年开始每年的产量比上一年增长20%.则这家工厂生产这种产品的年产量超过12万件时是年.(已知lg2=0.301 0,lg3=0.477 1)(  )?
A.2015
B.2016
C.2017
D.2018
【探究】 此题是平均增长率问题的变式考题,哪一年的年产量超过12万件,其实就是求在2006年的基础上再过多少年的年产量大于12万件,即求经过多少年.
设再过n年这家工厂生产这种产品的年产量超过12万件,?
根据题意,得2(1+20%)n>12,即1.2n>6,?
两边取对数,得nlg1.2>lg6,
∴n> = =.
∴n=10,即2 006+10=2 016.?
因此,选B.
【溯源】 对数函数在求解指数方程时有着无比神奇的效果,经常是根据题意列出指数函数,再根据题意将指数函数转化为指数方程或不等式,然后两边取对数,即求解指数方程的解或指数不等式的解集.
3.反函数的图象和性质?
对数函数y=log ax(a>0且a≠1)与指数函数y=a x(a>0且a≠1)互为反函数,这两个函数的图象关于y=x对称.
疑难疏引 (1)f(a)=b?f -1(b)=a;?
(2)若原函数过点(a, b),则其反函数必过点(b, a);?
(3)原函数的定义域、值域为其反函数的值域、定义域;?
(4)原函数与其反函数的图象关于直线y=x对称.
在遇到反函数问题时,不要盲目将反函数求出,如果合理利用互为反函数的函数图象间的关系和性质,往往可收到事半功倍的效果.
●案例6如何求函数y=5 x2-1(-1≤x<0)的反函数??
【探究】
先求原函数的值域.由-1≤x<0,
∴-1∵-1≤x<0,∴x=-,即y=- (【溯源】
求反函数时,首先要求值域,然后解关于x的方程,第三要把解出的方程中的x、y互换位置,用f -1(x)表示,最后把原函数的值域作为定义域标出.?
关于对数运算的几点提示:?
(1)对数式logaN=b中各字母的取值范围(a>0且a≠1,N>0,b∈R)容易记错.?
(2)解决对数函数y=logax(a>0且a≠1)的单调性问题时,忽视对底数a的讨论.?
(3)关于对数式?logaN的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供学习时参考.
以1为分界点,当a、N在同侧时,logaN>0;当a、N在异侧时,logaN<0.
活学巧用
1.的值是(  )
A.
B. 1?
C.
D. 2?
【思路解析】 考查有关对数的运算性质,logambn=logab.?
【答案】 A
2. 若log2[log(log2x)]=log3[log(log3y)]=log5[log(log5z)]=0,则x、y、z的大小关系是?(  )
A. zC. y【思路解析】 依特殊的对数式loga1=0及logaa=1可分别求出相应的x、y、z的值.?
log5[log(log5z)]=0,可知log(log5z)=1,所以log5z=,可得z=5.同理可得x=2,y=3,借助分数指数幂可得这三个数的大小,答案为D.
【答案】 D
3. 下列各式中成立的是(  )?
A. logax 2=2logax?
B. loga|xy|=loga|x|+loga|y|?
C. loga3>loga2
D. loga =logax- logay?
【思路解析】 用对数的运算法则解决问题.
A、D的错误在于不能保证真数为正,C的错误在于a值不定.选B.
【答案】 B
4. 求下列各式中的x:?
(1)logx=-;
(2)logx5=;?
(3)log (x-1)(x 2-8x+7)=1.?
【思路解析】 根据式中未知数的位置或直接转化成指数式计算或利用对数性质进行计算.?
【解】 (1)原式转化为()-=x,所以x=.
(2)原式转化为x =5,所以x=.
(3)由对数性质得解得x=8.
5. 已知loga2=m,loga3=n,则a 2m-n=__________.?
【思路解析】 首先把对数式化为指数式,再进行指数运算.?
∵loga2=m,loga3=n,
∴a m=2,a n=3.
∴a 2m-n= = ==.
【答案】
6. (1)已知3a=2,用a表示log34-log36;?
(2)已知log32=a,3b=5,用a、b表示log3.?
【解】 (1)∵3a=2,∴a=log32.
∴log34-log36=log3 =log32-1=a-1.?
(2)∵3b=5,∴b=log35.
又∵log32=a,?
∴log3=log3(2×3×5)= (log32+log33+log35)=(a+b+1).
7. (1)将下列指数式写成对数式:?
①2 10=1 024;②10 -3=;③0.3 3=0.027;④e0=1.?
(2)将下列对数式写成指数式:
①log0.46.25=-2;
②lg2=0.301 0?;?
③log 310=2.095 9;
④ln23.14=x.?
【思路解析】
应用指数式与对数式的等价关系求解.?
【答案】
(1)①log21 024=10;?②lg=-3;?③log0.30.027=3;④?ln1=0.
(2)①0.4 -2=6.25;?②10 0.301 0=2;③3 2.095 9=10;?④e x=23.14.
8. 已知loga3>logb3>0,则a、b、1的大小关系是.?
【思路解析】 由对数函数的性质可知a>1,b>1,关键是判断a与b的大小,这可以利用对数函数的单调性来解决.?
【解法一】 由loga3>logb3>0> >0
log3b>log3a>0
log3b>log3a>log31.
∵y=log3x是增函数,故b>a>1.?
【解法二】
分别作出y=logax与y=logbx的图象,然后根据图象特征进行推断.?
∵?loga3>logb3>0,∴a>1,b>1.
故y=logax与y=logbx均为增函数.
又∵?loga3>logb3>?0,
∴当x>1时,y=logax的图象应在y=logbx图象的上方,如图所示.?
根据对数函数的图象分布规律,可知b>a>1.
【答案】 b>a>1
9. 比较下列各组数中两个值的大小:
(1)log23.4, log28.5;?
(2)log0.31.8, log0.32.7;?
(3)loga5.1, loga5.9(a>0,a≠1).?
【解】 (1)考查对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是?log23.4(2)考查对数函数y=log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7.?
(3)当a>1时,y=logax在(0,+∞)上是增函数,于是loga5.1当0loga5.9.
10. 求函数y=log(-x2+4x+5)的定义域和值域.?
【解】 函数有意义,必须-x2+4x+5>0x2-4x-5<0-1∴函数的定义域为{x|-1由-1∴0≤-x2+4x+5≤9.
从而log(-x2+4x+5)≥log9=-2,
即值域为{y|y≥-2}.
11. 已知函数f(x)=loga (a>1且b>0).?
(1)求f(x)的定义域;
(2)判断函数的奇偶性.
【思路解析】 本题考查定义域、单调性的求法及判断方法,注意要利用定义求解.?
【解】 (1)由,解得x<-b或x>b.
∴函数f(x)的定义域为(-∞,-b)∪(b,+∞).?
(2)由于f(-x)=loga()=loga()=loga()-1=-loga()=-f(x),所以f(x)为奇函数.
12. 求函数y=log(-x2+2x+3)的值域和单调区间.?
【思路解析】 通过换元,令t=-x2+2x+3,是复合函数的问题.
【解】 设t=-x2+2x+3,则t=-(x-1)2+4.?
∵y=logt为减函数,且0∴y≥log4=-2,即函数的值域为[-2,+∞).?
再由函数y=log(-x2+2x+3)的定义域为-x2+2x+3>0,即-1∴t=-x2+2x+3在(-1,1)上递增而在[1,3)上递减.
而y=logt为减函数.?
∴函数y=log(-x2+2x+3)的减区间为(-1,1),增区间为[1,3).
13. 函数y=lg|x|(  )?
A.是偶函数,在区间(-∞,0)上单调递增?
B.是偶函数,在区间(-∞,0)上单调递减?
C.是奇函数,在区间(0,+∞)上单调递增?
D.是奇函数,在区间(0,+∞)上单调递减?
【思路解析】 画出函数y=lg|x|的草图即见答案.在画函数y=lg|x|的草图时,注意应用函数y=lg|x|是个偶函数,其图象关于y轴对称.比如列表时,要先确定对称轴,然后在对称轴的两侧取值列表.
【答案】 B
14. (2005北京高考,文2)为了得到函数y=2 x-3-1的图象,只需把函数y=2x上所有点… (  )
A.向右平移3个单位长度,再向下平移1个单位长度?
B.向左平移3个单位长度,再向下平移1个单位长度?
C.向右平移3个单位长度,再向上平移1个单位长度?
D.向左平移3个单位长度,再向上平移1个单位长度?
【思路解析】 本题考查函数图象的平移问题,根据图象平移的方法口决“左加右减,上加下减”,极易求出答案.?
【答案】 A
15. 已知函数f(x)=lg(ax 2+2x+1).?
(1)若函数f(x)的定义域为R,求实数a的取值范围;?
(2)若函数f(x)的值域为R,求实数a的取值范围.?
【思路解析】 f(x)的定义域为R,即关于x的不等式ax 2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R要求u=ax 2+2x+1取遍一切正数,使u能取遍一切正数的条件是a>0,Δ≥0.
【解】 (1)f(x)的定义域为R,即关于x的不等式ax 2+2x+1>0的解集为R,?
当a=0时,此不等式变为2x+1>0,其解集不是R;?
当a≠0时,有 a>1.
∴a的取值范围为a>1.?
(2)f(x)的值域为R,即u=ax 2+2x+1能取遍一切正数a=0或0< a≤1.
∴a的取值范围为0≤a≤1.
16. 设函数f(x)=x 2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1),求f(log2x)的最小值及对应的x的值.
【思路解析】 关键是利用已知的两个条件求出a、b的值.?
【解】 由已知得log22a-log2a+b=b,?log2(a2-a+b)=2,即?
?log2a(log2a-1)=0,?a2-a+b=4,①?②?
由①得log2a=1,∴a=2.?
代入②得b=2.∴f(x)=x 2-x+2.?
∴f(log2x)=log22x-log2x+2=(log2x-) 2+.
∴当log2x=时,f(log2x)取得最小值,此时x=2.
17. 已知y=loga(2-ax)在区间[0,1]上是x的减函数,求a的取值范围.?
【思路解析】 本题的关键是要注意到真数与底数中两个参量a是一样的,可知a>0且a≠1,然后根据复合函数的单调性即可解决.
【解】 先求函数定义域:
由2-ax>0,得ax<2,
又a是对数的底数,
∴a>0且a≠1.∴x<.
由递减区间[0,1]应在定义域内,
可得>1,∴a<2.
又2-ax在x∈[0,1]上是减函数,?
∴y=loga(2-ax)在区间[0,1]上也是减函数.?
由复合函数单调性可知a>1,
∴118. 某县计划十年内产值翻两番,则产值平均每年增长的百分率为.(lg2=0.301 0, lg11.49=
1.060 2)
【思路解析】 设产值平均年增长率为x,则(1+x) 10=4.?
两边同取以10为底的对数得10lg(1+x)=2lg2.?
∴lg(1+x)= =0.0602
∴1+x=10 0.060 2.?
又∵lg11.49=1.060 2,?
∴11.49=10 1.060 2=10·10 0.060 2.
∴10 0.060 2=1.149.?
因此1+x=1.149,x=0.149=14.9%?.?
【答案】 14.9%?
19. 已知函数f(x)=2 x+1,则f -1(4)=__________.?
【思路解析】 由反函数定义域和值域间的对应关系知,f -1(4)的值即为f(x)=2 x+1=4时,自变量x对应的值.
【答案】 1
20. 已知函数f(x)=a x+k的图象过点(1,3),其反函数f -1(x)的图象过点(2,0),求f(x).?
【思路解析】 根据函数f(x)=a x+k的图象过点(1,3),可列出一个关于a和k的方程,再根据其反函数f -1(x)的图象过点(2,0),可知函数f(x)=a x+k的图象过点(0,2),这样就又可以列出一个关于a和k的方程.
【解】 依题意得a1+k=3,?a0+k=2,?
解得a=2,?k=1.?
∴f(x)=2x+1.
2.2 对数函数
知识导学
一般地,对于一个数a(a>0且a≠1),如果a的b次幂等于N,即ab=N,那么就称b是以a为底的N的对数,记作logaN=b,其中,a叫做对数的底数,N叫做真数.
在实际应用中,一定要注意指数式与对数式的等价性,即logaN=bab=N.
对数的运算性质就是把真数的乘、除、乘方降级为对数的加、减、乘运算.
一般地,我们称logaN=为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程.
有了对数的概念后,要求log0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.
有了常用对数和自然对数,再利用对数的运算性质,我们就可以求log0.840.5的值了.
对数恒等式:=N的证明也很简单,只要紧扣对数式的定义即可证明.
∵ab=N,∴b=logaN.
∴ab==N,
即=N.
如=5, =6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.
作对数函数的图象一般有两种方法:一是描点法,即通过列表、描点、连线的方法作出对数函数的图象;二是通过观察它和指数函数图象之间的关系,并利用它们之间的关系作图.
比较大小是对数函数性质应用的常见题型.当底数相同时,可利用对数函数的性质比较;当底数和指数不同时,要借助于中间量进行比较.比较两个对数式的大小,底相同时,可利用对数性质进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.
对数函数y=logax(a>0且a≠1)与指数函数y=ax(a>0且a≠1)互为反函数,这两个函数的图象关于直线y=x对称.
因此,我们只要画出和y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax的图象,然后根据图象特征得出对数函数的性质.
疑难导析
通过将对数函数与指数函数的图象进行对比,可以发现:当a>1或0 对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a>0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.
性质靠图象体现,图象靠性质总结.
数形结合不仅是我们研究函数的一个重要工具,同时也是我们在解题时的常用方法.借助图形的形象直观,可以迅速准确地得到相关问题的答案,尤其是选择题,能结合图象来思考,会事半功倍.
问题导思
对数换底公式口诀:
换底公式真神奇,换成新底可任意,
原底加底变分母,真数加底变分子.
对数函数的运算性质的助记口诀:
积的对数变加法,商的对数变为减,
幂的乘方取对数,要把指数提到前.
对数函数y=logax(a>0且a≠1)的性质的助记口诀:
对数增减有思路,函数图象看底数,
底数只能大于0,等于1来也不行,
底数若是大于1,图象从下往上增;
底数0到1之间,图象从上往下减.
无论函数增和减,图象都过(1,0)点.
比较两个对数型的数的大小是一种常见的题型,好好把握.
两个同底数的对数比较大小的一般步骤:
①确定所要考查的对数函数;
②根据对数底数判断对数函数增减性;
③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.
对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.
典题导考
绿色通道
利用数形结合的方法可以快速地比较两个对数的大小,有时也可以画出函数的略图.由此可见,学会一种思考方法比解决一道题目更重要.
典题变式 比较下列各组数中两个值的大小:
(1)log23.4,log28.5;
(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,a≠1).
答案:(1)log23.4(2)log0.31.8>log0.32.7;
(3)当a>1时,loga5.1当0loga5.9.
绿色通道
本题的求解中,分解化简和方程思想的运用在处理很多问题中具有一般性.
典题变式
1.已知3a=2,用a表示log34-log36.
答案:a-1.
2.已知log32=a,3b=5,用a、b表示log3.
答案: (a+b+1).
绿色通道
研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性.
典题变式
1.已知函数f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( )
A.GF B.G=F C.FG D.F∩G=
答案:A
2.求函数y=(-x2+4x+5)的定义域和值域.
答案:函数的定义域为{x|-13.已知f(x)=loga (a>0且a≠1).
(1)求函数的定义域;
(2)讨论函数的单调性;
(3)求使f(x)>0的x的取值范围.
解答:(1)定义域为(-1,1).
(2)当a>1时,f(x)为(-1,1)上的增函数;
当0(3)当a>1时,f(x)>0的解为(0,1);
当00的解为(-1,0).
绿色通道
画函数图象是研究函数变化规律的重要手段,画函数图象通常有两种方法:列表法和变换法.变换法有如下几种:
平移变换:y=f(x+a),将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;y=f(x)+a,将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位而得到.
翻折变换:y=|f(x)|,将y=f(x)的图象在x轴下方部分沿x轴翻折到x轴的上方,其他部分不变;y=f(|x|),它是一个偶函数,x≥0时,图象与y=f(x)的图象完全一样,当x≤0时,其图象与x≥0时的图象关于y轴对称.
对称变换:y=-f(x),它的图象与函数y=f(x)的图象关于x轴对称;y=f(-x),它的图象与y=f(x)的图象关于y轴对称;y=-f(-x),它的图象与y=f(x)的图象关于原点成中心对称.
伸缩变换:y=f(ax)(a>0),将y=f(x)图象上各点的横坐标压缩(a>1)或伸长(00),将y=f(x)图象上各点的横坐标不变,纵坐标压缩(01)到原来的a倍.
典题变式若loga2A.1答案:D
绿色通道
本题两小题的函数的定义域与值域正好错位.(1)中函数的定义域为R,由判别式小于零确保;(2)中函数的值域为R,由判别式不小于零确定.
典题变式设a≠0,对于函数f(x)=log3(ax2-x+a),
(1)若x∈R,求实数a的取值范围;
(2)若f(x) ∈R,求实数a的取值范围.
答案:(1)a>;
(2)02.2 对数函数
课堂探究
探究一 对数式与指数式的互化
1.logaN=b与ab=N(a>0,且a≠1)是等价的,表示a,b,N三者之间的同一种关系.可以利用其中两个量表示第三个量.
2.已知底数与指数或已知指数与幂时,通常用指数式求幂或底数;若已知底数与幂求指数,需用对数式,所以指数式与对数式的互化在幂的运算中经常用到.
【典型例题1】 将下列指数式与对数式互化:
(1)log216=4; (2) =-3;
(3)ln 10=2.303; (4)43=64;
(5)3-2=; (6)10-3=0.001.
思路分析:利用当a>0,且a≠1时,logaN=b?ab=N进行互化.
解:(1)24=16.
(2) -3=27.
(3)e2.303=10.
(4)log464=3.
(5)log3=-2.
(6)lg 0.001=-3.
探究二 利用对数式与指数式的关系求值
指数式ax=N与对数式x=logaN(a>0,且a≠1)表示了三个量a,x,N之间的关系,因而已知其中两个可求第三个:已知底数与指数,用指数式求幂;已知指数与幂,用指数式求底数;已知底数与幂,利用对数式表示指数.
【典型例题2】 求下列各式中x的值:
(1)4x=5·3x;
(2)log7(x+2)=2;
(3)log=x;
(4)logx27=;
(5)lg 0.01=x.
思路分析:利用指数式与对数式的关系求解.
解:(1)∵4x=5·3x,
∴=5,∴x=5,
∴x=.
(2)∵log7(x+2)=2,
∴x+2=72=49,∴x=47.
(3)∵-2=,
∴log=-2,∴x=-2.
(4)∵logx27=,∴=27,
∴x==32=9.
(5)∵lg 0.01=x,
∴10x=0.01=10-2,∴x=-2.
探究三 对数性质的应用
1.对数的性质:
(1)在指数式中N>0,故零和负数没有对数.
(2)设a>0,a≠1,则有a0=1.
∴loga1=0,即1的对数等于0.
(3)设a>0,a≠1,则有a1=a,
∴logaa=1,即底数的对数为1.
2.对数恒等式:
alogaN=N,该式叫做对数恒等式.
3.在对数的运算中,常用对数的性质和对数恒等式进行对数的化简与求值.
【典型例题3】 求下列各式中x的值:
(1)log3(log2x)=0; (2)log2(lg x)=1;
(3)log-1=x; (4)52-log53=x.
思路分析:利用logaa=1,loga1=0,alogaN=N(a>0,且a≠1)及指数式与对数式的关系解题.
解:(1)∵log3(log2x)=0,
∴log2x=1,∴x=21=2.
(2)∵log2(lg x)=1,
∴lg x=2,∴x=102=100.
(3)∵log-1=x,
∴(-1)x====-1,∴x=1.
(4)x=52-log53==.
2.2 对数函数
预习导航
课程目标
学习脉络
1.理解对数的概念,掌握对数的基本性质.
2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程.
一、对数
名师点拨 对对数的理解:
(1)对数式logaN可看作一种记号,表示关于x的方程ax=N(a>0,且a≠1)的解;也可以看作一种运算,即已知底为a(a>0,且a≠1),幂为N,求幂指数的运算,因此,对数式logaN又可看作幂运算的逆运算.
(2)用指数式来理解对数.对数式b=logaN表达的意义是ab=N.指数式、对数式中各个字母的名称变化如下表:
式子
名称
a
x
N
指数式
ax=N
底数
指数

对数式
x=logaN
底数
对数
真数
  (3)对数记号logaN中,a>0,且a≠1,N>0.
因为在ab=N中,a>0,且a≠1,所以在logaN中,a>0,且a≠1.
又因为正数的任何次幂都是正数,即ab>0(a>0),故N=ab>0.
(4)并不是所有的指数式都能直接改写成对数式,如(-2)2=4不能写成log-24=2,只有在a>0,且a≠1,N>0时,才有ab=N?b=logaN.
(5)因为对数式与指数式实际上是同一关系的不同表示形式,所以可以将对数问题转化为指数问题来解决.
自主思考 alogaN=N(a>0,且a≠1)成立吗?
提示:成立.这是因为:由ax=N,得x=logaN.将x=logaN代入ax=N,得alogaN=N.
二、常用对数和自然对数
1.常用对数:通常我们将以10为底的对数叫做常用对数,并把log10N记为lg_N.
2.自然对数:在科学技术中常使用以无理数e=2.718 28…为底数的对数,以e为底的对数称为自然对数,并把logeN记为ln_N.
2.2 对数函数
课堂探究
探究一 对数运算性质的应用
1.在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg 2=1-lg 5,lg 5=1-lg 2的运用.
2.对于底数相同的对数式的化简,常用的方法是:
(1)“收”,将同底的两对数的和(差)收成积(商)的对数;
(2)“拆”,将积(商)的对数拆成对数的和(差).
3.对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.
【典型例题1】 计算下列各式的值:
(1)log2+log212-log242;
(2)lg 52+lg 8+lg 5·lg 20+(lg 2)2.
思路分析:利用对数的运算性质进行计算.
解:(1)方法一:原式=log2=log2=-.
方法二:原式=log2+log2(22×3)-log2(2×3×7)=log27-log2(24×3)+2+log23--log23-log27=-×4-log23++log23=-2+=-.
(2)原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
=2(lg 5+lg 2)+lg 5+lg 2(lg 5+lg 2)
=2+lg 5+lg 2=2+1=3.
方法总结像这类对数的运算,主要有两种解答途径:一是将积(商或幂)的对数化为对数的和(差或系数),且真数最简;二是将对数的和差逆用运算性质化为积商的对数,但需各对数的系数相同.
探究二 换底公式的应用
对数的运算性质中等式的左边都是同底的对数,也就是逆用公式时,必须使对数同底,当对数的底数不相同时,这就要用换底公式把它们化为同底的.如果原式是几个对数的和,换底后,看能不能逆用性质;如果原式是几个对数的积,换底后,看能不能约分,进而化简对数式.
若题目中既有指数式又有对数式,通常将它们化为同一种形式.
【典型例题2】 计算下列各式的值:
(1)log89·log2732; (2)(log43+log83) .
思路分析:用换底公式将对数换为同底的对数后再化简求值.
解:(1)原式=·=·=.
(2)原式==·=·+·=+=.
【典型例题3】 已知log189=a,18b=5,求log3645.(用a,b表示)
思路分析:先利用指数式和对数式的互化公式,将18b=5化成log185=b,再利用换底公式,将log3645化成以18为底的对数,最后进行对数运算.
解:∵18b=5,∴b=log185.
∴log3645===
====.
探究三 对数的综合应用
对数的概念实质是给出了指数式与对数式间的关系,因此如果条件涉及指数幂的连等式时,常引入辅助变量,利用指数与对数间的关系,简化求解过程.
【典型例题4】 (1)设3x=4y=36,求+的值;
(2)若26a=33b=62c≠1,求证:+=.
思路分析:用对数式表示出x,y,a,b,c再代入所求(证)式.
(1)解:∵3x=4y=36,
∴x=log336,y=log436,
∴===2log363=log369,
===log364.
∴+=log369+log364=log3636=1.
(2)证明:设26a=33b=62c=k(k>0,且k≠1).
则6a=log2k≠0,3b=log3k≠0,2c=log6k≠0.
∴==6logk2,==3logk3,
==2logk6,
∴+=6logk2+2×3logk3=logk26+logk36
=logk66=6logk6=.
∴+=.
探究四 易错辨析
易错点 忽略对数的真数为正致错
【典型例题5】 解方程lg(x+1)+lg x=lg 6.
错解:∵lg(x+1)+lg x=lg[x(x+1)]=lg(x2+x),
∴lg(x2+x)=lg 6,
∴x2+x=6,解得x=2,或x=-3.
错因分析:错解中,去掉对数符号后方程x2+x=6与原方程不等价,产生了增根,其原因是x2+x=6中,x∈R,而原方程中,应有再验根即可.
正解:∵lg(x+1)+lg x=lg[x(x+1)]=lg 6,
∴x(x+1)=6,解得x=2,或x=-3,经检验x=-3不符合题意,∴x=2.
反思解对数方程时,要注意验根,以保证所得方程的根满足对数的真数为正数,底数为不等于1的正数.
2.2 对数函数
预习导航
课程目标
学习脉络
1.掌握对数的运算性质,并能运用运算性质化简、求值.
2.了解对数的换底公式及其应用.
3.初步掌握对数在生活中的应用.
一、对数的运算性质
条件
a>0,且a≠1,M>0,N>0
性质
loga(MN)=logaM+logaN
loga=logaM-logaN
logaMn=nlogaM(n∈R)
名师点拨 对对数的运算性质的理解:
(1)利用对数的运算性质可以把乘、除、乘方的运算转化为对数的加、减、乘运算,反之亦然.
(2)对于每一条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立.
(3)能用语言准确叙述对数的运算性质
loga(M·N)=logaM+logaN―→积的对数等于对数的和.
loga=logaM-logaN―→商的对数等于对数的差.
  logaMn=nlogaM(n∈R)―→真数的n次幂的对数等于对数的n倍.
自主思考 若M,N同号,则式子loga(M·N)=logaM+logaN成立吗?
提示:不一定成立.如log2[(-2)×(-7)]是存在的,但log2(-2)与log2(-7)是不存在的,故log2[(-2)×(-7)]≠log2(-2)+log2(-7).
二、换底公式
logab= (a>0,且a≠1;c>0,且c≠1;b>0).
名师点拨1.用换底公式推得的两个常用结论:
(1)logab·logba=1(a>0,且a≠1;b>0,且b≠1);
(2)logambn=logab(a>0,且a≠1;b>0;m≠0).
2.换底公式的作用是把不同底的对数化为同底的对数.
2.2 对数函数
课堂探究
探究一 对数函数的概念
判断一个函数是对数函数必须是形如y=logax(a>0,且a≠1)的形式,即必须满足以下条件:
(1)系数为1.
(2)底数为大于0且不等于1的常数.
(3)对数的真数仅有自变量x.
【典型例题1】 下列函数中,哪些是对数函数?
(1)y=logax2(a>0,且a≠1);
(2)y=log2x-1;
(3)y=2log8x;
(4)y=logxa(x>0,且x≠1);
(5)y=log5x.
思路分析:根据对数函数的定义进行判断.
解:只有(5)为对数函数.
(1)中真数不是自变量x,故不是对数函数;
(2)中对数式后减1,故不是对数函数;
(3)中log8x前的系数是2,而不是1,
故不是对数函数;
(4)中底数是自变量x,而非常数a,故不是对数函数.
探究二 对数函数的图象问题
1.画对数函数y=logax的图象时,应牢牢抓住三个关键点(a,1),(1,0),.
2.对数函数图象与直线y=1的交点横坐标越大,则对应的对数函数的底数越大.
3.函数y=logax(a>0,且a≠1)的底数变化对图象位置的影响
观察图象,注意变化规律:
(1)上下比较:在直线x=1的右侧,当a>1时,a越大,图象越靠近x轴,当0(2)左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大.
【典型例题2】 画出下列函数的图象,并根据图象写出函数的定义域与值域以及单调区间:
(1)y=log3(x-2);(2)y=|logx|.
解:(1)函数y=log3(x-2)的图象如图①.其定义域为(2,+∞),值域为R,在区间(2,+∞)上是增函数.
图①
(2)y=|logx|=其图象如图②.
图②
其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减函数,在(1,+∞)上是增函数.
规律总结 1.函数y=loga(x+m)(a>0,且a≠1)的图象可由函数y=logax的图象向左(m>0)或向右(m<0)平移|m|个单位而得到.
2.含有绝对值的函数的图象变换是一种对称变换.一般地,y=|f(x)|的图象是保留y=f(x)的图象在x轴上方的部分,并把x轴下方的部分以x轴为对称轴翻折到x轴上方而得到的.
探究三 与对数函数有关的定义域问题
求与对数函数有关的函数定义域时,除遵循前面求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意底数.
【典型例题3】 求下列函数的定义域:
(1)y=;  (2)y=;
(3)y=.
解:(1)要使函数式有意义,则lg(2-x)≥0,
∴∴x≤1.
故函数的定义域为(-∞,1].
(2)要使函数式有意义,则log3(3x-2)≠0,

∴x>,且x≠1.
故函数的定义域为∪(1,+∞).
(3)要使函数有意义,则有解得x<4,且x≠3,
故函数的定义域为(-∞,3)∪(3,4).
探究四 易错辨析
易错点 求函数的定义域时先对解析式变形
【典型例题4】 已知函数f(x)=log5(x-1)2,求f(x)的定义域.
错解:f(x)=2log5(x-1),要使f(x)有意义,则x-1>0,解得x>1,则f(x)的定义域是(1,+∞).
错因分析:错解中,由于对f(x)的解析式变形后再求定义域,导致出错.
正解:要使f(x)有意义,则(x-1)2>0,解得x≠1,则f(x)的定义域是(-∞,1)∪(1,+∞).
反思求函数f(x)的定义域时,不能对f(x)的解析式变形,否则会导致求出的定义域“变大”或“缩小”.
2.2 对数函数
预习导航
课程目标
学习脉络
1.掌握对数函数的概念,会判断对数函数.
2.初步掌握对数函数的图象和性质.
3.能利用对数函数的性质解决与对数函数有关的定义域、定点问题.
一、对数函数
名师点拨 1.对对数函数定义的理解:
(1)由于指数函数y=ax中的底数a满足a>0,且a≠1,则对数函数y=logax中的底数a也必须满足a>0,且a≠1.
(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x.
2.对数函数的图象:
对数函数的图象,当x趋近于0时,无限接近于y轴,但不相交.
作直线y=1与函数y=logax的图象相交,则交点横坐标为a.
自主思考1函数y=logax(a>0,且a≠1)的图象与函数y=logx(a>0,且a≠1)的图象有怎样的关系?
提示:观察课本第70页图2.2-3知,两函数的图象关于x轴对称.事实上,函数y=logax图象上任一点P(x,y)关于x轴的对称点P′(x,-y)都在函数y=logx的图象上,所以这两个函数的图象关于x轴对称.
自主思考2a,b在什么情况下,logab>0?什么情况下,logab<0?
提示:观察对数函数图象知,
当a,b∈(1,+∞)或a,b∈(0,1)时,logab>0.
当a∈(0,1),b>1或a>1,b∈(0,1)时,logab<0.
二、反函数
对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,且a≠1)互为反函数.它们的图象关于直线y=x对称.
名师点拨 对数函数和指数函数的区别与联系
将对数函数和指数函数的性质对比列表如下:
名称
指数函数
对数函数
解析式
y=ax(a>0,且a≠1)
y=logax(a>0,
且a≠1)
定义域
(-∞,+∞)
(0,+∞)
值域
(0,+∞)
(-∞,+∞)
单调性
当a>1时为增函数,当0函数值的变化情况
当a>1时:
若x>0,则y>1;
若x=0,则y=1;
若x<0,则0当a>1时:
若x>1,则y>0;
若x=1,则y=0;
若0当0若x>0,则0若x=0,则y=1;
若x<0,则y>1
当0若x>1,则y<0;
若x=1,则y=0;
若0图象
y=ax的图象与y=logax的图象关于直线y=x对称
2.2 对数函数
课堂探究
探究一利用对数函数的单调性比较大小
对数值比较大小的常用方法:
(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论;
(2)如果不同底,一种方法是化为同底的,另一种方法是寻找中间量;
①如果不同底但同真数,可利用图象的高低与底数的大小解决或利用换底公式化为同底的再进行比较;
②若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.
【典型例题1】 比较下列各组中两个值的大小:
(1)log31.9,log32;
(2)log23,log0.32;
(3)logaπ,loga3.141(a>0,且a≠1).
思路分析:(1)构造函数f(x)=log3x,利用其单调性比较大小;
(2)分别比较两对数与0的大小;
(3)分类讨论底数a的取值范围.
解:(1)(单调性法)因为f(x)=log3x在(0,+∞)上是增函数,且1.9<2,则f(1.9)<f(2),
所以log31.9<log32.
(2)(中间量法)因为log23>log21=0,log0.32<log0.31=0,
所以log23>log0.32.
(3)(分类讨论法)当a>1时,函数y=logax在定义域上是增函数,则有logaπ>loga3.141;
当0<a<1时,函数y=logax在定义域上是减函数,则有logaπ综上所述,当a>1时,logaπ>loga3.141;
当0<a<1时,logaπ<loga3.141.
探究二 解对数不等式
解对数不等式,就是利用对数函数的单调性,将对数符号去掉,转化为一般不等式(组)求解.常见不等式可分为以下三类:
(1)形如logaf(x)>logag(x),当a>1时,该不等式等价于当0(2)形如logaf(x)>b,当a>1时,不等式等价于f(x)>ab;当0(3)形如logaf(x)+logag(x)>logah(x).
当a>1时,不等式等价于
当0当不等式中对数的底数有字母时,要分类讨论.
【典型例题2】 解下列关于x的不等式:
(1)log (x-2)>-2;
(2)loga(x-2)>loga(2x-8).
思路分析:利用对数函数的单调性转化为一般不等式(组)求解.
解:(1)由log (x-2)>-2,得log (x-2)>log4,
∴∴2故原不等式的解集为{x|2(2)当a>1时,不等式等价于即4当06.
综上所述,当a>1时,不等式的解集为{x|4当06}.
探究三 对数函数性质的综合应用
1.判断函数的奇偶性,首先应求出定义域,看是否关于原点对称.
2.对于类似于f(x)=logag(x)的函数,利用f(-x)±f(x)=0来判断奇偶性较简便.
3.求函数的单调区间有两种思路:
(1)易得到单调区间的,可用定义法来求证;
(2)利用复合函数的单调性求得单调区间.
4.复合函数的单调性按照“同增异减”的原则来判断,对数型复合函数的单调性可用以下方法判断:
设y=logaf(x)(a>0,且a≠1),
首先求满足f(x)>0的x的范围,即函数的定义域.假设f(x)在定义域的子区间I1上单调递增,在子区间I2上单调递减,则
(1)当a>1时,原函数与内层函数f(x)的单调区间相同,即在I1上单调递增,在I2上单调递减;
(2)当0【典型例题3】 已知函数f(x)=loga (a>0,且a≠1),
(1)求f(x)的定义域;
(2)判断函数的奇偶性和单调性.
思路分析:此函数是由y=logau,u=复合而成,求函数的性质应先求出定义域,再利用有关定义,去讨论其他性质.
解:(1)要使此函数有意义,则有或解得x>1或x<-1,此函数的定义域为(-∞,-1)∪(1,+∞),关于原点对称.
(2)f(-x)=loga=loga
=-loga=-f(x).
∴f(x)为奇函数.
f(x)=loga=loga,
函数u=1+在区间(-∞,-1)和区间(1,+∞)上单调递减.
∴当a>1时,f(x)=loga在(-∞,-1),(1,+∞)上单调递减;
当0探究四 易错辨析
易错点 忽略对底数的讨论致错
【典型例题4】 函数y=logax(a>0,且a≠1)在[2,4]上的最大值与最小值的差是1,求a的值.
错解:因为函数y=logax(a>0,且a≠1)在[2,4]上的最大值是loga4,最小值是loga2,
所以loga4-loga2=1,
即loga=1,所以a=2.
错因分析:错解中误以为函数y=logax(a>0,且a≠1)在[2,4]上是增函数.
正解:(1)当a>1时,函数y=logax在[2,4]上是增函数,所以loga4-loga2=1,即loga=1,所以a=2.
(2)当0<a<1时,函数y=logax在[2,4]上是减函数,所以loga2-loga4=1,即loga=1,所以a=.
由(1)(2),知a=2或a=.
反思在解决底数中包含字母的对数函数问题时,要注意对底数进行分类讨论,一般考虑a>1与0<a<1两种情况.
2.2 对数函数
预习导航
课程目标
学习脉络
1.理解对数函数的单调性,并能利用单调性比较大小.
2.能利用对数函数的单调性解简单的对数不等式.
3.能解答简单的对数综合问题.
一、对数函数的图象和性质
对数函数y=logax(a>0,且a≠1)的图象和性质如下表所示:
底数
a>1
0图象
性质
定义域:(0,+∞)
值域:(-∞,+∞)
当x=1时,y=0,即图象恒过定点(1,0)
当x>1时,y>0;当0当x>1时,y<0;当00
在(0,+∞)上是增函数
在(0,+∞)上是减函数
  二、对数函数的反函数
对数函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1).
自主思考1函数y=logax(a>0,且a≠1)的图象与y=logx(a>0,且a≠1)的图象有什么关系?
提示:函数y=log2x与y=logx的图象,函数y=log3x与y=logx的图象如图所示,结合图象可知函数y=logax(a>0,且a≠1)的图象与y=logx(a>0,且a≠1)的图象关于x轴对称.
其实y=logx===-logax,因为y=logax与y=-logax的图象关于x轴对称,所以函数y=logax与y=logx的图象也关于x轴对称.
自主思考2底数对对数函数图象的影响?
提示:在同一坐标系中画出以下各组函数的图象,观察并写出你的发现.
(1)y=log2x,y=log3x,y=log4x,y=lg x,如图①所示.
(2)y=logx,y=logx,y=logx,y=logx,如图②所示.

 

观察结果:对于第一组:y=log2x,y=log3x,y=log4x,y=lg x,其图象的共同特征是上升的;对于第二组,其图象的共同特征是下降的.
结论:①当a>1时,图象上升,自变量x越大,函数值y就越大;当x∈(0,1)时,y<0,当x∈(1,+∞)时,y>0;自变量取同一值时,底数a越大,图象就越接近x轴,即当k>1时,有log2k>log3k>log4k>lg k,当0②当00,当x∈(1,+∞)时,y<0;自变量取同一值时,底数a越小,图象越接近x轴,即当k>1时,logklogk>logk>logk.
2.3 幂函数
互动课堂
疏导引导
一、幂函数的定义?
一般地,函数y=xα叫做幂函数,其中,x是自变量,α是常数.?
疑难疏引
1.我们只讨论α为有理数时的简单的幂函数.虽然y=x、y=x 2是幂函数,但并不是所有的一次函数、二次函数都是幂函数,如:y=x+1、y=2x 2+1都不是幂函数,它们并不满足幂函数的定义,但它们是与幂函数相关联的函数,它们是由幂函数与常数经过算术运算得到的.幂函数的定义域和值域是由它的幂指数来确定的,幂指数不同,定义域和值域也不同.
掌握幂函数的关键一定要明确“形如y=xα的函数”这句话的重要作用.
2.幂函数的定义域比较复杂,应分类进行掌握:?
(1)当指数n是正整数时,定义域是R.?
(2)当指数n是正分数时,设n= (p、q是互质的正整数,q>1),则x n=x=.
如果q是奇数,定义域是R;?
如果q是偶数,定义域是[0,+∞).?
(3)当指数n是负整数时,设n=-k, x n=,显然x不能为零,所以定义域是{x|x∈R且x≠0}.
(4)当指数n是负分数时,设n=-(p、q是互质的正整数,q>1),则x n= =.
如果q是奇数,定义域是{x|x∈R,且x≠0};?
如果q是偶数,定义域是(0,+∞).
3.幂函数与指数函数的区别:虽然幂函数和指数函数的表达式都是指数式的形式,但二者的定义域不同,即指数函数y=a x中,指数是自变量,而幂函数y=xα中,底数是自变量.当然,由此可见,二者的对应关系和值域也不同.
二、幂函数的图象和性质?
如图所示,幂函数有如下性质:?
1.所有幂函数在(0,+∞)上都有定义,并且图象都通过点(1,1);
2.如果a>0,则幂函数的图象通过原点并且在区间[0,+∞)上是增函数;
3.如果a<0,则幂函数在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴.?
疑难疏引
研究幂函数的图象与性质可通过对典型的幂函数y=x 2、y=x 3及y=x的图象研究归纳y=xn(n>0)的图象特征和函数性质,通过对幂函数y=x -2、y=x -3及y=x-的图象研究归纳y=xn(n<0)的图象特征和函数性质.需要注意的有:?
(1)研究幂函数的性质时,通常将分式指数幂化为根式形式,负整数指数幂化为分式形式再去进行讨论.?
(2)对于幂函数y=x n(n>0),我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即n<0,01三种情况下曲线的基本形状,还要注意n=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆“正抛物负双曲,大竖直小横铺”,即n>0(n≠1)时图象是抛物线型;n<0时图象是双曲线型;n>1时图象是竖直抛物线型;0记忆口诀:?
如何分析幂函数,记住图象是关键,?
虽然指数各不同,分类之后变简单,?
大于0时抛物线,小于0时双曲线,?
还有0到1之间,抛物开口方向变,?
不仅开口向右方,原来图象取一半.?
函数奇偶看指数,奇母奇子奇函数,?
奇母偶子偶函数,偶母非奇偶函数.?
●案例1比较下列各组数的大小.?
(1)3.14与π;?
(2)(-)-与(-) -.?
【探究】 指数相同,可以根据幂函数的单调性判断.(1)由于幂函数y=x(x>0)单调递减且3.14<π,∴3.14>π.?
(2)由于y=x-这个幂函数是奇函数,?
∴f(-x)=-f(x).?
因此,(- ) -=-() -,(-) -=-() -.?
而y=x-(x>0)单调递减,且<,
∴() ->() --() -<-() -,即(-) -<(-) -.?
【溯源】 幂函数中的比较大小问题特别常见,主要是考查幂函数的概念和基本性质中的单调性,在解答这部分内容的考题时,数形结合是最佳的选择,如果是选择题则主要有两种思考方式:一种是直接肯定式的思考方式,另一种是间接否定式的思考方式.?
三、幂函数的实际应用?
●案例2 某工厂从t年到t+2年新产品的成本共下降了51%,若两年下降的百分率相同,则每年下降的百分率为(  )
A.30%
B.25.5%
C.24.5%
D.51%
【探究】 本题考查幂函数的实际应用,涉及到平均增长率公式的应用和参数的思想,题设中没有年份和成本的具体数,学生要敢于设未知参数.
设t年的成本为a,每年下降的百分率为x,则t+2年的成本为a(1-x) 2,
∴=51%,解得x=30%.
因此,选A.
【溯源】 依据幂函数去解决有关增长率问题是今后考查的一个重点内容,其解题的关键是如何建立恰当的数学模型.
活学巧用
1. 已知函数:①y=x-1;②y=x2+2x;③y=2x;?④y=x-;⑤y=x0;⑥y=2x中,是幂函数的有.?
【思路解析】 由于幂函数中,变量的系数是1,而且没有其他的与之相加减的项,所以容易判断答案.另外特别注意幂函数和指数函数的区别:指数函数y=a x中,指数是自变量,而幂函数y=xα中,底数是自变量.
【答案】 ④⑤
2. 当m为何值时,幂函数y=(m 2-5m+6)x m2-2m-3的图象同时通过点(0,0)和(1,1)??
【思路解析】 因为是幂函数,则m 2-5m+6=1,又过(0,0)和(1,1)点,则m 2-2m-3>0.
【答案】 ∵y=(m 2-5m+6)x m2-2m-3是幂函数,?
∴m 2-5m+6=1,得m=.
又∵函数图象过(0,0)和(1,1)点,?
∴m 2-2m-3>0,则有(m-1) 2>4,得m>3或m<-1.
∴m= (舍去),即m=.
3. 分别写出幂函数y=x和y=x-的定义域.
【思路解析】 本题主要考查了分数指数幂的相关知识,可以把它们化为根式形式,然后再进行观察得到相应的结果.因为y=x =x,所以要想此函数有意义,则x≥0,又因为y=x-=,所以可得到x>0.另外要注意到要表达成集合的形式.
【答案】 {x| x≥0},{x| x>0}.
4.下列4个幂函数,在(-∞,0)上不是增函数的是(  )?
A.y=x
B.y=x3
C.y=x-
D.y=x-
【思路解析】 根据幂函数的性质知,函数y=x在R上是单调递增的,
∴在(-∞,0)上也是增函数;
函数y=x3在R上是单调递增的,
∴在(-∞,0)上也是增函数;函数y=x-在(-∞,0)上是单调递增的,在R +上是单调递减的;
函数y=x-的定义域是R +,在(-∞,0)上没有定义,
∴函数y=x-在(-∞,0)上不是增函数.综上所述,选D.
【答案】 D
5. 函数y=(3x-2)+(2-3x)-的定义域为.
【思路解析】 函数的定义域就是使函数有意义的自变量的取值范围,本题中有两个限制条件,(3x-2)的底数非负,(2-3x)-的底数非零.
依题意得x>.
【答案】 (,+∞)
6. 已知函数y=xa,y=xb,y=xc的图象如图所示,则a、b、c的大小关系为(  )?
A.cB.aC.bD.c【思路解析】 ∵幂函数在第一象限内为增函数时,指数为正,为减函数时,指数为负,∴a、b为正,c<0.又∵当指数为正,底数大于1且相同时,指数较大的图象在上方,由图象可知a>b.综上,a>b>c.因此,选A.
【答案】 A
7. 已知幂函数y=x n1,y=x n2,y=x n3,y=x n4在第一象限内的图象分别是C 1、C 2、C 3、C 4(如图),则n 1、n 2、n 3、n 4、0、1的大小关系是.?
【思路解析】 结合幂函数在第一象限的图象来判断.?
【答案】 n 18. 若(a+1)-<(3-2a) -,则a的取值范围是__________.
【思路解析】 因为函数y=x在[0,+∞)上单调递增,所以y=x-在(0,+∞)上单调递减.
所以解得【答案】 (,)
9. 某公司产值最初为m万元,以后连续三年持续增长,这三年的增长率分别为a、b、c,求这三年的平均增长率.?
【思路解析】 第一年的产值为m(1+a),第二年的产值为m(1+a)(1+b),第三年的产值为?m(1+a)(1+b)(1+c),如果设平均增长率为x,则第三年的产值也为m(1+x)3.?
【解】 设这三年的平均增长率为x,
依题意得m(1+x)3=m(1+a)(1+b)(1+c).?
解得x=-1.
答:这三年的平均增长率为x=-1.
2.3 幂函数
知识导学
我们只讨论幂指数为有理数时的简单的幂函数.虽然y=x、y=x2是幂函数,但并不是所有的一次函数、二次函数都是幂函数,如:y=x+1、y=2x2+1都不是幂函数,它们并不满足幂函数的定义,但它们是与幂函数相关联的函数,是由幂函数与常数经过算术运算得到的.对于幂函数的定义域和值域是由它的幂指数来确定的,幂指数不同,定义域和值域也不同.
研究幂函数的图象与性质可通过对典型的幂函数y=x2、y=x3及y=的图象研究归纳y=xn(n>0)的图象特征和函数性质,通过对幂函数y=x-2、y=x-3及y=的图象研究归纳y=xn(n<0)的图象特征和函数性质.需要注意的有:
(1)研究幂函数的性质时,通常将分式指数幂化为根式形式,负整数指数幂化为分式形式再去进行讨论.
(2)对于幂函数y=xn(n>0),首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即n<0,01三种情况下曲线的基本形状,还要注意n=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆“正抛物负双曲,大竖直小横铺”,即n>0(n≠1)时图象是抛物线型;n<0时图象是双曲线型;n>1时图象是竖直抛物线型;0图2-3-1
记忆口诀:
如何分析幂函数,记住图象是关键,
虽然指数各不同,分类之后变简单,
大于0时抛物线,小于0时双曲线,
还有0到1之间,抛物开口方向变,
不仅开口向右方,原来图象取一半.
函数奇偶看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数.
疑难导析
对于五种常见的幂函数y=x,y=x2,y=x3,y=,y=x-1,要熟悉其图象、性质,做题时要明确题目给出的是哪种类型的幂函数,以便应用图象及性质解题.
当n取不同的有理数时,幂函数y=xn的定义域:
当n∈N*时,定义域为R;
当n=0时,定义域为{x|x≠0};
当n为负整数时,定义域为{x|x≠0};
当n= (p、q∈N*,q>1,且p、q互质)时,
①若q为偶数,则定义域为[0,+∞);
②若q为奇数,则定义域为R;
当n=- (p、q∈N*,q>1,且p、q互质)时,
①若q为偶数,则定义域为(0,+∞);
②若q为奇数,则定义域为{x|x≠0}.
问题导思
分数指数幂与根式只是形式不同,其意义是相同的,对正分数指数幂的理解可从以下两个层次去认识.
(1)给定正实数a,等于任意给定的正整数n,存在唯一的正实数b,使得bn=a.这样,我们把这个存在唯一的正实数b,记作b=;(2)给定正实数a,对于任意给定的正整数n、m,存在唯一的正实数b,使得bn=am,我们规定b叫做a的次幂,记作b==.
对于负分数指数幂,可按a-n=去理解.
典题导考
黑色陷阱
忘记幂函数底数需大于0,将导致解题失误.
典题变式当x∈(1,+∞)时,函数y=xα的图象恒在直线y=x的下方,则α的取值范围是…( )
A.α<1 B.0<α<1 C.α>0 D.α<0
答案:A
绿色通道
解此题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题就简单.
典题变式T1=(,T2=(,T3=(,则下列关系式正确的是( )
A.T1C.T2答案:D
绿色通道
幂函数的图象在第一象限的排列顺序与幂指数的大小之间存在一定的对应关系,幂函数的图象在直线x=1的右侧,由低到高,幂指数α由小变大;在y轴与直线x=1之间,由低到高,幂指数α由小变大.另外还应注意幂指数的取值对幂函数图象位置的影响:
(1)当α=0时,图象是直线y=1.
(2)当α是正奇数时,图象分布在第一和第三象限;当α是正偶数时,图象分布在第一和第二象限.
(3)当α为一个既约正分数〔p、q为正整数,(p,q)=1,q>1〕,
若q为奇数,p也是奇数,则图象分布在第一和第三象限;若q为奇数,p为偶数,则图象分布在第一和第二象限;若q为偶数,p是奇数,则图象分布在第一象限.
(4)当α为负奇数时,图象分布在第一和第三象限;当α为负偶数时,图象分布在第一和第二象限;
(5)当α为负分数时,类似于(3)可设α=-〔p、q为正整数,(p,q)=1,q>1〕,情况和(3)一样.
幂指数α>0时,图象全是“抛物线型”,而幂指数α<0时,图象全是“双曲线型”.
典题变式当0A.h(x)C.g(x)答案:D
黑色陷阱
本题容易发生的错误:一是函数概念不清(该函数是以x为自变量的函数);二是在将函数式变形的过程不是等价变形,导致变形后的函数也不再是原有的函数了.
典题变式 (1)求函数y=(x+2)-2的定义域、值域.讨论当x增大时,函数值如何变化?并画出图象;
(2)问上述函数的图象与函数y=x-2的图象有何关系?
思路分析:
根据幂函数的性质求解.
答案:(1){x|x∈R且x≠-2};R+.当x<-2时,函数值y随x的增大而增大,当x>-2时,y随x的增大而减小.
(2)将y=x-2的图象向左平移2个单位,即得到y=(x+2)-2的图象.
绿色通道
据图象特征或性质求解幂函数解析式,需熟练掌握基本幂函数(y=x上标±2,y=x上标±1等)的图象和性质,特别地,y=x0勿漏.
典题变式 函数f(x)=(k2+k),当k=_______时成正比例函数,当k=_______时成反比例函数,当k=_______时为幂函数.
答案:1± 2
2.3 幂函数
课堂导学
三点剖析
一、幂函数的概念
【例1】 请在下列的各幂函数与各图象之间建立能符合实际情况的一一对应.
(1)y=;(2)y=x-2;
(3)y=;(4)y=x-1;
(5)y=;(6)y=;
(7)y=;(8)y=.
解析:由幂函数的图象规律可得
(1)⑤;(2)③;(3)①;(4)⑦;(5)②;(6)⑨;(7)④;(8)⑥.
温馨提示
幂函数图象比较复杂,可从如下几个方面去考虑作其草图:(1)在第一象限的图象大致形状与位置:当n<0,其图象为双曲型,过点(1,1),但不过(0,0)点.其形状如图①所示;当01时图象为抛物线型,过(0,0),(1,1)两点,其形状如图④所示.
(2)图象在第一象限的排队情况,在x=1的右侧,沿箭头的方向,幂指数逐渐减小.如图:
【例2】比较大小:
(1)____________;
(2)0.71.5_____________________0.61.5;
(3)_____________;
(4)0.15-1.2_____________0.17-1.2;
(5)0.20.6_____________________0.30.4;
(6)_______________.
解析:(1)—(4)可直接应用幂函数的单调性比较大小.(1)<;(2)>;(3)<;(4)>.
由于(5)(6)中的两数的底数和指数均不相同,需借助“中间量”,同时利用幂函数和指数函数的单调性比较大小.
(5)0.20.6<0.30.6<0.30.4;(6)=<<.
答案:(1)< (2)> (3)< (4)> (5)< (6)<
温馨提示
利用幂函数的单调性比较两个函数值的大小一般有如下三种情况:
(1)同指数,不同底,可用幂函数的单调性直接比较大小.
(2)同底不同指数的,可用幂函数图象的排队情况进行比较.
(3)不同底,不同指数的,有时需要引入“中间量”进行比较.
二、幂函数的图象和性质
【例3】函数f(x)=(m2-m-1)是幂函数,且在x∈(0,+∞)上是减函数,则实数m的取值集合是( )
A.{m|m=-1或m=2} B.{m|-1思路分析:由幂函数定义,只有具有y=xα形式的函数才是幂函数,因此所给函数为幂函数,必须有m2-m-1=1.又f(x)在(0,+∞)上是减函数,则有m2-2m-3<0,由此确定m的取值.
解:由条件知
解得m=2.
答案:C
【例4】若幂函数的图象经过点(4,),则f()=____________________.
思路分析:根据图象上的点求解析式的思路就是解方程确定α.
解:设幂函数为y=xα,点(4,)满足解析式,则=4α,即2-1=22α,
∴α=-.
∴f(x)=,f()==()-1=4.
温馨提示
本题是利用待定系数法确定解析式.
各个击破
类题演练1
幂函数y=xa在第一象限的图象如下图所示,a取2,-2,,-四个值,则相应的曲线C1,C2,C3,C4的a值依次为( )
A.-2,-,,2 B.2,,-,-2 C.-,-2,2, D.2,,-2,-
解析:由上面的图象规律可知应选B.
答案:B
变式提升1
(1)如下图,曲线C1与C2分别是函数y=xm和y=xn在第一象限的图象,则下列结论正确的是( )
A.nm>0 D.m>n>0
解析:由幂函数的图象规律可知n<0,且m<0,再根据其排队情况可知:n答案:A
(2)若幂函数y=xα(α∈R)的图象在0解析:由图象可知0<α<1,α=0,α<0三种情况都符合条件,故α<1.
答案:α<1
类题演练2
将下列各组数从小到大排列起来,并说明理由.
(1),,;
(2),,;
(3),,.
解析:(1)∵=>0,<0,又y=在(0,+∞)上单调递增,
∴<<.
(2)∵>1,0<<1,<0,
∴<<.
(3)=,==,
∵y=在(0,+∞)上单调递减.
又>0.5>0.4
∴<<.
变式提升2
函数f(x)=(a-b)+b-3是幂函数,比较f(a)与f(b)的大小.
解析:∵函数f(x)是幂函数,
∴解得∴f(x)=.
∵函数f(x)=在第一象限内是增函数,且a>b>0,∴f(a)>f(b).
类题演练3
如果幂函数y=(m2-3m+3)的图象不过原点,则m的取值范围为( )
A.-1≤m≤2 B.m=1或m=2 C.m=2 D.m=1
解析: 解得m=1.
答案:D
变式提升3
已知幂函数y=(m∈Z)在区间(0,+∞)上是减函数.求y的解析式并讨论单调性和奇偶性.
解析:由幂函数的性质知:
m2-2m-3<0,即-1 ∴m=0,1,2.
当m=0时,y=x-3,定义域为(-∞,0)∪(0,+∞).此时函数在(0,+∞)和(-∞,0)上都是单调递减函数,又(-x)-3=-x-3,
∴函数y=x-3是奇函数.
当m=1时,y=x-4,定义域为(-∞,0)∪(0,+∞).此时函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,又(-x)-4=x-4.故为偶函数.
当m=2时,y=x-3同m=0时的结论.
类题演练4
若幂函数图象上有一点为(9,3),求f(64).
解析:设y=xα,则3=9α,
∴α=,
∴y=,
∴f(64)=8.
答案:8
变式提升4
m为何值,y=(m2+2m)为反比例函数.
解析:
解得m=-1或m=0(舍去).
答案:-1
2.3 幂函数
预习导航
课程目标
学习脉络
1.了解幂函数的概念,会求幂函数的解析式.
2.结合幂函数y=x,y=x2,y=x3,y=,的图象,掌握它们的性质.
3.能利用幂函数的单调性比较指数幂的大小.
幂函数
名师点拨 幂函数在第一象限内的指数变化规律:在第一象限内直线x=1的右侧,图象从上到下,相应的指数由大变小,即指数大的在上边.
自主思考1幂函数y=xα与指数函数y=ax(a>0,且a≠1)一样吗?
提示:不一样.幂函数y=xα的底数是自变量,指数是常数,而指数函数正好相反,在指数函数y=ax中,底数是常数,指数是自变量.
自主思考2(1)在幂函数y=xα中,如果α是正偶数(α=2n,n为非零自然数),如α=2,4,6,…,这一类函数具有哪些重要性质?
(2)在幂函数y=xα中,如果α是正奇数(α=2n-1,n为非零自然数),如α=1,3,5,…,这一类函数具有哪些重要性质?
(3)幂函数y=xα,x∈[0,+∞),α>1与0<α<1的图象有何不同?
提示:(1)重要性质:①定义域为R,图象都经过(-1,1),(0,0),(1,1)三点;②函数的图象关于y轴对称,即函数为偶函数;③函数在(-∞,0]上为减函数,在[0,+∞)上为增函数.
(2)重要性质:①定义域、值域为R,图象都过(-1,-1),(0,0),(1,1)三点;②函数的图象关于原点对称,即函数为奇函数;③函数在R上单调递增.
(3)两者图象的区别和联系:无论α>1还是0<α<1,函数y=xα在[0,+∞)上的图象都是单调递增的,但在[0,1]上前者比后者增得慢,在(1,+∞)上前者比后者增得快.
3.1.1 函数与方程
课堂导学
三点剖析
一、函数的零点概念及求法
【例1】 求函数y=-x2-2x+3的零点,并指出y>0,y<0时,x的取值范围.
解析:解二次方程-x2-2x+3=0得,
x1=-3,x2=1,
∴函数y=-x2-2x+3的零点为-3,1.
y=-x2-2x+3=-(x+1)2+4,画出这个函数的简图,从图象上可以看出当-3<x<1时,y>0.当x<-3或x>1时,y<0.
∴函数y=-x2-2x+3的零点是-3,1.
y>0时,x的取值范围是(-3,1);y<0时,x的取值范围是(-∞,-3)∪(1,+∞).
温馨提示
函数的零点即对应方程的根.本题借助零点和二次函数的图象得出不等式ax2+bx+c>0(<0)的解集.
二、函数零点的应用
【例2】 已知函数f(x)=x3-8x+1在区间[2,3]内的一部分函数值如下表所示.根据此表及图象,你能探究出方程x3-8x+1=0的一个实根所在的区间吗?(精确到0.1)
x
2
2.1
2.2
2.3
2.4
2.5
f(x)
-7
-6.539
-5.952
-5.233
-4.376
-3.375
x
2.6
2.7
2.8
2.9
3

f(x)
-2.224
-0.917
0.552
2.189
4

解析:观察表格并利用描点法作出f(x)的大体图象,发现当自变量x由2变到3时,其函数值由-7逐渐接近于0,再变为正值,在此变化过程中,由于y=f(x)的图象是一条连续不断的曲线,所以必存在一点x0使得f(x)=0,即x03-8x0+1=0,此x0所在的区间为[2.7,2.8].
温馨提示
判断零点所在的区间方法有两个:
1.f(a)·f(b)<0,且图象在[a,b]上连续不断.
2.利用函数图象,直接观察判断,该方法关键是准确作图,简单函数的图象可以由“列表→描点→连线”而完成,复杂函数的图象可以借助计算机等辅助数学工具,例如几何画板工具软件,TI图形计算器等.这里对函数单调性的分析可以帮助确定零点个数.
【例3】 已知函数y=f(x)在区间[a,b]上是连续不断的曲线,判断下列结论,正确的是______.
①若f(a)·f(b)<0,则在区间(a,b)内函数f(x)有且仅有一个零点 ②若f(a)·f(b)>0,则在区间(a,b)内函数f(x)无零点 ③若f(x)在(a,b)内有零点,必有f(a)·f(b)<0④若f(a)·f(b)≤0,则函数f(x)在(a,b)内有零点 ⑤若f(a)·f(b)<0,则函数f(x)在(a,b)内有零点
解析:本题设计的目的是为了加深对零点存在性定理的正确理解.①有条件f(a)·f(b)<0成立,则在(a,b)内可能不止一个零点;②是在f(a)·f(b)>0的情况下,未必无零点;③在(a,b)内有零点,也未必有f(a)·f(b)<0成立;④注意端点问题,可能a、b恰好使得f(x)=0.本题从多侧面、多角度考查对定理的理解,对培养学生思维的严密性很有帮助.
答案:⑤
温馨提示
对于一个定理和结论的理解,要做到逐字逐句地去琢磨、分析.条件具备,则结论正确;条件不具备,则结论未必不成立;结论成立,而条件未必成立.注意思维的严密性.
各个击破
类题演练1
求y=x2+2x+1的零点,并指出y>0的取值范围.
解析:令x2+2x+1=0,∴x=-1.
∴y=x2+2x+1的零点为-1.
y>0的取值范围为x≠-1.
变式提升1
(1)若函数f(x)=x2+ax+b的零点是2和-4,求a、b的值.
解析:由条件得 ∴
(2)求函数y=x3-7x+6的零点.
解析:∵x3-7x+6=(x3-x)-(6x-6)
=x(x2-1)-6(x-1)=x(x+1)(x-1)-6(x-1)=(x-1)(x2+x-6)=(x-1)(x-2)(x+3),
解x3-7x+6=0,
即(x-1)(x-2)(x+3)=0,x1=-3,x2=1,x3=2.
∴函数y=x3-7x+6的零点为-3,1,2.
类题演练2
函数f(x)=x2+ax+b的零点是-1和2,判断函数g(x)=ax3+bx+4的零点所在的大致区间.
思路分析:函数f(x)的零点就是方程f(x)=0的根,即x2+ax+b=0的根,由根与系数的关系可求得a、b的值,从而可求解.
解:∵-1和2是函数f(x)=x2+ax+b的零点,∴-1+2=-a,-1×2=b,即a=-1,b=-2.
∴g(x)=-x3-2x+4.
∵g(1)=1,g(2)=-8,g(1)5g(2)<0,∴g(x)在区间(1,2)内有一个零点.
又∵g(x)在R上是单增函数,∴g(x)只有一个零点.
变式提升2
利用函数的图象,指出下列函数零点所在的大致区间:
(1)f(x)=-x3-2x+1;(2)f(x)=e1+x+2x+2.
解析:(1)用计算器或计算机作出x、f(x)的对应值表(如下表)及其图象(如图1).
x
-3
-2
-1
0
1
2
3
f(x)
34
13
4
1
-2
-11
-32
3.1.2 用二分法求方程的近似解
课堂导学
三点剖析
一、用二分法求相应方程的近似解
【例1】 证明方程x3-3x+1=0在区间(1,2)内必有一根,并求出这个根的近似值(精确到0.01).
证明:令f(x)=x3-3x+1,则f(x)在区间[1,2]上的图象是一条连续不断的曲线.
∵f(1)=1-3+1=-1<0,
f(2)=8-6+1=3>0,
∴f(1)·f(2)<0,
∴函数f(x)在区间(1,2)内必有一零点,
∴方程x3-3x+1=0在区间(1,2)内必有一根x0.
取区间(1,2)的中点x1=1.5,
用计算器算得f(1.5)=-0.125.
因为f(1.5)·f(2)<0,
所以x0∈(1.5,2).
再取(1.5,2)的中点x2=1.75,
用计算器算得f(1.75)=1.109 375.
因为f(1.5)·f(1.75)<0,
所以x0∈(1.5,1.75).
又取(1.5,1.75)的中点x3=1.625.
用计算器算得f(1.625)=0.416 015 625.
因为f(1.5)·f(1.625)<0,
所以x0∈(1.5,1.625).
取(1.5,1.625)的中点x4=1.562 5,
用计算器算得f(1.562 5)=0.127 197 265 625.
因为f(1.5)·f(1.562 5)<0,
所以x0∈(1.5,1.562 5).
取(1.5,1.562 5)的中点x5=1.531 25时,
用计算器算得
f(1.531 25)=-0.003 387 451 171 875.
因为f(1.531 25)·f(1.562 5)<0,
所以x0∈(1.531 25,1.562 5).
取(1.531 25,1.562 5)的中点
x6=1.546 875时,
用计算器算得
f(1.546 875)=0.060 771 942 138 671 875.
因为f(1.531 25)·f(1.546 875)<0,
所以x0∈(1.531 25,1.546 875).
同理,可算得 f(1.531 25)·f(1.539 062 5)<0,
x0∈(1.531 25,1.539 062 5);f(1.531 25)·
f(1.535 156 25)<0,x0∈(1.531 25,1.535 156 25).
又当取(1.531 25,1.535 156 25)的中点x9=1.533 203 125时,
f(1.531 25)·f(1.533 203 125)<0,
即x0∈(1.531 25,1.533 203 125).
由于|1.531 25-1.533 203 125|=0.001 953 125<0.01,
此时区间(1.531 25,1.533 203 125)的两个端点精确到0.01的近似值都是1.53,所以原方程精确到0.01的近似值为1.53.
二、对二分法再理解
【例2】有一块边长为30 cm的正方形铁皮,将其四个角各截去一个边长为x cm的小正方形,然后折成一个无盖的盒子,如果要做成一个容积是1 200 cm3的无盖盒子,那么截去的小正方形的边长x是多少厘米(精确到0.1 cm)?
解析:盒子的体积y和以x为自变量的函数解析式为y=(30-2x)2x.
如果要做成一个容积是1 200 cm3的无盖盒子,那么有方程(30-2x)2x=1 200,其定义域为{x|0<x<15=.
令f(x)=(30-2x)2x-1 200,借助计算机画出函数图象.由图象可以看出,函数f(x)分别在区间(1,2)和(9,10)内各有一个零点,即方程(30-2x)2x=1 200分别在区间(1,2)和(9,10)内各有一个解.下面用二分法求方程的近似解.
取区间(1,2)的中点x1=1.5,用计算器算得f(1.5)=-106.5<0.
因为f(1.5)·f(2)<0,所以x0∈(1.5,2).
同理可得x0∈(1.5,1.75),x0∈(1.625,1.75),x0∈(1.687 5,1.75),x0∈(1.687 5,1.718 75),x0∈(1.687 5,1.703 125),x0∈(1.687 5,1.695 312 5).
由于|1.695 312 5-1.687 5|=0.007 812 5<0.1,
此时区间(1.687 5,1.695 312 5)的两个端点精确至0.1的近似值都是1.7,所以方程在区间(1,2)内精确到0.1的近似解为1.7.同理可得方程在区间(9,10)内精确到0.1的解为9.4.
故如果要做成一个容积是1 200cm3的无盖盒子,截去的小正方形的边长大约是1.7 cm或9.4 cm.
温馨提示
用二分法求方程的近似解的过程有两点须注意:1.计算量大;2.重复相同的计算步骤.因此,常借助计算器或通过设计一定的计算程序,借助计算机完成计算,在模块三同学们可以学到.
三、“精确度为ε”与“精确到ε”
【例3】 借助计算器,分别按下面两种要求,用二分法求函数f(x)=lnx-在区间(2,3)内的零点:
(1)精确度为0.1;(2)精确到0.1.
解析:可证得函数在区间(2,3)上为增函数,由题设有f(2)≈-0.31<0,f(3)≈0.43>0,
由于f(2)·f(3)<0,故函数f(x)在区间(2,3)内有一个零点x0,即x0∈(2,3).
下面用二分法求函数f(x)=lnx-在区间(2,3)内零点的近似值:
取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)≈0.12>0,由于f(2)·f(2.5)<0,所以x0∈(2,2.5);
再取区间(2,2.5)的中点x2=2.25,用计算器算得f(2.25)≈-0.08<0,由于f(2.25)·f(2.5)<0,所以x0∈(2.25,2.5).
同理可得x0∈(2.25,2.375),
x0∈(2.312 5,2.375).(*)
(1)由于|2.312 5-2.375|=0.062 5<0.1,所以区间[2.312 5,2.375]上任意一个实数x0′均可作为f(x)在区间(2,3)内且精确度为0.1的零点的近似值(比如,可取x0′=2.35,2.342,2.375等);
(2)接(*),同理可得,x0∈(2.343 75,2.375),x0∈(2.343 75,2.359 375),
x0∈(2.343 75,2.351 562 5),x0∈(2.343 75,2.347 656 25).
由于区间(2.343 75,2.347 656 25)的两个端点精确到0.1的近似值都是2.3,所以函数f(x)在区间(2,3)内精确到0.1的零点的近似值为2.3.
各个击破
类题演练1
求方程x3+x2-2x-2=0的一个正实数解(精确到0.1).
解析:列表:
x
0
1
2
3
4

f(x)
-2
-2
6
28
70

由表可知,f(1)·f(2)<0,说明该方程在区间(1,2)内有正实数解.
取区间(1,2)的中点x1=1.5,由计算器可算得f(1.5)=0.625>0,因为f(1)·f(1.5)<0,所以x0∈(1,1.5).
再取(1,1.5)的中点x2=1.25,由计算器可算得f(1.25)=-0.984<0,因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).
同理可知x0∈(1.375,1.5),x0∈(1.375,1.438),而|1.375-1.438|=0.063<0.1,此时区间(1.375,1.438)的两个端点精确到0.1的近似值都为1.4,所以方程的一个正实数解为1.4.
变式提升1
用二分法求的近似值(精确到0.01).
解析:设y=x3-3,则y=x3-3在(1,2)上是一条连续不断的曲线,∴y=x3-3在(1,2)上必有一零点x0.
取(1,2)的中点x1=1.5,
f(1.5)=0.375>0,∴x0∈(1,1.5).
再取(1,1.5)的中点x2=1.25,
f(1.25)=-1.046 875<0,∴x0∈(1.25,1.5).
再取(1.25,1.5)的中点x3=1.375,
f(1.375)=-0.400 390 625<0,
∴x0∈(1.375,1.5).
这样反复计算下去,直到x0∈(1.441 406 25,1.443 359 375).
∵区间两个端点精确到0.01都是1.44,
∴y=x3-3的一个零点为1.44.即精确到0.01的近似值为1.44.
温馨提示
1.使用二分法的前提是:y=f(x)在[a,b]上的图象是连续不断的一条曲线,且f(a)·f(b)<0.
2.使用二分法求函数零点的步骤:①可以结合函数图象来初步判断根的分布区间;②利用二分法算下去,直到满足题目的精确度要求为止;③根据精确度要求写出方程的近似解.
3.二分法求解零点的缺点:二分法的思想虽然简单,但是一方面若函数y=f(x0)在[a,b]上有几个零点时,只算出其中一个零点;另一方面,即使函数y=f(x)在[a,b]上有零点,也未必有f(a)·f(b)<0,即用二分法不能求函数的不变号零点,这就限制了二分法的使用范围.
类题演练2
一元二次方程可以用求根公式求根,但在没有求根公式的情况下,如何求方程2x3+3x-3=0的一个实数解?(精确度为0.01)
解析:∵f(0)=-3<0,f(2)=19>0,
∴函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在(0,2)内有解.
取(0,2)的中点1,f(1)=2>0.
又f(0)<0,∴2x3+3x-3=0在(0,1)内有解.
如此继续下去,得到方程2x3+3x-3=0的解在区间[0.742 187 5,0.746 093 75],而|0.746 093 75-0.742 187 5|=0.003 906 25<0.01.
∴方程2x3+3x-3=0精确度为0.01的近似解是0.74.
变式提升2
已知函数f(x)=ax+(a>1),
(1)求证:f(x)在(-1,+∞)上为增函数;
(2)求证当a=3时,f(x)=ax+在(0,1)内必有零点;
(3)若a=3,求方程f(x)=0的正根.(精确到0.01)
解析:(1)可设g(x)=ax,h(x)=,
由指数函数的性质可知:
当a>1时,y=ax在(-1,+∞)上单调递增.
下面证明h(x)=在(-1,+∞)上单调递增.设x1、x2∈(-1,+∞)且x1<x2,
则h(x1)-h(x2)=-=-=.
∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,
∴h(x1)<h(x2),
∴h(x)在(-1,+∞)上单调递增.
∴f(x)=g(x)+h(x)在(-1,+∞)上单调递增.
(2)由(1)可知:函数f(x)在(-1,+∞)上是增函数.
又f(0)=30-2=-1<0,f(1)=31-=>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.
(3)由二分法可求得,
当a=3时,f(x)=0的正根为0.28.
类题演练3
函数f(x)=x2-5的零点的近似值为(精确到0.1)( )
A.2.0 B.2.1 C.2.2 D.2.3
解析:∵f(2)·f(3)<0.∴f(x)在(2,3)内必有一零点.可用二分法求得近似解为2.1.
变式提升3
用二分法求2x=x+2负的近似解(精确到0.1).
解析:设f(x)=2x-x-2,由于f(-2)=,
f(-1)=-,f(-2)·f(-1)<0.
故f(x)在(-2,-1)上必有一零点.
可用二分法求得近似解为-1.7.
温馨提示
1.按“精确度为ε”要求得到的近似值不是唯一的,即若|a-b|<ε,则[a,b]上任何一个实数值x0均可作为所求的近似值.
2.按“精确到ε”要求得到的近似值是唯一的,即判断区间(a,b)两端点精确到ε的近似值是否相同.若相同,则该值x0即为所求的近似值.
如例3(2)中(2.343 75,2.347 656 25)的两个端点精确到0.1时的近似值都是2.3,故2.3即为所求.
3.1 函数与方程
互动课堂
疏导引导
3.1.1方程的根与函数的零点?
1.函数零点的概念?
对于函数y=f(x)(x∈D),把使f(x)=0的实数 x叫做函数y=f(x)(x∈D)的零点.
2.函数零点的意义
方程f(x)=0有实数根函数y=f(x)的图象与 x轴有交点函数y=f(x)有零点.
3.函数零点存在的条件
如果函数f(x)在区间[a, b]上的图象是连续不间断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(x)=0,这个c也就是方程f(x)=0的根.
4.函数零点的求法
求函数y=f(x)的零点:?
(1)代数法:求方程f(x)=0的解;?
(2)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数性质找出零点.
5.函数零点的意义
函数y=f(x)的零点就是方程f(x)=0的实数根,亦即函数y=f(x)的图象与x轴交点的横坐标.
即方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.
●案例1函数f(x)=lnx-的零点所在的大致区间是(  )?
A. (1, 2)          
B. (2, 3)
C. (, 1)和(3,4)
D. (e, +∞)
【探究】 从已知的区间(a, b),求f(a)、f(b),判别是否有f(a)·f(b)<0.
∵f(1)=-2<0,f(2)=ln2-1<0,
∴在(1,2)内f(x)无零点,所以A不对.?
又f(3)=ln3->0,?
∴f(2)·f(3)<0.
∴f(x)在(2,3)内有一个零点.?
【答案】 B?
【溯源】 这是最基本的题型,所用的方法是基本方法:只要判断区间[a, b]的端点值的乘积是否有f(a)f(b)<0;若问题改成:指出函数f(x)=lnx-的零点所在的大致区间,则需取区间[a, b]使f(a)f(b)<0.
●案例2 二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是(  )?
A. 1
B. 2
C. 0
D. 无法确定
【探究】 ∵c=f(0),∴ac=af(0)<0,即a与f(0)异号,即或
∴函数必有两个零点.
【答案】 B?
【溯源】 判断二次函数f(x)的零点的个数,就是判断一元二次方程ax2+bx+c=0的实根的个数,一般地由判别式Δ>0、Δ=0、Δ<0完成.对于二次函数在某个定义区间上的零点个数以及不能用“Δ”判断的二次函数零点,则要结合二次函数的图象进行.
6. 二次函数的图象与性质
(1)定义:函数y=ax2+bx+c(a≠0)叫做二次函数.它的定义域为R.?
(2)二次函数具有如下一些主要性质:?
y=ax2+bx+c(a≠0)?
=a(x+)2+
=a(x-h)2+k.
其中h=-,k=.
函数的图象是一条抛物线,抛物线顶点的坐标是(h, k),抛物线的对称轴是直线x=h;
当a>0时,抛物线开口向上,函数在x=h处取得最小值k=f(h);在区间(-∞,h]上是减函数,在[h,+∞)上是增函数.
当a<0时,抛物线开口向下,函数在x=h处取得最大值k=f(h);在区间(-∞,h]上是增函数,在[h,+∞)上是减函数.
(3)二次函数的三种常用解析式:?
①一般式:f(x)=ax2+bx+c(a≠0).?
②顶点式:y=a(x-h) 2+k(a≠0),其中(h, k)为顶点坐标.
 ③标根式:f(x)=a(x-α)(x-β)(a≠0),其中α和β是方程f(x)=0的根.?
疑难疏引 于二次方程的根的分布问题,画出图象后,根据二次函数相应特征列不等式(组),往往比直接求出根后根据其所在区间列不等式更简便.一元二次方程根的分布有如下几种情况:
根的分布
x1kx1图象
充要条件
f(k)<0
根的分布
x1、x2∈(k1,k2)
k1在(k1,k2)内有且仅有一根
图象
充要条件
f(k1)f(k2)<0或者Δ=0且?∈(k1,k2)
3.1.2用二分法求方程的近似解
1.二分法的定义
对于在区间[a, b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法.
2.二分法求函数f(x)的零点近似值的步骤
(1)确定区间 [a, b],验证f(a)·f(b)<0,给定精度ε.?
(2)求区间(a, b)的中点 x1.?
(3)计算f(x1).若f(x1)=0,则x1就是函数的零点;若f(a)·f(x1)<0,则取区间(a,x1)(此时零点 x0∈(a,x1));若f(x1)·f(b)<0,则取区间(x1,b)(此时零点x0∈(x1,b)).?
(4)判断是否达到精度ε,即若 |a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).
3.借助于函数方程思想用二分法求方程的近似解的意义?
解方程是我们在数学学习过程中经常遇到的问题.但平时我们所解的方程都是代数方程,即整式方程、分式方程和无理方程,而对于含有指数和对数的方程,我们也只解一些极为特殊的,对于大部分含有指数和对数的方程是很难用代数方法来解的,例如,对于方程lgx=3-x,我们要求出它的解比较困难,但我们可以用二分法求出它的近似解.
记忆口诀:
函数连续值两端,相乘为负有零点,?
区间之内有一数,方程成立很显然.?
要求方程近似解,先看零点的区间,?
每次区间分为二,分后两端近零点.?
●案例 某电器公司生产A种型号的家庭电脑.1996年平均每台电脑生产成本为5 000元,并以纯利润20%标定出厂价.1997年开始,公司更新设备,加强管理,逐步推行股份制,从而使生产成本逐年降低.2000年平均每台A种型号的家庭电脑尽管出厂价仅是1996年出厂价的80%,但却实现了纯利润50%的高效率.求
(1)2000年每台电脑的生产成本;
(2)以1996年的生产成本为基数,用二分法求1996~2000年生产成本平均每年降低的百分数(精确到0.01).
【探究】 第(1)问是价格和利润的问题,销售总利润可以按每台来算,也可以按实现50%的利润来算,从而找出等量关系;第(2)问是增长率问题,要注意列出方程后,用二分法求解,但应用二分法时注意合理使用计算器.
(1)设2000年每台电脑的成本为p元,根据题意,得
p(1+50%)=5 000×(1+20%)×80%,解得p=3 200(元).?
故2000年每台电脑的生产成本为3200元.
(2)设1996~2000年间每年平均生产成本降低的百分率为x,根据题意,得
5000(1-x)4=3200(0<x<1).
令f(x)=5 000(1-x)4-3 200,作出x、f(x)的对应值表,如下表:
x
0
0.15
0.3
0.45
0.6
0.75
0.9
1.05
F(x)
1800
-590
-2000
-2742
-3072
-3180
-3200
-3200
  观察上表,可知f(0)·f(0.15)<0,说明此函数在区间(0,0.15)内有零点x 0.
取区间(0,0.15)的中点x 1=0.075,用计算器可算得f(0.075)≈460.因为f(0.075)·?f(0.15)<0,所以x 0∈(0.075,0.15).
再取(0.075,0.15)的中点x 2=0.112 5,用计算器可算得f(0.112 5)≈-98.因为
f(0.075)·f(0.112 5)<0,所以x 0∈(0.075,0.112 5).
同理,可得x 0∈(0.009 375,0.112 5),x 0∈(0.103 125,0.112 5),x 0∈(0.103 125,0.107 812 5),x 0∈(0.105 468 75,0.107 812 5).
由于|0.107 812 5-0.105 468 75|=0.002 343 75<0.01,此时区间(0.105 468 75,0.107 812 5)的两个端点精确到0.01的近似值都是0.11,所以原方程精确到0.01的近似解为0.11.
1996~2000年生产成本平均每年降低的百分数为11%.
【溯源】 降低成本提高效率的问题应注意:成本+利润=出厂价;利润=成本×利润率.熟悉二分法的解题步骤,虽然比较繁杂,但是可以体会到“逐步逼近”的数学思想.
活学巧用
1. 判断方程logx=x的根的个数.
【思路解析】 在同一坐标系内作出函数f(x)=logx和g(x)=x的图象,如下图所示,通过比较函数的增长速度,利用函数图象交点的个数,求得方程解的个数.?
【答案】 f(1)=0,f()=1,?f()=2,f()=4.
g(1)=1,g()=,g()=,g()=.
f[()12]=12,f[()14]=14.
g[()12]=()6≈11.39,g[()14]=()7≈17.09.
通过计算(用计算器),可知在区间[,]和区间[()12,()14]内,函数图象各有一个交点,从而方程在两个区间内各有一个根.
2. 利用函数的图象,指出函数f(x)=2x·ln(x-2)-3零点所在的大致区间.?
【思路解析】 首先对x取值来寻找y值的符号,然后判断零点所在的大致区间.?
【解】 用计算器或计算机作出x、f(x)的对应值表(如下表).
x
2.5
3
3.4
4
4.5
5
f(x)
-6.4657
-3
-0.1617
2.5452
5.2466
7.9861
由上表和上图可知该函数零点的大致区间为[3, 4]
3. 求函数f(x)=2x 3-3x+1零点的个数.?
【思路解析】 先用计算机或计算器作出f(x)的对应值表,然后根据函数零点的判定方法来判定函数的零点.
【解】 用计算器或计算机作出x、f(x)的对应值表(如下表)和图象(如下图).
X
-1.5
-1
-0.5
0
0.5
1
1.5
F(x)
-1.25
2
2.25
1
-0.25
0
3.25
由上表和上图可知,f(-1.5)<0,f(-1)>0,即f(-1.5)·f(-1)<0,说明这个函数在区间(-1.5,-1)内有零点.同理,它在区间(0,0.5)内也有零点.另外,f(1)=0,所以1也是它的零点.由于函数f(x)在定义域(-∞,-1.5)和(1,+∞)内是增函数,所以它共有3个零点.
 4. 已知二次函数f(x)=ax2+(a2+b)x+ c的图象开口向上,且f(0)=1,f(1)=0,则实数b的取值范围是(  )
A. (-∞, - ]
B. [-, 0)
C. [0, +∞)
D. (-∞,-1)
【思路解析】 考察二次函数图象的特点,依题意得
整理得a2+a+b+1=0,解得a=.
∵图象开口向上,∴ a>0,?
∴a=>0.解得b<-1.?
∵二次函数
f(x)=ax2+(a2+b)x+ c的图象过点(0,1)和点(1,0),又∵图象开口向上,
∴点(0,1)必须在抛物线对称轴的左侧,即抛
物线的对称轴在点(0,1)的右侧,即y轴的右侧,即 x=->0,
∴ a2+b<0,当b<-1时,a2+b<0恒成立.
∴ b<-1.因此,选D
【答案】 D
5. 若方程x2+(m-3)x+ m=0两个根都小于1,求m的范围.?
【思路解析】 画出图象,根据图象特征,可列出不等式组,从而得出结论.?
【解】 令f(x)=x2+(m-3)x+m,
则{m|m≥9}.
6. (2005全国,19)已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.
(2)若f(x)的最大值为正数,求a的取值范围.
【思路解析】 此题考查二次函数解析式求法以及最大值的求法.?
【答案】 (1)f(x)=-x2-x-.
(2)(-∞,-2-)∪(-2+,0).
7. 求方程lnx+x-3=0在(2,3)内的根(精确到0.1).?
【分析】 用二分法求解.?
【解】 令f(x)=lnx+x-3,即求函数f(x)=0在(2,3)内的零点.?
∵f(2)=ln2-1<0,?f(3)=ln3>0,
∴可取(2,3)作为初始区间,用二分法列表如下:
中点
端点或中点函数值
取区间
f(2)<0,f(3)>0
(2,3)
2.5
f(2.5)>0
(2,2.5)
2.25
f(2.25)>0
(2,2.25)
2.125
f(2.125)<0
(2.125,2.25)
2.1875
f(2.187 5)<0
(2.187 5,2.25)
2.21875
f(2.218 75)>0
(2.187 5,2.218 75)
2.187 5≈2.2,2.218 75≈2.2,?
∴所求方程的根为2.2(精确到0.1).?
8. 国家购买某种农产品的价格为120元/担,其中征税标准为100元征8元(叫做税率为8个百分点,即8%),计划可收购m万担.为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.
(1)写出税收f(x)(万元)与x的函数关系式;?
(2)要使此项税收在税率调节后达到计划的78%,试求此时x的值.?
【思路解析】 第(1)问这样考虑:调节税率后税率为(8-x)%,预计可收购m(1+2x%)万担,总金额为120m(1+2x%)万元,从而列出函数表达式.
【解】 (1)由题设,调节税率后税率为(8-x)%,预计可收购m(1+2x%)万担,总金额为120m(1+2x%)万元.f(x)=120m(1+2x%)(8-x)%,
即f(x)=-(x 2+42x-400)(0<x≤8).
(2)计划税收为120m·8?%?万元,由题设,有f(x)=120m·8%·78%,
即x 2+42x-88=0(0<x≤8),解得x=2.?
9. 求方程2x+3x=7的近似解(精确到0.01).?
【思路解析】 利用二分法.?
【解】 原方程即2x+3x-7=0,令f(x)=2x+3x-7,并结合y=2x与y=-3x+7的图象知方程f(x)=0只有一解.计算
f(1)=2+3-7<0,f(2)=22+3×2-7=3×2-7+4=3,可知x0∈(1,2).取区间(1,2)
的中点x1=1.5,用计算器可得f(1.5)≈0.33>0;再取(1,1.5)的中点x2=1.25,
f(1.25)≈-0.87<0.?
∵f(1.25)f(1.5)<0,?
∴x0∈(1.25).
同理可求得x0∈(1.375,1.5),x0∈(1.375,1.437 5),此时区间端点精确到0.1的近似值都是1.4.∴原方程的精确到0.1的近似解为1.4.
3.1 函数与方程
知识导学
函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一实数,当函数的自变量取这一实数时,其函数值为零.函数f(x)的零点实际上就是方程f(x)=0的实根,方程f(x)=0有几个实根,函数f(x)就有几个零点;方程f(x)=0有两个相等的实根,则称函数有一个二重零点或者说有一个二阶零点.一般地,函数f(x)=anxn+an-1xn-1+…+a1x+a0(ai∈R,i=0,1,2,3,…,n)至多有n个零点.
解方程是我们在数学学习过程中经常遇到的问题.但平时我们所解的方程都是代数方程,即整式方程、分式方程和无理方程,而对于含有指数和对数的方程,我们也只解一些极为特殊的.对于大部分含有指数和对数的方程是很难用代数方法来解的,例如,对于方程lgx=3-x,我们要求出它的解比较困难,但我们可以用二分法求出它的近似解.用二分法求出的零点一般是零点的近似值.并不是所有函数都可以用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.
用二分法求函数零点的近似值关键有两点:一是初始区间的选取,符合条件(包含零点),又要使其长度尽量小;二是随时进行精确度的判断,以决定是停止计算还是继续计算.
记忆口诀:
函数连续值两端,相乘为负有零点,
区间之内有一数,方程成立很显然.
要求方程近似解,先看零点的区间,
每次区间分为二,分后两端近零点.
疑难导析
一般地,一元二次方程ax2+bx+c=0(a≠0)的根就是二次函数y=ax2+bx+c(a≠0)的函数值为0时自变量x的值.从函数的图象上看,就是抛物线与x轴交点的横坐标.因此,一元二次方程ax2+bx+c=0(a≠0)的根也称为二次函数y=ax2+bx+c(a≠0)的零点.利用函数的知识可以得到方程ax2+bx+c=0(a≠0)的根与函数y=ax2+bx+c(a≠0)的图象之间的关系.二次函数与一元二次方程的这种关系,又给我们提供了另外一种解方程的方法:利用函数的图象解方程或研究方程解的情况.
问题导思
函数思想与方程思想是密切相关的.对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看作二元方程y-f(x)=0.函数问题(如求反函数、求函数的值域等)可以转化为方程问题来解决,如解方程f(x)=0,就是求函数y=f(x)的零点.
函数思想、方程思想体现了一种解决问题的理念,即建“模”意识.所谓“模”就是一个问题载体,是联系已知、未知的桥梁,建“模”后的第二步就是解析“模”,从而真正将实际问题转化为数学问题,数学也因此成为解析大自然奥秘的工具.
典题导考
绿色通道
如果在计算机上应用某些软件,比如《几何画板》直接绘出函数的图象(这个软件不用进行步长的设置),也可较快地判断函数的零点的大致区间.如图3-1-3所示.
图3-1-3
典题变式 函数f(x)=lnx-的零点所在的大致区间是( )
A.(1,2) B.(2,3)
C.(,1)和(3,4) D.(e,+∞)
答案:B
绿色通道
判断二次函数f(x)的零点的个数,就是判断一元二次方程ax2+bx+c=0的实根的个数,一般地由判别式Δ>0,Δ=0,Δ<0完成.对于二次函数在某个定义区间上的零点个数以及不能用“Δ”判断的二次函数零点,则要结合二次函数的图象进行.
典题变式 求函数f(x)=2x3-3x+1零点的个数.
答案:有3个零点.
绿色通道
本题表中数据同学们可自己计算验证,这里只给出符号,更清楚地看到区间的取法.
典题变式
1.借助计算器或计算机,用二分法求方程ln(2x+6)+2=3x在区间(1,2)内的近似解(精确到0.1).
思路解析:用二分法解这个方程可以先构造函数f(x)=ln(2x+6)-3x+2,然后寻找这个函数的零点即可.
答案:精确到0.1的近似值为1.3.
2.求方程x3-3x+1=0的近似解(精确到0.1).
答案:近似解分别为x1≈-1.8,x2≈0.4,x3≈1.5.
3.已知二次函数f(x)=ax2+4x+b(a<0),设关于x的方程f(x)=0的两根为x1、x2,f(x)=x的两实根为α、β.
(1)若|α-β|=1,求a、b的关系式;
(2)若a、b均为负整数,且|α-β|=1,求f(x)的解析式.
答案:(1)a2+4ab=9.
(2)f(x)=-x2+4x-2.
绿色通道
本题是一道有关降低税率的应用题,涉及到农产品价格、征税标准、降低税率、预计收购量等多个量.通过审题,建立了
税收f(x)(万元)和降低税率x的二次函数关系式,再运用二次函数的有关知识使问题得以解决.在题后又给出设问,目的是要用本节知识来解决问题.
典题变式 某电器公司生产A种型号的家庭电器.1996年平均每台电脑生产成本为5 000元,并以纯利润20%标定出厂价.1997年开始,公司更新设备,加强管理,逐步推行股份制,从而使生产成本逐年降低.2000年平均每台A种型号的家庭电脑尽管出厂价仅是1996年出厂价的80%,但却实现了纯利润50%的高效率.求
(1)2000年每台电脑的生产成本;
(2)以1996年的生产成本为基数,用二分法求1996年~2000年生产成本平均每年降低的百分数(精确到0.01).
答案:(1)2000年每台电脑的生产成本为3 200元;
(2)1996年~2000年生产成本平均每年降低的百分数为11%.
∴所求二次函数为y=-(x+1)2+4,即为y=-x2-2x+3.
绿色通道
从以上解法可以总结出二次函数解析式常用的三种形式:
(1)一般式:
y=ax2+bx+c(a,b,c为常数,a≠0);
(2)顶点式:
y=a(x-h)2+k(a,h,k为常数,a≠0);
(3)两根式:
y=a(x-x1)(x-x2)(a,x1,x2为常数,a≠0).
典题变式
1.已知函数y=2x2+bx+c在(-∞,-)上是减函数,在(-,+∞)上是增函数,且两个零点是x1、x2,满足|x1-x2|=2,求这个二次函数的解析式.
答案:y=2x2+6x+.
2.已知二次函数y=x2-2(m-1)x+m2-2m-3,m∈R的图象与x轴的两交点为A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式.
答案:y=x2+2x-3或y=x2-8x+12.
3.1 函数与方程
课堂探究
探究一求函数的零点
因为函数f(x)的零点就是方程f(x)=0的实数根,也是函数y=f(x)的图象与x轴交点的横坐标,所以,求函数的零点通常有两种方法:其一是令f(x)=0,通过解方程f(x)=0的根求得函数的零点;其二是画出函数y=f(x)的图象,图象与x轴的交点的横坐标即为函数的零点.
【典型例题1】 判断下列函数是否存在零点,如果存在,请求出零点.
(1)f(x)=-8x2+7x+1;
(2)f(x)=1+log3x;
(3)f(x)=4x-16;
(4)f(x)=.
思路分析:可通过解方程f(x)=0求得函数的零点.
解:(1)令-8x2+7x+1=0,
解得x=-或x=1.
所以函数的零点为x=-和x=1.
(2)令1+log3x=0,则log3x=-1,解得x=.
所以函数的零点为x=.
(3)令4x-16=0,则4x=42,解得x=2.
所以函数的零点为x=2.
(4)因为f(x)==,
令=0,
解得x=-6.
所以函数的零点为x=-6.
探究二 判断函数零点的个数
判断函数y=f(x)零点的个数的方法主要有:
(1)解方程f(x)=0,方程实根的个数就是函数零点个数;
(2)当方程f(x)=0不能解时,可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数;
(3)由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一坐标系下作出y1=g(x)和y2=h(x)的图象,则两图象交点的个数就是函数y=f(x)零点的个数.
【典型例题2】 求函数f(x)=2x+lg(x+1)-2的零点个数.
解:方法一:∵f(0)=1+0-2=-1<0,
f(2)=4+lg 3-2=2+lg 3>0,
∴f(x)在(0,2)上必定存在实根,
又显然f(x)=2x+lg(x+1)-2在(-1,+∞)上为增函数,
故f(x)有且只有一个零点.
方法二:在同一平面直角坐标系下作出图象如下:
h(x)=2-2x和g(x)=lg(x+1)的叠合图.
由图象知y=lg(x+1)和y=2-2x有且只有一个交点,
即f(x)=2x+lg(x+1)-2有且只有一个零点.
方法总结用零点存在定理判断函数y=f(x)在(a,b)内零点唯一,可按以下步骤进行:
(1)判断f(a)f(b)<0;
(2)判断函数y=f(x)在(a,b)上单调.
探究三判断函数的零点所在的大致区间
如果函数通过零点时函数值的符号发生改变,称这样的零点为变号零点;否则,若函数通过零点时不变号,称之为不变号零点.如函数y=x2的零点就是不变号零点.
函数零点存在定理可判断变号零点所在区间.
【典型例题3】 方程log3x+x=3的解所在的区间为(  )
A.(0,2) B.(1,2) C.(2,3) D.(3,4)
解析:构造函数,转化为确定函数的零点所在的区间.
令f(x)=log3x+x-3,
则f(1)=log31+1-3=-2<0,f(2)=log32+2-3=log3<0,f(3)=log33+3-3=1>0,f(4)=log34+4-3=log312>0,那么方程log3x+x=3的解所在的区间为(2,3).
答案:C
探究四 易错辨析
易错点 忽视零点存在性定理的使用条件致误
【典型例题4】 函数f(x)=x+的零点个数为(  )
A.0 B.1 C.2 D.3
错解:因为f(-1)=-2<0,f(1)=2>0,
所以函数f(x)有1个零点,故选B.
错因分析:函数的定义域决定了函数的一切性质,分析函数的有关问题时必须先求出定义域.通过作图(图略),可知函数f(x)=x+的图象不是连续不断的,而零点存在性定理不能在包含间断点的区间内使用.
正解:函数f(x)的定义域为{x|x∈R,且x≠0}.
当x>0时,f(x)>0,∴f(x)=0无实根.
当x<0时,f(x)<0,∴f(x)=0无实根.
综上,函数f(x)没有零点.
答案:A
3.1 函数与方程
预习导航
课程目标
学习脉络
1.理解函数零点的定义,会求函数的零点.
2.掌握函数零点的判定方法.
3.理解函数的零点与方程的根的联系.
方程的根与函数的零点
名师点拨1.函数y=f(x)的零点就是方程f(x)=0的实数根,也是函数的图象与x轴交点的横坐标.
2.对零点存在定理的理解
(1)当函数y=f(x)同时满足:①函数的图象在闭区间[a,b]上是连续曲线;②f(a)·f(b)<0,则可以判断函数y=f(x)在区间(a,b)内至少有一个零点,但是不能明确说明有几个零点.
(2)当函数y=f(x)的图象在闭区间[a,b]上不是连续曲线,或不满足f(a)·f(b)<0时,函数y=f(x)在区间[a,b]内可能存在零点,也可能不存在零点.
例如,二次函数f(x)=x2-2x-3在区间[3,4]上有f(3)=0,f(4)>0,所以f(3)·f(4)=0,但x=3是函数f(x)的一个零点.
函数f(x)=x2,在区间[-1,1]上,f(-1)·f(1)=1>0,但是它存在零点0.
函数f(x)=在区间[-1,1]上,有f(-1)·f(1)<0,但是由其图象知函数f(x)在区间(-1,1)内无零点.
自主思考1函数的零点是一个点吗?
提示:函数的零点是一个实数而非一个点,是函数图象与x轴交点的横坐标,当自变量取该值时,其函数值等于0.
自主思考2根据函数零点的定义及函数零点与方程根的关系,有哪些方法可以判断函数存在零点?
提示:判断函数y=f(x)是否存在零点的方法:
(1)方程法:判断方程f(x)=0是否有实数解.
(2)图象法:判断函数y=f(x)的图象与x轴是否有交点.
(3)定理法:利用零点的判定定理来判断.
3.1 函数与方程
课堂探究
探究一二分法的概念
判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.
【典型例题1】 用二分法求如图所示的函数f(x)的零点时,不可能求出的零点是(  )
A.x1 B.x2 C.x3 D.x4
思路分析:逐一分析每个零点附近左、右两侧函数值的符号,看是否存在区间[a,b]满足f(a)·f(b)<0.
解析:由二分法的思想可知,零点x1,x2,x4左右两侧的函数值符号相反,即存在区间[a,b],使得f(a)·f(b)<0,故x1,x2,x4可以用二分法求解,但x3∈[a,b]时均有f(a)·f(b)≥0,故不可以用二分法求该零点.
答案:C
探究二 求方程的近似解
函数的零点就是对应方程的解,所以,二分法不仅可以求函数的零点,也可以求方程的近似解.
用二分法求方程的近似解,首先要选好计算的初始区间,这个区间既要包含所求的根,又要使其长度尽量小,其次要依据给定的精确度,及时检验所得区间端点差的绝对值是否达到要求(达到给定的精确度),以决定是停止计算还是继续计算.
【典型例题2】 求方程lg x=2-x的近似解(精确度为0.1).
思路分析:在同一平面直角坐标系中,画出y=lg x和y=2-x的图象,确定方程的解所在的大致区间,再用二分法求解.
解:在同一平面直角坐标系中,作出y=lg x,y=2-x的图象如图所示,可以发现方程lg x=2-x有唯一解,记为x0,并且解在区间(1,2)内.
设f(x)=lg x+x-2,
则f(x)的零点为x0.
用计算器计算,得f(1)<0,f(2)>0?x0∈(1,2);
f(1.5)<0,f(2)>0?x0∈(1.5,2);
f(1.75)<0,f(2)>0?x0∈(1.75,2);
f(1.75)<0,f(1.875)>0?x0∈(1.75,1.875);
f(1.75)<0,f(1.812 5)>0?x0∈(1.75,1.812 5).
∵|1.812 5-1.75|=0.062 5<0.1,
∴方程的近似解可取为1.812 5.
方法总结利用二分法求方程的近似解的步骤:(1)构造函数,利用图象确定方程的解所在的大致区间,通常取区间(n,n+1),n∈Z;(2)利用二分法求出满足精确度的方程的解所在的区间M;(3)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.
探究三 二分法的实际应用
二分法的思想在实际生活中应用十分广泛.二分法不仅可用于线路、水管、煤气管道故障的排查等,还能用于实验设计、资料查询、资金分配等.
【典型例题3】 某市A地到B地的电话线路发生故障,这是一条10 km长的线路,每隔50 m有一根电线杆,如何迅速查出故障所在?
思路分析:对每一段线路一一检查很麻烦,当然也是不必要的,可以利用二分法的思想设计方案.
解:如图,可首先从中点C开始查起,用随身携带的工具检查,若发现AC段正常,则断定故障在BC段;
再到BC段的中点D检查,若CD段正常,则故障在BD段;
再到BD段的中点E检查,如此,每检查一次就可以将待查的线路长度缩短一半,经过7次查找,即可将故障范围缩小到50~100 m之间,即可迅速找到故障所在.
探究四 易错辨析
易错点 因“二分法”精确度的理解不清致错
【典型例题4】 用二分法求方程x2-5=0的一个非负近似解(精确度为0.1).
错解:令f(x)=x2-5,
因为f(2.2)=2.22-5=-0.16<0,
f(2.4)=2.42-5=0.76>0,
所以f(2.2)·f(2.4)<0,说明这个函数在区间(2.2,2.4)内有零点x0,取区间(2.2,2.4)的中点x1=2.3,
f(2.3)=2.32-5=0.29>0,
因为f(2.2)·f(2.3)<0,所以x0∈(2.2,2.3),
再取区间(2.2,2.3)的中点x2=2.25,
f(2.25)=0.062 5>0,
因为f(2.2)·f(2.25)<0,所以x0∈(2.2,2.25),
同理可得x0∈(2.225,2.25),(2.225,2.237 5),
又f(2.225)≈-0.049 4,f(2.237 5)≈0.006 4,
且|0.006 4-(-0.049 4)|=0.055 8<0.1,
所以原方程的非负近似解可取为2.225.
错因分析:本题错解的原因是对精确度的理解不正确,精确度ε满足的关系式为|a-b|<ε,而本题误认为是|f(a)-f(b)|<ε.
正解:由于f(2)=-1<0,f(3)=4>0,故取区间[2,3]作为计算的初始区间,用二分法逐次计算,列表如下:
区间
中点
中点函数值
[2,3]
2.5
1.25
[2,2.5]
2.25
0.062 5
[2,2.25]
2.125
-0.484 4
[2.125,2.25]
2.187 5
-0.214 8
[2.187 5,2.25]
2.218 75
-0.077 1
根据上表计算知,区间[2.187 5,2.25]的长度是0.062 5<0.1,所以这个区间的两个端点值就可作为其近似值,所以其近似值可以为2.187 5.
反思总结本题错解的原因是对精确度的理解不正确,精确度ε满足的关系式为|a-b|<ε,而错解误认为是|f(a)-f(b)|<ε.因此,对精确度的正确理解是正确解答本题的关键,当区间长度小于精确度时,零点可选区间内的任一值.
3.1 函数与方程
预习导航
课程目标
学习脉络
1.了解二分法是求方程近似解的一种方法,能够借助计算器用二分法求方程的近似解.
2.理解二分法的步骤与思想.
一、二分法的概念
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
名师点拨二分法就是通过不断地将所选区间(a,b)一分为二,逐步地逼近零点的方法,即找到零点附近足够小的区间,根据所要求的精确度,用此区间内的某个数值近似地表示真正的零点.
自主思考1能用二分法求图象连续的任何函数的近似零点吗?
提示:不能.能用二分法求零点的函数需具备两个条件:①图象连续;②零点左右两边的函数值异号.所以,若满足条件①而不满足条件②,则仍不能用二分法求零点.
二、用二分法求函数f(x)的零点近似值的步骤
1.确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;
2.求区间(a,b)的中点c;
3.计算f(c):
若f(c)=0,则c就是函数的零点;
若f(a)·f(c)<0,则令b=c〔此时零点x0∈(a,c)〕;
若f(c)·f(b)<0,则令a=c〔此时零点x0∈(c,b)〕.
4.判断是否达到精确度ε:
即若|a-b|<ε,则得到零点的近似值为a(或b);否则重复2~4.
自主思考2用二分法求函数零点时,如何决定步骤的结束?
提示:看清题目的精确度,当零点所在区间的两个端点值之差的绝对值小于精确度ε时,则二分法步骤结束.
3.2.1 函数模型及其应用
课堂导学
三点剖析
一、常见函数模型
【例1】 (一次函数模型)某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:
(1)买一个茶壶赠送一个茶杯;
(2)按总价的92%付款.
某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯x个,付款数为y(元),试分别建立两种优惠办法中y与x的函数关系,并讨论顾客选择哪种优惠方法更合算.
思路分析:本题考查的是建立一次函数模型,并应用一次函数模型解决实际问题的能力.第一种优惠方法中,实际付款是4个茶壶的钱和(x-4)个茶杯的钱.第二种优惠方法只需将货款总数乘以92%,而后再作差比较二者的大小即可.
解:由优惠办法(1)可得函数关系式:y1=20×4+5(x-4)=5x+60(x≥4),
由优惠办法(2)可得函数关系式:
y2=(5x+4×20)×92%=4.6x+73.6.
比较:y1-y2=0.4x-13.6(x≥4).
①当0.4x-13.6>0,即x>34时,y1>y2,
即当购买茶杯个数大于34时,优惠办法(2)合算.
②当0.4x-13.6=0,即x=34时,两种优惠办法一样合算.
③当0.4x-13.6<0,即4≤x<34时,y1<y2.优惠办法(1)合算.
温馨提示
1.建立函数模型后,如果结论不能确定,应注意对其进行分类讨论.
2.用数学思想、方法、知识解决实际问题的过程叫作数学建模.函数模型是应用最广泛的数学模型之一.许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题并解决问题.读题是解决实际问题的重要环节.一般的实际问题的叙述都比较长,需要逐字逐句地把问题看懂,这是建立数学模型的前提.
二、利用函数模型分析问题
【例2】 (指数函数模型)按复利计算利息的一种储蓄,设本金为a元,每期利率为r,存期为x,写出本金和利息总和y(元)与x的函数表达式.如果存入本金10 000元,每期1.98%,试计算5期后,本息总和是多少?
思路分析:本题考查的是与我们生活中息息相关的储蓄问题,其数学模型是指数函数.由题意知,每期到期后,其本利总和是前一期的(1+r)倍,所以可从第一期开始以此类推.
解:∵本金为a元,
∴1期后本息和为a+ar=a(1+r);
2期后本息和为a(1+r)+a(1+r)r=a(1+r)2;
3期后本息和为a(1+r)2+a(1+r)2r=a(1+r)3;
……
x期后本息和为y=a(1+r)x.
将a=10 000,x=5,r=1.98%代入上式得,
y=10 000(1+1.98%)5=11 029.99(元).
温馨提示
在实际问题中,常遇到有关平均增长率的问题,若基数为a,平均增长率为p,则总量y与时间x的关系式为y=a(1+p)x,此为指数型函数.
各个击破
类题演练1
(二次函数模型)某旅店有客房300间,每间日房租为20元,每天客满.旅店欲提高档次,并提高租金,如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅店将租金定为多少时,每天客房的总收入最高?
解析:设定租金x元,总收入最高,则总收入y=x(300-×10)=-5[(x-40)2-1 600],
当x=40时,y最大且最大值为5×1 600=8 000(元).
答案:40元
变式提升1
某工厂生产某种产品,固定成本为20 000元,每生产一件产品成本增加100元,已知总收益R(总收益指工厂出售产品的全部收入,它是成本与总利润的和,单位:元)是年产量(单位:件)的函数.满足关系式:
R=f(Q)=
(1)将总利润L(单位:元)表示为Q 的函数;
(2)求每生产多少件产品时、总利润最大?此时总利润是多少?
解析:(1)根据题意,总成本应为C=g(Q)=20 000+100Q,
从而可得总利润函数为L=φ(Q)=

即L=
(2)当0≤Q≤400时,
L=-(Q-300)2-20 000+45 000=-(Q-300)2+25 000.
此时当Q=300时,L最大=25 000;
当Q>400时,L=60 000-100Q<60 000-100×400=20 000<25 000;
所以,当Q=300时,L最大=25 000.
答:每年生产300件产品时,总利润最大,最大利润为25 000元.
类题演练2
某企业计划发行企业债券,每张债券现值500元,按年利率6.5%的复利计息,问多少年后每张债券一次偿还本利和1 000元?(参考lg2=0.301 0,lg1.065=0.027 4).
解析:设n年后每张债券一次偿还本利和1 000元,由1 000=500(1+6.5%)n,解得n=lg2/lg1.065≈11.
答:11年后每张债券应一次偿还本利和1 000元.
变式提升2
某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:
(1)写出该城市人口总数y(万人)与年份x(年)的函数关系;
(2)计算10年以后该城市人口总数(精确到0.1万人).
解析:(1)1年后该城市人口总数为
y=100+100×1.2%=100×(1+1.2%).
2年后该城市人口总数为
y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2.
3年后该城市人口总数为
y=100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3.
……
x年后该城市人口总数为
y=100×(1+1.2%)x.
(2)10年后该城市人口总数为
100×(1+1.2%)10≈112.7(万人).
3.2.2 函数模型应用举例
课堂导学
三点剖析
一、函数模型的确定
【例1】 以下是某地区不同身高的未成年男性体重平均值表:
身高/cm
60
70
80
90
100
110
体重/kg
6.13
7.90
9.99
12.15
15.02
17.50
身高cm
120
130
140
150
160
170
体重/kg
20.92
26.86
31.11
38.85
47.25
55.05
(1)根据表中提供的数据,能否从我们已学过的函数y=ax+b,y=alnx+b,y=a·bx中选择一种函数,使它比较近似地反映出该地区未成年男性体重y关于身高x的函数关系?试求出这个函数的解析式.
(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区某中学一男生身高为175 cm,体重为78 kg,他的体重是否正常?
思路分析:可先根据表中的数据,描点画出函数图象(散点图),再根据散点图的形状判断应当选择哪种函数关系,然后根据已知数据求出所选式子的待定常数,最后将表中的身高数据代入求得的解析式,看所得的函数值是否与已知体重数据基本吻合.
解:(1)以身高为横坐标,体重为纵坐标,在直角坐标系中画出散点图,如右图.根据点的分布特征可考虑用函数y=a·bx反映上述数据之间的对应关系.
把x=70,y=7.90和x=170,y=55.05两组数据分别代入y=a·bx,

解得a≈2,b≈1.02,
故该地区未成年男性平均体重关于身高的近似函数关系式可选取为y=2×1.02x.
将已知数据代入所得函数解析式,可知所求函数能较好的反映该地区未成年男性体重与身高的关系.
(2)把x=175代入y=2×1.02x,
得y=2×1.02175≈63.98.
∵78÷63.98≈1.22>1.2,∴这名男生体重偏胖.
二、数学模型的应用
【例2】 某家庭某年一月份、二月份和三月份的煤气用量和交付费用如下表所示:
月份
用气量
煤气费
1
4 m3
4元
2
25 m3
14元
3
35 m3
19元
该市煤气收费方法是:煤气费=基本费+超额费+保险费.若该月用气量不超过最低量A m3,那么只付基本费3元和每户每月的定额保险费C元;若用气量超过A m3,那么超出部分付超额费,每立方米为B元,又知保险费C不超过5元,试根据上述条件及数据求A、B的值.
思路分析:关键在于找出煤气费与用量间的函数关系,这显然是一分段函数.
解:设月用气量为x m3,支付的煤气费为y元,依题意有,

∵0<C≤5,
∴3<3+C≤8.
∴二、三月份煤气费满足


若一月份用气超过A m3,则4>A,
∴4=3+0.5(4-A)+C,这不可能.
∴4=3+C,C=1,B=,A=5.
温馨提示
解决实际问题,首先在审清题意的基础上,将实际问题转化成相应的函数来解决.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型.并利用所得函数模型解析有关现象.对某些发展趋势进行预测,在用函数模型解决实际问题的过程中,涉及复杂的数据处理,要注意充分发挥信息技术的作用,简化过程、减小计算量.
各个击破
类题演练1
我国1990—2000年的国内生产总值如下表所示:
年份
1990
1991
1992
1993
产值/亿元
18 598.4
21 662.5
26 651.9
34 560.5
年份
1994
1995
1996
1997
产值/亿元
46 670.0
57 494.9
66 850.5
73 142.7
年份
1998
1999
2000
产值/亿元
76 967.1
80 422.8
89 404.0
(1)描点画出1990—2000年国内生产总值的图象;
(2)建立一个能基本反映这一时期国内生产总值发展变化的函数模型,并画出其图象;
(3)根据所建立的函数模型,预测2004年的国内生产总值.
解析:(1)取自变量x为0,1,…,10,对应年份为1990,1991,…,2000得函数图象,如下图:
(2)根据图象,取函数模型y=a·bx.
取2组数据:
(2,26 651.9),(8,76 967.1).
代入y=a·bx得
解得a≈18 715.5,b≈1.19,得函数模型:
y=18 715.5×1.19x.
将其他数据代入上述函数解析式,基本吻合.
(3)令x=14得y≈213 726.8(亿元),
根据所建函数模型预测2004年的国内生产总值为213 726.8亿元.
类题演练2
已知某企业的原有产品,每年投入x万元,可获得的年利润可表示为函数:P(x)=-·(x-30)2+8(万元).现开发一个回报率高、科技含量高的新产品,据预测,新产品每年投入x万元,可获得年利润Q(x)=-(100-x)2+(100-x)(万元).新产品开发从“十五”计划的第一年开始,用两年时间完成.这两年,每年从100万元的生产准备金中,拿出80万元来投入新产品开发.从第三年开始这100万元全部用于新旧两种产品的生产投入.
(1)为了解决资金缺口,第一年初向银行贷款1 000万元,利率为5.5%(不计复利),第五年底一次性应向银行偿还本息共计多少万元?
(2)从新产品投产的第三年开始,从100万元的生产准备金中,新旧两种产品各应投入多少万元,才能使年利润最大?
(3)从新旧产品的五年总利润中最高拿出70%来,能否还清对银行的欠款?
解析:(1)五年利息是1 000×0.055×5=275(万元),本利和为1 275万元.
(2)设从第三年年初起每年旧产品投入x万元,新产品投入(100-x)万元,于是每年的利润是W=P(x)+Q(100-x)=[-(x-30)2+8]+{-[100-(100-x)]2+[100-(100-x)]}=(-x2+x-1)+(-x2+x)=-x2+52x-1=-(x-26)2+675.
∴投入旧产品26万元,新产品74万元时,每年可获得最大的利润,最大利润是675万元.
(3)因为P(x)在(0,30]上是增函数,所以在100万元的生产准备金中除用于新产品开发外,剩余的20万元全部投入即可得到最大利润.于是,头2年的利润是W1=2×P(20)=14(万元);后3年的利润是W2=3×[P(26)+Q(74)]=3×675=2 025(万元),故5年的总利润是W=W1+W2=2 039万元,又2 039×70%=1 427.3>1 275,所以从新旧产品的五年总利润中拿出70%来,能够还清对银行的欠款.
3.2 函数模型应用举例
互动课堂
疏导引导
一、函数的应用?
1.数学建模的地位和作用?
数学来源于生活,又服务于生活.在生活中的形形色色的数据处理需要数学模型,对于事物的发展和预测也离不开数学模型的建立,所以数学建模是提出问题和解决问题的必由之路.
掌握函数的基础知识是学好本节的前提.例如函数概念、指数函数和性质、对数函数和性质.反过来,通过函数建模的学习,又能加深对上述知识的理解和认识,还能提高同学们学习数学的积极性.?
在实际建模过程中,要学会化整为零,分步骤、有层次地完成,要求掌握计算器的使用.
2.数学模型的种类
第一类是以数学课本上的知识为探究内容.如利用图形计算器展现数学知识的形成过程、知识的应用过程.?
第二类探究的内容来源于物理、化学等学科.主要是利用?CBL?(基于图形计算器的掌上实验室)和各种探讨开展物理和化学实验,对物理现象和化学反应进行观察、收集数据、处理数据,完成定性和定量的分析.?
第三类探究的内容主要来源于生活,是那些看似与数学无关或与数学有关但关系不明显的问题.如节约能源(怎样烧开一壶水更省天然气)、储蓄问题(怎样存钱能获得更多利息)、绿化问题(控制栽树和伐树的比例保护环境)、生态问题(草食动物和肉食动物的平衡)等等,这样的问题可以由我们自己发现和提出,也可以由老师提供原始材料,我们对材料进行筛选、组织,选取关键的特征和关系,用数学的语言表达,建立数学模型,利用图形,计算器对数学模型处理,从而解决问题.
3.数学应用题的求解策略
“数学建模”是解决数学应用题的重要方法,解应用题的一般步骤:?
(1)审题:弄清题意,分清条件和结论,理顺数量关系.?
(2)建模:将文字语言转化成数学语言.?
(3)求模:求解数学模型,得到数学结论.?
(4)还原:将用数学方法得到的结论还原为实际问题的意义.
4.常见的数学模型有哪些?
探究思路:利用具体函数解决综合问题是我们需要关注的.具体函数的运用在生活中有很多体现,在学习完函数这部分内容以后,重点运用一次函数、二次函数、分段函数、指数函数、对数函数和幂函数来解决问题.下面是几种常见的数学模型:
(1)平均增长率问题:如果原来产值的基础数为N,平均增长率为p,则对于时间x的产值或产量y=N(1+p)x.
(2)储蓄中的复利问题:如果本金为a元,每期利率为r,本利和为y,存期为x,则y=a(1+r)x.
(3)根据几何、物理概念建立的函数关系,如位移、速度、时间的函数关系,灌溉渠的横截面面积A和水深h的函数关系.?
(4)通过观察、实验建立的函数关系,如自由落体的距离公式等.?
我们在前面已经学习了有关一次函数、二次函数在具体实际中的应用,现在学习有关指数函数和对数函数在实际中的应用.
二、指数函数的应用
●案例1某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数).(1)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为A n万元,进行技术改造后的累计纯利润为B n万元(需扣除技术改造资金),求A n、B n的表达式;(2)依上述预测,从今年起该企业至少经过多少年.进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润??
【探究】 (1)A n、B n是年数n的函数,又由于A n、B n都是“累计纯利润”,∴要分别进行数列求和.
(2)实际上就是求B n-A n>0时n的最小值.
【解】 (1)依题设,A n=(500-20)+(500-40)+…+(500-20n)=490n-10n 2;
B n=500[(1+)(1+)+…+(1+)]-600=500n--100.
(2)B n-A n=(500n--100)-(490n-10n 2)=10n2+10n--100=10[n(n+1)--10].
∵函数y=n(n+1)--10在(0,+∞)上为增函数,?
当1≤n≤3时,n(n+1)--10≤12--10<0;?
  当n≥4时,n(n+1)--10≥20--10>0.?
∴仅当n≥4时,B n>A n.
答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术发行的累计纯利润.【溯源】 与指数函数相关的应用问题较多,如平均增长率等问题,遇到类似问题时,应能主动调动指数函数相关知识来解决.
三、对数函数的应用
●案例2 医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过10 8的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.
天数t
病毒细胞总数N
1
2
3
4
5
6
7

1
2
4
8
16
32
64

(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(已知lg2=0.3010)
【探究】 (1)关键是病毒细胞总数与天数的函数关系式写出来——这要从所给的表中搜索.(2)关键是求出(1)之后小白鼠的体内还剩余多少病毒细胞.?
【解】 (1)由题意,病毒细胞关于时间n的函数为y=2 n-1≤108,则由2 n-1≤108,两边取对数得 (n-1)lg2≤8,n≤27.5,即第一次最迟应在第27天注射该种药物.?
(2)由题意,注入药物后小白鼠体内剩余的病毒细胞为2 26×2%,
再经过x天后小白鼠体内病毒细胞为2 26×2%×2x,
由题意2 26×2%×2x≤108,两边取对数得26lg2+lg2-2+xlg2≤8,得x≤6.2,
故再经过6天必须注射药物,即第二次应在第33天注射药物.
【溯源】 对数函数在求解指数方程时有着无比神奇的效果,经常是根据题意列出指数函数,再根据题意将指数函数转化为指数方程或不等式,然后两边取对数,即求解指数方程的解或指数不等式的解集.
四、分段函数的应用?
●案例3某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元,?
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式).
(2)当学生数是多少时,两家旅行社的收费一样??
(3)就学生数x讨论哪家旅行社更优惠.?
【探究】 (1)y甲=120x+240,y乙=240·60%(x+1)=144x+144.
(2)根据题意,得120x+240=144x+144,解得x=4.?
∴当学生人数为4人时,两家旅行社的收费一样多.?
(3)当y甲>y乙时,120x+240>144x+144,解得x<4;?
当y甲<y乙时,120x+240<144x+144,解得x>4.?
∴当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠.
【溯源】 信息量大是数学应用题的一大特点,当所给条件错综复杂,一时难以理清关系时,可采用列表分析的方法,有些典型应用题也可以画出相应的图形,建立坐标系等??
五、二次函数模型的应用
●案例4某工厂生产某产品x吨所需费用P元,而卖出x吨的价格为每吨Q元,已知P=1 000+5x+x2,Q=a+,若生产出的产品能全部卖掉,且当产量为150吨时利润最大,此时每吨价格为40元,求实数a、b的值.?
【探究】 利润=销售收入-生产费用(即成本).?
设利润为y元,则
y=Qx-P=ax+-1 000-5x-x2?
=(-)x2+(a-5)x-1 000,
依题意得化简得解得
【溯源】 有些应用题已给出问题的基本数学模型,或一部分数学模型,还有一部分要求自己建模,这就需要进一步分析相等关系,这种题型文字叙述相对较少,可以加大计算推理能力的要求,是高考的常考题型.
活学巧用
1. 某区域截止2006年底已经全部完成退耕还林总面积1万亩.为进一步改善生态环境,加强绿色区域建设,从2007年起开始退耕还湖128亩,随后每年的退耕还湖面积比上一年增加50%,试问:
(1)该区域在2013年应该退耕还湖面积为多少亩??
(2)到哪一年底,该区域退耕还湖的全面积开始超过该区域退耕面积总量的?
【解】 (1)该区域逐年退耕还湖面积组成等比数列{an},其中a1=128,q=1.5,?
则在2013年应该退耕还湖面积为a7=a1·q6=128×1.56=1 458(亩).
(2)记Sn=a1+a2+…+an,依据题意,得>.于是Sn= >5 000(亩),即1.5n>,则有n≈7.5,因此n≥8.∴到2014年底,该区域退耕还湖的全面积开始超过该区域退耕面积总量的.
2. 农民收入由工资性收入和其他收入两部分构成.2005年某偏远地区农民人均收入为3 150元(其中工资性收入为1 800元,其他收入为1 350元), 预计该地区自2006年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其他收入每年增加160元.根据以上数据,2010年该地区农民人均收入介于(  )?
A. 4 200元~4 400元
B. 4 400元~4 600元
C. 4 600元~4 800元
D. 4 800元~5 000元
【思路解析】 设2010年该地区农民人均收入为x元,根据题意,得x=1 800(1+6%)5+1 350+160×5=1 800×1.065+2 150≈4 558.8,因此,选B.
【答案】 B
3. 某工厂2006年生产一种产品2万件,计划从2007年开始每年的产量比上一年增长20%.则这家工厂生产这种产品的年产量超过12万件时是年.
(已知lg2=0.301 0,lg3=0.477 1)(  )?
A. 2015
B. 2016
C. 2017
D. 2018
【思路解析】 此题是平均增长率问题的变式考题,哪一年的年产量超过12万件,其实就是求在2006年的基础上再过多少年的年产量大于12万件,即求经过多少年.?
设再过n年这家工厂生产这种产品的年产量超过12万件,根据题意,得 2(1+20%)n>12,即?1.2n>6,两边取对数,得 nlg1.2>lg6,
∴ n> = =.?∴n=10.
∴ 即2006+10=2016(年).因此,选B.
【答案】 B?
4. 某县计划十年内产值翻两番,则产值平均每年增长的百分率为.(lg2=0.301 0,lg11.49=1.060 2)
【思路解析】 设产值平均年增长率为x,则(1+x)10=4.?
两边同取以10为底的对数得10lg(1+x)=2lg2.
∴lg(1+x)= =0.060 2.
∴1+x=10 0.060 2.?
又∵?lg11.49=1.060 2,?
∴11.49=10 1.060 2=10·10 0.0602.∴10 0.060 2=1.149.?
因此1+x=1.149,x=0.149=14.9%.
【答案】 14.9%?
5. 一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱.?
【解】 本题所给条件较多,数量关系比较复杂,可以列表分析:
 设每天从报社买进x份(250≤x≤400).
数量(份)
价格(元)
金额(元)
买进
30x
0.20
6x
卖出
20x+10×250
0.30
6x+750
退回
10(x-250)
0.08
0.8x-200
  则每月获利润y=[(6x+750)+(0.8x-200)]-6x=0.8x+550(250≤x≤400),
y在x∈[250,400]上是一次函数,
∴x=400时,y取得最大值870元.
答:每天从报社买进400份时,每月获的利润最大,最大利润为870元.
6. 某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,y与月份x的关系,模拟函数可以选用二次函数或函数y=a·bx+ c(a、b、c为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.?
【解】 设二次函数为y=px2+qx+r,由已知得
解之,得
所以y=-0.05x2+0.35x+0.7.当x=4时,y1=-0.05×42+0.35×4+0.7=1.3.
又对函数y=a·bx+ c,由已知得解之,得
∴y=-0.8×()x+1.4,当x=4时,y=-0.8×()4+1.4=1.35.
根据四月份的实际产量为1.37万元,而|y2-1.37|=0.02<0.07=|y1-1.37|.
所以函数y=-·()x+作模拟函数较好
7. 某学生离家去学校,为了锻炼身体,一开始跑步前进,跑累了再走余下的路,下图中,纵轴表示离学校的距离,横轴表示出发后的时间,则下列四个图形中较符合该生走法的是(  )
【思路解析】 由于d 0表示学生的家与学校的距离,因而首先排除A、C选项,又因为图中线段的斜率的绝对值表示前进速度的大小,因而排除B,故只能选择D.?
【答案】 D?
8. 如下图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A—B—C—M运动时,以点P经过的路程x为自变量,三角形APM的面积函数的图象形状大致是(  )?
【思路解析】 本题主要考查求分段函数的解析式,如图所示,
当0≤x≤1时,y=·x·1=x;?
当1<x≤2时,y=1-(x-1)-(2-x)-=-x+;
当2<x≤2.5时,y=(-x)×1=-x.?
则y=
图形为A.
【答案】 A?
3.2 函数模型应用举例
课堂探究
探究一一次或二次函数模型的应用
应用一次函数与二次函数的有关知识,可解决生产、生活实际中的最大(小)值的问题.解答时需遵循的基本步骤是:(1)反复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利用数学方法,求解数学问题;(4)检验所得结果,译成实际答案.
【典型例题1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
R(x)=其中x是仪器的月产量.
(1)将月利润表示为月产量的函数f(x).
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)
思路分析:由题目可获取以下主要信息:①总成本=固定成本+100x;②收益函数为一分段函数.
解答本题可由已知总收益=总成本+利润,知利润=总收益-总成本.由于R(x)为分段函数,所以f(x)也要分段求出,将问题转化为分段函数求最值问题.
解:(1)设每月产量为x台,则总成本为20 000+100x,从而f(x)=
(2)当0≤x≤400时,f(x)=-(x-300)2+25 000,
∴当x=300时,有最大值25 000;
当x>400时,f(x)=60 000-100x是减函数.
f(x)<60 000-100×400<25 000.
∴当x=300时,f(x)的最大值为25 000.
∴每月生产300台仪器时,利润最大,最大利润为25 000元.
探究二 指数函数模型的应用
递增率问题广泛存在于生产和生活中,研究并解决这类问题是中学数学的重要应用方向之一,这类问题解决的关键是理解“递增率”的意义:递增率是所研究的对象在“单位时间”内比它在“前单位时间”内的增长率,切记并不总是只和开始单位时间内的值比较.具体分析问题时,应严格计算并写出前3~4个单位时间的具体值,通过观察、归纳出规律后,再推广概括为数学问题,然后,求解此数学问题.
【典型例题2】 截止到2013年底,我国人口约为13.71亿,若今后能将人口平均增长率控制在1%,经过x年后,我国人口为y亿.
(1)求y与x的函数关系式y=f(x);
(2)求函数y=f(x)的定义域;
(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.
思路分析:解答本题先根据增长率的意义,列出y与x的函数关系式,然后再求解相应问题.
解:(1)2013年底人口数:13.71亿.
经过1年,2014年底人口数:
13.71+13.71×1%=13.71×(1+1%)(亿).
经过2年,2015年底人口数:
13.71×(1+1%)+13.71×(1+1%)×1%
=13.71×(1+1%)2(亿).
经过3年,2016年底人口数:
13.71×(1+1%)2+13.71×(1+1%)2×1%
=13.71×(1+1%)3(亿).

∴经过的年数与(1+1%)的指数相同.
∴经过x年后人口数为13.71×(1+1%)x(亿).
∴y=f(x)=13.71×(1+1%)x.
(2)理论上指数函数定义域为R.
∵此问题以年作为时间单位,
∴{x|x∈N*}是此函数的定义域.
(3)y=f(x)=13.71×(1+1%)x.
∵1+1%>1,13.71>0,
∴y=f(x)=13.71×(1+1%)x是增函数,
即只要递增率为正数,随着时间的推移,人口的总数总在增长.
规律总结1.本题涉及平均增长率的问题,求解可用指数型函数模型表示,通常可以表示为y=N·(1+p)x(其中N为原来的基础数,p为增长率,x为时间)的形式.
2.在实际中,有关人口增长、银行利率、细胞分裂等增长问题,都常用到指数型函数模型.
探究三对数函数模型的应用
直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,利用对数运算性质求解.
【典型例题3】 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2,单位是m/s,其中Q表示燕子的耗氧量.
(1)求燕子静止时的耗氧量是多少个单位;
(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?
思路分析:由题意可知飞行速度是耗氧量的函数,由函数表达式分别给变量赋值,求出另外的量即可.
解:(1)由题意知,当燕子静止时,它的速度为0,代入题目所给公式可得0=5log2,
解得Q=10,
即燕子静止时的耗氧量为10个单位.
(2)将耗氧量Q=80代入公式得v=5log2=5log28=15(m/s),即当一只燕子耗氧量为80个单位时,速度为15 m/s.
探究四 易错分析
易错点 因对图形信息理解不准确导致解答错误
【典型例题4】 已知甲、乙两物体在同一直线上向同一方向做匀速直线运动,其位移y(km)和运动时间x(h)(0≤x≤5)的关系如图所示,给出以下说法:
①甲、乙运动的速度相同,都是5 km/h;
②甲、乙运动的时间相同,开始移动后相等时间内甲的位移比乙大;
③甲、乙运动的时间相同,乙的速度是4 km/h;
④当甲、乙运动了3 h后,甲的位移比乙大3 km,但乙在甲前方2 km处.
其中正确的说法是(  )
A.③ B.①②③ C.①③④ D.②③④
错解:①和③一定是一对一错,经分析,③是对的;对于②,因为乙的图象在甲的上方,所以应是甲的位移比乙小,故②错误;对于④,当甲、乙运动了3 h,甲的位移为3×5=15(km),乙的位移为5+3×4=17(km),故④错误.故选A.
错因分析:本题的图象给我们的信息是,甲、乙的运动时间以及运动位移,通过图象可知甲、乙的出发点不同、速度不同,一是由于忽视甲、乙的出发点不同而导致错解;二是忽略了位移是跟速度与时间相关的,在相同的时间内,同一方向上速度快的位移大.
正解:①和③一定是一对一错,经分析③是对的;对于②,甲、乙运动的时间显然都是5 h,因为甲的速度为5 km/h,乙的速度为4 km/h,所以开始移动后相等时间内甲的位移比乙大,故②正确;对于④,当甲、乙运动了3 h,甲的位移为3×5=15(km),乙的位移为3×4=12(km),又因为乙是从甲前方5 km处开始运动的,所以甲的位移比乙大3 km,但乙在甲前方2 km处,所以④正确,故选D.
答案:D
3.2 函数模型应用举例
预习导航
课程目标
学习脉络
1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢.
2.理解直线上升、对数增长、指数爆炸的含义,以及其三种函数模型的性质的比较.
3.会分析具体的实际问题,能够建模解决实际问题.
一、四种函数模型的性质
二、三种增长函数模型的比较
1.指数函数和幂函数
一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.
2.对数函数和幂函数
对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.
3.指数函数、对数函数和幂函数
在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们增长的速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢,因此总存在一个x0,当x>x0时,就会有logax<xn<ax.
名师点拨直线模型:即一次函数模型y=kx+b(k≠0).现实生活中,很多事例可以用直线模型表示,例如,匀速直线运动的时间和位移的关系,弹簧的伸长与拉力的关系(在弹性限度内)等.直线模型的增长特点是直线上升(x的系数k>0),通过图象可以很直观地认识它.
3.2 函数模型应用举例
课堂探究
探究一 已知函数模型的应用题
已知函数模型的应用题主要有两种情况:一是已知某量满足某函数式,据此列出所求量的函数式,然后利用函数知识解答相关问题;二是已知所求量满足的函数式,但式中含有参数,像这样的问题,应先根据已知条件求出函数式中的参数,然后再据此函数解答相关问题.
【典型例题1】 物体在常温下的温度变化可以用牛顿冷却规律来描述,设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)×,其中Ta表示环境温度,h称为半衰期,现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min,那么降温到35 ℃时,需要多长时间?
解:先设定半衰期h,由题意知
40-24=(88-24)×,即=,
解之,得h=10,
故原式可化简为T-24=(88-24)×,
当T=35时,代入上式,得,35-24=(88-24)×,即=,
两边取对数,用计算器求得t≈25.
因此,约需要25 min,可降温到35 ℃.
探究二 建立函数模型的应用题
当实际应用题中没有给出函数模型时,其解题步骤是:
第一步:认真读题,缜密审题,确切理解题意,明确问题的实际背景,找出题意中所蕴含的函数关系;
第二步:恰当地设未知数,列出函数解析式,将实际问题转化成函数问题,即实际问题函数化;
第三步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解;
第四步:将所得函数问题的解还原成实际问题的结论,要注意检验所得的结论是否符合实际问题的意义.
【典型例题2】 某投资公司投资甲、乙两个项目所获得的利润分别是M(亿元)和N(亿元),它们与投资额t(亿元)的关系有经验公式:M=,N=t.今该公司将用3亿元投资这两个项目,若设甲项目投资x亿元,投资这两个项目所获得的总利润为y亿元.
(1)写出y关于x的函数表达式;
(2)求总利润y的最大值.
思路分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)转化为求(1)中函数的最大值.
解:(1)当甲项目投资x亿元时,获得利润为M=(亿元),此时乙项目投资(3-x)亿元,获得利润为N=(3-x)(亿元),
则有y=+(3-x),x∈[0,3].
(2)令=t,t∈[0,],则x=t2,
此时y=t+(3-t2)=-(t-1)2+.
∵t∈[0,],
∴当t=1,即x=1时,y有最大值,为,
即总利润y的最大值是亿元.
探究三 拟合函数模型的应用题
对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题.函数拟合与预测的一般步骤是:
(1)能够根据原始数据、表格,绘出散点图.
(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况一般是不会发生的.因此,使实际点尽可能地均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.
(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.
(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.
【典型例题3】 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x cm与当年灌溉面积y hm2.现有连续10年的实测资料,如下表所示.
年序
最大积雪深度x/cm
灌溉面积y/hm2
1
15.2
28.6
2
10.4
21.1
3
21.2
40.5
4
18.6
36.6
5
26.4
49.8
6
23.4
45.0
7
13.5
29.2
8
16.7
34.1
9
24.0
45.8
10
19.1
36.9
(1)描点画出灌溉面积y hm2随积雪深度x cm变化的图象;
(2)建立一个能基本反映灌溉面积变化的函数模型y=f(x),并画出图象;
(3)根据所建立的函数模型,若今年最大积雪深度为25 cm,则可以灌溉的土地面积是多少?
思路分析:首先根据表中数据作出散点图,然后通过观察图象来判断问题所适用的函数模型.
解:(1)描点作图如图甲:
(2)从图甲中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y(hm2)和最大积雪深度x(cm)满足线性函数模型y=a+bx(a,b为常数,b≠0).
取其中的两组数据(10.4,21.1),(24.0,45.8),
代入y=a+bx,得
用计算器可算得a≈2.4,b≈1.8.
这样,我们得到一个函数模型y=2.4+1.8x.作出函数图象如图乙,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系.
(3)由(2),得当x=25时,y=2.4+1.8×25=47.4,即当最大积雪深度为25 cm时,可以灌溉土地47.4 hm2.
探究四 易错辨析
易错点 求函数最值时忽略了实际情况对函数定义域的限制
【典型例题4】 如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分别截取AE,AH,CG,CF,且AE=AH=CG=CF=x.
问:当x为何值时,四边形EFGH的面积最大?并求出最大面积.
错解:设四边形EFGH的面积为S,
则S=ab-2
=-2x2+(a+b)x
=-22+.
根据二次函数的性质可知,
当x=时,S有最大值.
错因分析:错解中没有考虑所得二次函数的定义域,就直接利用二次函数的性质求解,从而导致出错.
正解:设四边形EFGH的面积为S,则
S=ab-2
=-2x2+(a+b)x
=-22+,x∈(0,b].
因为0<b<a,
所以0<b<.
当≤b,即a≤3b时,
当x=时,S有最大值;
当>b,即a>3b时,
易知S(x)在(0,b]上是增函数,
所以当x=b时,S有最大值ab-b2.
综上可得,当a≤3b,x=时,S有最大值;当a>3b,x=b时,S有最大值ab-b2.
反思利用函数解决实际问题时,要遵循定义域优先的原则,即必须考虑到自变量的实际意义,否则会出现错解.
3.2 函数模型应用举例
预习导航
课程目标
学习脉络
1.会利用已知函数模型解决实际问题.
2.能建立函数模型解决实际问题.
3.了解拟合函数模型解决实际问题.
一、函数模型应用的两个方面
1.利用已知函数模型解决问题;
2.建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.
二、应用函数模型解决问题的基本过程
名师点拨在应用题中列出函数解析式的三种方法:
解答应用题的实质是要转化题意,寻找所给条件中含有的相等关系,用等式把变量联系起来,然后再整理成函数的解析式的形式.常用的方法有:
(1)待定系数法:若题目给出了函数模型,则可用待定系数法求出函数解析式中相关参数的值,从而得到确定的函数解析式.
(2)归纳法:先让自变量x取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数解析式.
(3)方程法:用x,y表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出关于x,y的二元方程;把x看成常数,解方程得y(即函数关系式),此种方法形式上和列方程解应用题类似,故称为方程法.
自主思考解决未知函数模型的实际问题的关键是什么?
提示:关键是选择或建立恰当的数学模型.
3.2 函数模型应用举例
知识导学
通过建立实际问题的数学模型来解决问题的方法称为数学模型方法,简称建模.
解决函数应用题的基本步骤:
第一步:认真读题,缜密审题,确切理解题意,明确问题实际背景,然后进行科学的抽象、概括,将实际问题转化成数学问题,即实际问题数学化;
第二步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解;
第三步:将所得函数问题的解代入实际问题进行验证,看是否符合实际,并对实际问题作答.
解决函数应用题的关键有两点:一是实际问题数学化,即在理解的基础上,通过列表、画图,引入变量,建立直角坐标系等手段把实际问题翻译成数学问题,把文字语言翻译成数学符号语言;二是对得到的函数模型进行解答,得出数学问题的解,要注重数学能力的培养.
要熟悉一次函数、二次函数、指数函数、对数函数和幂函数的图象和性质,有助于我们开拓思路提高运算速度.
用待定系数法求出函数解析式,待定系数法是一种非常重要的数学方法,常常首先根据题意,设出函数解析式,取特殊值代入函数解析式得到方程组,由方程组求出待定系数.
记忆口诀:
(1)收集数据,画图提出假设;
(2)依托图表,理顺数量关系;
(3)抓住关键,建立函数模型;
(4)精确计算,求解数学问题;
(5)回到实际,检验问题结果.
疑难导析
解决函数应用题关键在于理解题意,提高学生的阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化.另一方面,要不断拓宽学生的知识面,提高其间接的生活阅历,如经常介绍一些诸如物价、行程、产值、利润、环保等实际问题,也可以涉及角度、面积、体积、造价等最优化问题,逐步渗透、细水长流,培养学生实际问题数学化的意识和能力.
问题导思
要解好数学应用题,首先应当加强提高阅读理解能力,然后将普通语言转化为数学语言和数学符号,实际问题转化为数学问题,再利用数学方法、数学思想去解决问题,这个过程的每一个环节都必须注意.
解答应用题的实质是要转化题意,把实际问题转化为数学问题,然后灵活选择适当的方法列出函数关系式,从而求解.
典题导考
绿色通道
从这个例题我们看到,底数大于1的指数函数模型比一次项系数为正数的一次函数模型增长速度要快得多,而后者又比真数大于1的对数函数模型要快,从这个实例我们可以体会到对数增长,直线上升,指数爆炸等不同函数类型增大的含义.
典题变式
1.某工厂今年1月、2月、3月生产某种产品的数量分别为1万件、1.2万件、1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=a·bx+c(其中,a、b、c为常数).已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
答案:选择y=-0.8×0.5x+1.4更合适.
2.一家人(父亲、母亲、孩子)去某地旅游,有两个旅行社同时发出邀请,且有各自的优惠政策.甲旅行社承诺,如果父亲买一张全票,则其家庭成员均可享受半价;乙旅行社承诺,家庭旅行算团体票,按原价的计算.这两家旅行社的原价是一样的,若家庭中孩子数不同,试分别列出两家旅行社优惠政策实施后的以孩子个数为变量的收费表达式,比较选择哪家更优惠.
答案:当家庭只有1个孩子时,两家随便选择,当孩子数多于1个时,应选择甲旅行社.
3.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2 km者均按此价收费,行程超过2 km,按1.8元/km收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1 km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于…( )
A.5~7 km B.9~11 km C.7~9 km D.3~5 km
答案:A
绿色通道
在求y=的最小值时可以移项、平方去根号,然后用判别式法求得.
典题变式
1.一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月内(以30天计算)有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
答案:每天从报社买进400份时,每月所获利润最大,最大利润为870元.
2.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为( )(参考数据lg2=0.301 0,lg3=0.477 1)
A.5 B.10 C.14 D.15
答案:C
黑色陷阱
不明白题意,一味地想分别解出M和m的值,将会步入思维陷阱.
典题变式 容器中有浓度为m%的溶液a升,现从中倒出b升后用水加满,再倒出b升后用水加满,这样进行了10次后溶液的浓度为( )
A.()10·m% B.(1-)10·m% C.( )9·m% D.(1-)9·m%
答案:B
绿色通道
这是一个分段函数类型的应用问题,注意判断自变量在分段
函数的哪一段取值范围内是这个题的解题关键.
典题变式
1.某地方政府为保护地方电子工业发展,决定对某一进口电子产品征收附加税.已知这种电子产品国内市场零售价为每件250元,每年可销售40万件,若政府增加附加税率为每百元收t元时,则每年销售量将减少 t万件.
(1)将税金收入表示为征收附加税率的函数;
(2)若在该项经营中每年征收附加税金不低于600万元,那么附加税率应控制在什么范围?
答案:(1)所求的函数关系式为y=250(40-t)t%.
(2)税率应控制在10%~15%之间为宜.
2.在国内投寄平信,每封不超过20克重应付邮资80分,超过20克不超过40克重付邮资160分,将每封信应付邮资(分)表示为信重(0<x≤40=克的函数,其表达式f(x)为________.
答案:
绿色通道
一般来说,若题中已给出数学模型,只要解模即可,较常用的方法是用待定系数法解模.
典题变式
某人从A地到B地乘坐出租车,有两种方案,第一种方案:租用起步价10元,每千米价为1.2元的汽车;第二种方案:租用起步价为8元,每千米价为1.4元的汽车,按出租车管理条例,在起步价内,不同型号行驶的里程是相等的.则此人从A地到B地选择哪一种方案比较合适?
答案:当A、B距离在起步价以内时,选择第二种方案;当A、B距离在(a,a+10)时,选择第二种方案;当A、B距离恰好为a+10时,选择两种方案均可以;当A、B距离大于a+10时,选择第一种方案.(其中a为起步价内汽车行驶的里程)