第1课时 三角形中边的关系
教学目标
【知识与技能】
1.认识三角形,理解三角形的边角关系.
2.知道三角形的高、中线、角平分线等概念,并能作出三角形的一边上的高.
3.理解等腰三角形及其相关概念.
【过程与方法】
1.经历三角形边长的数量关系的探索过程,理解三角形的三边关系.
2.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.
【情感、态度与价值观】
1.带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲.
2.帮助学生树立几何知识源于生活并服务于生活的意识.
重点难点
【重点】
理解并掌握三角形的三边关系.
【难点】
已知三条线段能构成三角形,求表示线段长度的代数式中字母的取值范围.
教学过程
一、创设情境,导入新知
教师多媒体出示:
教师把事先收集的与三角形有关的生活图片运用多媒体播放,让学生对三角形有一个感性认识,如图所示.
教师活动:通过播放图片,引导学生认识三角形,并提出:图(b)中能找出几个三角形,这些三角形具有怎样的特性?21教育网
学生活动:回顾小学学过的三角形,与同桌交流,找出图(b)中的三角形.
教师归纳:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.
教师多媒体出示:
师:你能指出这个三角形的顶点有几个吗?分别是什么?
生:这个三角形的顶点有三个,分别是A、B、C.
师:这个三角形的边呢?
生:边有三条,分别是AB、BC和CA.
师:对.我们把这个三角形记作“△ABC”,读作“三角形ABC”.三角形的三边有时用它所对角的相应小写字母表示.如边AB对着∠C,记作c;边BC对着∠A,记作a;边CA对着∠B,记作b.也就是说,一边可用两个大写字母或一个小写字母表示,角可用“∠”加上一个大写字母表示.2·1·c·n·j·y
师:按边分类时,你知道的都有哪些三角形?
生:等边三角形.
师:等边三角形是三条边都相等的三角形.如果不是三条边都相等,比如两条边相等,这类三角形叫什么三角形呢?【来源:21·世纪·教育·网】
生:等腰三角形.
师:对,等边三角形是等腰三角形的特例.如果三条边都不相等呢?
学生思考.
师:我们把这类三角形叫做不等边三角形.
教师多媒体出示:
教师板书:
三角形(按边分)
师:在等腰三角形中,你能区分哪条边是腰,哪条边是底吗?
生:相等的两边叫做腰,第三边叫做底边.
师:对.我们现在再来认识一下顶角和底角.两腰的夹角叫做顶角,腰与底边的夹角叫做底角.
二、共同探究,获取新知
师:请大家任意画出一个三角形,用刻度尺测量一下,并说说任意两边之和与第三边的关系.
学生操作.
生:任意两边之和大于第三边.
师:对,你有没有其他的方法来证明三角形的任意两边之各大于第三边呢?
生:由所有两点之间的连线中线段最短得到.
教师板书:
三角形中任何两边的和大于第三边.
师:对.根据不等式的性质,我们能得到三角形中任意两边的差小于第三边.(教师板书)如果三条线段要构成一个三角形,它们就要满足这两个条件,但是在实际计算中,需要验证六个不等式都成立吗?21世纪教育网版权所有
学生思考,讨论.
师:不等式a+b>c,你把a移到不等式的右边,这个不等式如何表示?
生:b>c-a.
师:对,也就是c-a学生思考.
生甲:同样的道理,由两个三角形两边之和大于第三边,可以得到两个三角形两边之差小于第三边.
生乙:我们只要验证“三角形中任何两边的和大于第三边”和“三角形中任何两边的差小于第三边”,因为第二个条件由第一个得到,所以我们只要满足第一个条件即可.下面请大家看一个例题.www.21-cn-jy.com
教师多媒体出示:
【例】 等腰三角形中,周长为18cm.
(1)如果腰长是底边长的2倍,求各边长;
(2)如果一边长为4cm,求另外两边长.
师:请同学们思考后回答.
生:设等腰三角形的底边长为xcm,则腰长为2xcm,根据题意,得
x+2x+2x=18,解方程得x的值,即底边长,然后求出腰长.
师:当已知一边长为4cm,但并未指明它是腰还是底时,应该怎么求另外两边的长呢?
生:要分4cm是腰长和底边长两种情况来讨论.
师:对.还要注意对得到的三条线段能否构成一个三角形进行讨论.
教师找两名学生板演,其余同学在下面做,然后集体订正.
解:(1)设等腰三角形的底边长为 xcm,则腰长为2xcm.根据题意,得
x+2x+2x=18.
解方程,得
x=3.6.
所以三角形的三边长分别为3.6cm、7.2cm、7.2cm.
(2)若底边长为4cm,设腰长为xcm,则有
2x+4=18.
解方程,得
x=7.
若一条腰长为4cm,设底边长为xcm,则有
2×4+x=18.
解方程,得
x=10.
因为4+4<10,所以,以4cm为一腰不能构成三角形.
所以,三角形的另外两边长都是7cm.
三、练习新知
师:请同学们判断用下列长度的三条线段能否组成一个三角形.
(1)1cm、2cm、3cm;
(2)2cm、3cm、4cm;
(3)4cm、5cm、6cm;
(4)5cm、6cm、10cm.
教师找四名同学回答,然后集体订正.
师:同学们可以总结出判断三条线段能否构成一个三角形的简便方法吗?
以题(2)为例,根据三角形任意两边的和大于第三边,我们要作几个判断?
生:三个.
师:哪三个?
生:2+3>4,2+4>3,3+4>2.
师:你能不能用一个判断的结果得到这三条线段能否构成三角形?
生:……
师:2+4一定大于3,3+4一定大于2,因为长度为4的这一条边长已经大于3了,同样的长度为3或4的一条边长已经大于2了.21·cn·jy·com
生:只要看最长的一边是否小于其他两边之和.
师:很好.
四、课堂小结
师:今天我们又学习了什么内容?
生:我们学习了三角形的分类,等腰三角形的底边和腰,三角形三边的关系等.
教师补充完善.
教学反思
通过本节课的学习,使学生认识到不是任意的三条线段都能构成三角形,并让学生知道怎样判断三条线段是否能构成三角形.在判断三条线段能否构成三角形时,我们不对任意两边之和是否大于第三边、任意两边之差是否小于第三边一一验证,因为后面的式子可由前面的变形得到.事实上,只要看最长的一边是否小于其他两边之和即可,因为当这个条件成立时,其他的两边之和大于第三边的式子也成立.通过这些方法的探讨使学生养成积极思考、简化计算的习惯.21cnjy.com
第2课时 三角形中角的关系
教学目标
【知识与技能】
1.掌握三角形的内角和定理.
2.能应用三角形的内角和定理解决一些简单的实际问题.
【过程与方法】
经历实验探究,得出三角形的内角和定理.
【情感、态度与价值观】
1.通过带领学生探究三角形的角的数量关系,引起学生的好奇心,激发学生的求知欲.
2.发展学生的合情推理能力,使学生养成独立思考的习惯.
重点难点
【重点】
三角形的内角和定理.
【难点】
三角形内角和定理的证明过程.
教学过程
一、创设情境,导入新知
师:上节课我们把三角形按边来分类,并研究了三角形三边之间的关系,同学们还记得三角形的三边之间是什么关系吗?21教育网
生:记得.三角形中任意两边之和大于第三边,任意两边之差小于第三边.
师:对.那么如果按角来分类呢?
生:分为锐角三角形、直角三角形和钝角三角形.
师:你能说说它们分别是怎样定义的吗?
生:能.三角形中,三个角都是锐角的三角形叫做锐角三角形,有一个角是直角的三角形叫做直角三角形,有一个角是钝角的三角形叫做钝角三角形.21世纪教育网版权所有
师:在介绍等腰三角形时,我们对它的边进行了区分,分为腰和底边.直角三角形中,我们怎么对它的边长加以区分呢?21·cn·jy·com
生:直角三角形中夹直角的两边叫做直角边,直角相对的边叫做斜边.
师:对.我们分别给它们取一个名字,这样以后就容易指出了.直角三角形可以写成“Rt△ABC”,我们把不是直角三角形的归为一类,称为斜三角形,所以斜三角形包括锐角三角形和钝角三角形.2·1·c·n·j·y
二、共同探究,获取新知
师:我们再回忆一下,在一个三角形中三个内角之间有什么关系?
生:三角形的三个内角和是180°.
师:你还记得在小学时,我们是怎样知道这个关系的吗?
生:用折叠和剪拼的方法得到的.
师:好.请同学们拿出一张纸,画出一个三角形,并将它剪下来.
学生交流讨论后操作.
师:将纸片三角形的一角折向其对边,使顶点落在对边上,折线与对边平行,然后把另外两角相向对折,使其顶点与已折角的顶点嵌合.21·世纪*教育网
学生操作.
教师多媒体出示:
师:这样我们就得到了什么结论?
生:三角形的内角和是180°.
教师多媒体出示:
师:现在请同学们自己用剪拼的方法证明一下,看你们能不能得到这样的结果.
学生操作.
生:能得到同样的结论:三角形的内角和是180°.
师:很好!你们还有什么方法来证明这个结论吗?
生:用量角器量.
师:对,你们在纸上画出一个三角形,然后用量角器量它的三个内角,看它们有什么关系?
学生操作后回答.
师:同学们思考一下一个三角形中最多有几个钝角?
学生计论后回答:一个.
师:你是怎样得出的结论?
生:因为一个三角形的内角和是180°,钝角是大于90°的角,若有两个钝角,三个内角的和就超过180°了,所以至多有一个钝角.21cnjy.com
师:最多有几个直角呢?
生:一个.
师:为什么呢?
生:与钝角情况类似,若有两个直角,它们的和就已经是180°了,再加上第三个角的度数,内角和就超过180°了.www-2-1-cnjy-com
师:你分析得很好!
三、巩固练习,加深理解
教师多媒体出示:
【例】 已知:如图所示,△ABC中,BD⊥AC,垂足为D,∠ABD=54°,∠DBC=18°.求∠A和∠C的度数.2-1-c-n-j-y
师:怎么求∠A的大小?把它看作哪个三角形的内角求?
生:∠A是△ABD的内角,因为BD⊥AC,所以∠BDA=90°,∠ABD的度数已知,所以用三角形的内角和定理就可以求出∠A的大小.www.21-cn-jy.com
师:很好!∠C的度数怎么求呢?把它作为哪个三角形的内角来求呢?
生:可以放在△ABC中求,也可以放在△DBC中求.
师:对.当∠C作为△ABC的内角时怎么求呢?
生:∠A+∠ABD+∠DBC+∠C=180°,所以∠C=180°-∠A-(∠ABD+∠DBC),然后把各个角的度数代入即可.21*cnjy*com
师:当∠C作为△DBC的内角时怎么求呢?
生:因为BD⊥AC,所以∠BDC=90°,∠BDC+∠DBC+∠C=180°,所以∠C=180°-∠BDC-∠DBC,然后把各角的度数代入即可.【来源:21·世纪·教育·网】
教师板书计算过程.
解:由于BD⊥AC,(已知)
所以∠ADB=∠CDB=90°.
在△ABD中,
∠A+∠ABD+∠ADB=180°,(三角形的三个内角和等于180°)
∠ABD=54°,∠ADB=90°,(已知)
∠A=180°-∠ABD-∠ADB
=180°-54°-90°=36°.
在△ABC中,
∠C=180°-∠A-(∠ABD+∠DBC)
=180°-36°-(54°+18°)=72°.
四、课堂小结
师:我们今天学习了什么内容?
学生回答,教师补充完善.
师:你还有什么疑问吗?
学生提问,教师解答.
教学反思
本节课学生通过自主探索、合作交流、认真探究,从而证明出三角形的内角和等于180°,并按照“探究性学习方式”的三个层次要素设计学生的学习过程:“回忆旧知、引入新知”,“分析交流、探索规律”,“学以致用、提高能力”,使整节课既有规律性又有艺术性.教学过程中,不浪费任何一个促使学生动手操作、实践获得真知的机会,以师生互动、生生互动使学生主动自觉地发现结果,找到方法,培养学生的操作、观察,分析能力和思维的全面性.
第3课时 三角形中几条重要线段
教学目标
【知识与技能】
1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线.21·cn·jy·com
2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点.
【过程与方法】
经历探究三角形的高、角平分线、中线的过程,掌握其应用方法,发展空间观念.
【情感、态度与价值观】
1.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.21教育网
2.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识.
重点难点
【重点】
三角形的三条高、中线和角平分线的画法.
【难点】
钝角三角形三条高的画法.
教学过程
一、创设情境,导入新知
师:我们在上节课把三角形按角进行了分类,我请几个同学回答一下什么是锐角三角形、什么是直角三角形、什么是钝角三角形.21cnjy.com
生甲:在三角形中,三个角都是锐角的三角形叫做锐角三角形.
生乙:在三角形中,有一个角是直角的三角形叫做直角三角形.
生丙:在三角形中,有一个角是钝角的三角形叫做钝角三角形.
师:很好!我们上节课学习了一个重要的定理,大家还记得吗?
生:记得.三角形三个内角的和等于180°.
师:很好!这节课我们继续学习三角形的有关知识.
二、共同探究,获取新知
师:三角形中三条边、三个角是它的六个基本元素,除此之外,同学们通过预习,知道它还有什么元素吗?
生:角平分线.
师:什么是角平分线呢?
生:三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线.
师:还有什么元素?
生:中线.
师:什么是中线呢?
生:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.
师:还有什么元素呢?
生:高.
师:什么是高呢?
生:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高.
学生熟记定义.
师:你能根据这些线的定义作出这些线吗?
生:能.
师:现在请大家画一个三角形,并作出各个角的平分线.
学生操作,教师巡视.
教师在黑板上演示画一个角的平分线.
∠1=∠2,BD是∠ABC的平分线.
师:现在请大家重新画一个三角形,并作出这个三角形的三条中线.
学生操作,教师巡视.
教师在黑板上演示画一条中线.
BD=DC,AD是BC边上的中线.
师:现在请大家重新画一个三角形,并作出这个三角形的三条高.
学生操作,教师巡视.
教师在黑板上演示画三种类型的三角形的一条高线.
锐角三角形BC边上的高
直角三角形BC边上的高
钝角三角形BC边上的高
师:你能用折叠的方法作出一个角的平分线吗?
学生思考,交流.
生:能.
师:你是怎样做的?
生:先作出一个三角形,把它裁剪下来,我折叠要平分的这个角使它的两边重合,这样得到的折痕与这个角的对边有一个交点,连接这个角的顶点与这个交点得到的线段就是这个三角形的角平分线.www.21-cn-jy.com
师:你太聪明了.大家现在都知道怎么作的吗?
生:知道.
师:那么请同学们动手做一做.
学生操作.
师:你能用折叠的方法作出三角形的一条中线吗?
学生思考,交流.
生:能.
师:你是怎么做的?
生:要作出三角形一边上的中线,我折叠这条边,使其两端点重合,折痕与这条边的交点,就是这条边的中点.连接这条边所对角的顶点与这个中点,所得的线段就是这条边上的中线.
师:现在请大家动手作出中线.
学生操作.
师:你能用折叠的方法作出三角形一边上的高吗?
学生讨论.
生:过这边所对角的顶点折叠三角形,使这条边的两段重合,这样就得到了三角形的高.
师:很好,请大家动手做一做.
学生操作,教师巡视指导.
三、作图练习,理解定义
师:三角形的角平分线的定义给出了角平分线的作法,请同学们在纸上画出一个三角形,并根据角平分线的定义,画出三个角的平分线.2·1·c·n·j·y
学生操作,教师巡视指导.
师:请同学们再画出一个三角形,然后根据中线的定义,作出中线.
学生操作,教师巡视指导.
师:请同学们完成教材上“操作”的第1题.
学生操作,教师巡视指导,最后集体订正.
师:直角三角形的高中,有两条和边重合;钝角三角形的高中,有两条在三角形的外部.请同学们观察一下,你们作出的三条角平分线、三条中线和三条高,它们有什么特点?
生甲:三条角平分线交于一点.
生乙:三条中线交于一点.
生丙:三条高交于一点.
师:很好!之前学过的说明三角形意义的语句、本节中说明三角形角平分线意义的语句:“不在同一直线上的三条线段首尾依次相接所组成的图形叫做三角形”,“三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线”,分别是三角形、三角形角平分线的定义.七年级时我们也学过一些定义,如“整数和分数统称为有理数”是有理数的定义.前两个定义揭示了对象的特征性质,后一个定义明确了所指对象的范围.给出定义,就是在于明确研究对象是什么.【来源:21·世纪·教育·网】
四、课堂小结
师:本节课我们学习了什么内容?
生:我们学习了三角形的角平分线、中线和高的定义以及画法.
师:对,我们由作图过程知道了三角形的三条角平分线、三条中线和三条高是交于一点的.
教学反思
本节课通过让学生自己动手作图,作出三角形三个角的平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的这些线是交于一点的,培养他们观察、总结的能力.通过实际动手得到的结论,他们的印象会更深刻,理解更透彻.这节课所讲授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,学习起来更容易.强调三角形中的三种线是“线段”,而不是以往的“射线”. 21世纪教育网版权所有
第1课时 命 题
教学目标
【知识与技能】
1.理解真命题、假命题、公理、原命题、逆命题等概念.
2.会判断一个命题的真假,能区分公理、定理和命题.
【过程与方法】
根据命题的证明需要,要求学生画出图形,写出已知、求证,训练学生将命题转化为数学语言的能力.
【情感、态度与价值观】
1.通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.
2.让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性.21教育网
重点难点
【重点】
学习命题的概念和命题、公理、定理的区分.
【难点】
学习命题的概念和命题、公理、定理的区分.
教学过程
一、创设情境,导入新知
教师多媒体出示:
有一根比地球赤道长1m的铜线将地球赤道绕一圈,想一想,铜线与地球赤道之间的空隙有多大?能放进一颗枣吗?能放进一个苹果吗?21cnjy.com
学生交流讨论后回答.
生甲:都放不进去.
生乙:枣能放进,苹果放不进.
生丙:都能放进.
师:我们现在用这个式子来算,设赤道的长为C,则铜线与地球赤道之间的间隙是-=≈0.26(m),可见,枣和苹果都能放进去.通过这个例子,你们受到了什么启发?
生:有些东西想象的或感觉的不一定可靠,要具体分析.
师:对,我们要做到有理有据.
上一节研究三角形的性质时,我们通过折叠、剪拼、度量等方法得到三角形的内角和是180°,但对这种方法,有的同学提出这样的疑问:21·cn·jy·com
在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值;
度量三个角,然后相加,不一定能准确地得到180°.
这两种情况怎么解释呢?
学生思考、交流、讨论.
师:是这样的,研究几何图形时,从观察和实验得到的认识,有时会有误差,难以使人确信其结果一定正确.因此,就得在观察的基础上有理有据地说明理由,这就是说,要判断数学命题的真假,需要做必要的逻辑推理.www.21-cn-jy.com
二、共同探究,获取新知
师:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.
教师多媒体出示:
(1)长江是中国第一大河;
(2)如果∠1和∠2是对顶角,那么它们相等;
(3)2+3≠5;
(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.
教师找一名学生回答,然后集体订正.
师:在逻辑学中,凡是可以判断出真(即正确)、假(即错误)的语句叫做命题.上面的(1)、(2)、(4)都是正确的命题,我们称之为真命题;(3)是错误的命题,我们称之为假命题.如果一个语句没有对某一事件的正确与否作出任何判断,那么它就不是命题,比如感叹句、疑问句、祈使句等.【来源:21·世纪·教育·网】
教师多媒体出示:
(1)请关上窗户;
(2)你明天骑车来上学吗?
(3)天真冷啊!
(4)今天晚上不会下雨.
(5)昨天我们去旅游了.
师:请同学们判断一下哪些语句是命题?
学生讨论后回答,然后集体订正.
师:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式.有时我们为了简便,省略关联词“如果”、“那么”,如命题“如果两个角是对顶角,那么这两个角相等”,可以写成“对顶角相等”.以“如果……那么……”为关联词的命题的一般形式是“如果p,那么q”,或者说成“若p,则q”,其中p是这个命题的条件(或假设),q是这个命题的结论(或题断).21世纪教育网版权所有
三、边讲边练
教师多媒体出示:
【例1】 指出下列命题的条件与结论:
(1)两条直线都平行于同一条直线,这两条直线平行;
(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.
生甲:(1)中“两条直线平行于同一条直线”是条件,“两条直线平行”是结论.
生乙:“∠A=∠B”是条件,“∠A的补角与∠B的补角相等”是结论.
四、层层推进,深入探究
师:将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.我们在前面学习了命题都可以判断真假,当一个命题是真命题时,它的逆命题也是真命题吗?
学生交流讨论后发表意见.
师:我们可以看这样一个例子,“如果∠1与∠2是对顶角,那么∠1=∠2”是真命题,它的逆命题是什么?
生:它的逆命题是“如果∠1=∠2,那么∠1与∠2是对顶角”.
师:它是真命题还是假命题呢?
生:假命题.
师:你是怎么判断它是假命题的呢?
学生交流讨论后回答.
教师多媒体出示下图.
师:对.我们可以举一个例子,比如角平分线分成的两个角,∠1=∠2,但显然,这里∠1与∠2就不是对顶角.像这种符合命题条件,但不满足命题结论的例子,我们称之为反例.若要说明一个命题是假命题,只要举出一个反例即可.21·世纪*教育网
五、练习新知,加深讨论
师:请同学们看教材中本节例1后练习的第2题.
教师找学生回答,然后集体订正得到:
(1)假命题.
反例:|-1|=|1|,但-1≠1.
(2)假命题.
反例:(-1)×(-1)>0,但-1是负数.
(3)真命题.
(4)假命题.
若两条不平行的直线与第三条直线相交,同位角不相等.
师:我们来看第3题.
教师找学生回答,然后集体订正得到:
(1)真命题,(2)真命题,(3)真命题.
师:在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们想一下,我们学过哪些公理?www-2-1-cnjy-com
生甲:经过两点有一条直线,并且只有一条直线.
生乙:两点之间的所有连线中,线段最短.
生丙:经过直线外一点,有且只有一条直线平行于这条直线,
师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子?2-1-c-n-j-y
生甲:对顶角相等.
生乙:三角形的三个内角和等于180°.
生丙:等角的补角相等.
六、课堂小结
师:我们今天学习了什么内容?
学生回答,教师补充完善.
教学反思
在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.在教学方法上我主要采用“举一”,让学生独立思考、自由交流、集思广益,从而达到“反三”的目的.尽可能地调动更多学生主动参与、交流、沟通,通过自身思维碰撞构建新的认知结构,从而准确地判断命题的真假,对于假命题举出反例.2·1·c·n·j·y
第2课时 证明
教学目标
【知识与技能】
理解证明的含义,体验证明的必要性和数学推理的严密性.
【过程与方法】
根据命题的证明需要,要求学生画出图形,写出已知、求证,通过一些简单命题的证明,训练学生的逻辑推理能力.21教育网
【情感、态度与价值观】
让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性.www.21-cn-jy.com
重点难点
【重点】
严密完整地写出证明过程.
【难点】
严密完整地写出证明过程.
教学过程
一、共同探究,获取新知
师:上节课我们学习了真命题、假命题、公理、原命题、逆命题等概念.在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们回想一下,我们学过哪些公理?21cnjy.com
生甲:经过两点有一条直线,并且只有一条直线.
生乙:两点之间的所有连线中,线段最短.
生丙:经过直线外一点,有且只有一条直线平行于这条直线,
师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子?21世纪教育网版权所有
生甲:对顶角相等.
生乙:三角形的三个内角和等于180°.
生丙:等角的补角相等.
师:对.推理的过程叫做证明.下面,我们来证明一个七年级时用过的定理“内错角相等,两直线平行”.
二、边讲边练
教师多媒体出示:
【例1】 已知:如图所示,直线c与直线a、b相交,且∠1=∠2.
求证:a∥b.
师:若已知“同位角相等,两直线平行”这个定理,怎么证明“内错角相等,两直线平行”这个结论?
学生交流讨论,教师巡视指导.
学生口述,教师板书推理过程.
证明:∵∠1=∠2,(已知)
又∵∠1=∠3,(对顶角相等)
∴∠2=∠3.(等量代换)
∴a∥b.(同位角相等,两直线平行)
教师强调:证明中的每一步推理都要有根据,不能想当然.这些根据,可以是已知条件,也可以是定义、公理、已经学过的定理.21·cn·jy·com
【例2】 已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
证明:∵OE平分∠AOB,OF平分∠BOC(已知)
∴∠1=∠AOB,∠2=∠BOC.(角平分线的定义)
又∵∠AOB+∠BOC=180°,(已知)
∴∠1+∠2=(∠AOB+∠BOC)
=90°.(等式性质)
∴OE⊥OF.(垂直的定义)
三、课堂小结
师:我们今天学习了什么内容?
学生回答,教师补充完善.
教学反思
在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.对于命题的证明,要求学生能写出证明的一般步骤并能做到步步有据.2·1·c·n·j·y
第3课时 三角形内角和定理的推论——直角三角形角的性质
教学目标
【知识与技能】
1.掌握三角形内角和定理及其三个推论.
2.熟悉并掌握较简单命题的证明方法及其表述.
3.探索并理解三角形的内角和定理.
4.会灵活地运用三角形内角和定理的几个推论解决实际问题.
【过程与方法】
1.经历探索并证明三角形内角和定理的过程.
2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.
【情感、态度和价值观】
1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.
2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.
3.通过生动的教学活动,发展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.
重点难点
【重点】
三角形内角和定理的证明,三角形内角和定理及其推理.
【难点】
三角形内角和定理的证明.
教学过程
一、创设情境,导入新知
师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗?
学生回答.
师:我们用什么方法证明过这个命题?
生:用折叠、剪拼和度量的方法.
师:很好!在上节课我们学习了定理的概念,大家还记得吗?
生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.21cnjy.com
师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.21·cn·jy·com
二、共同探究,获取新知
教师多媒体出示:
【例1】 证明三角形内角和定理:三角形的三个内角和等于180°.
师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出已知、求证.这个命题的条件和结论分别是什么?2·1·c·n·j·y
生:条件是一个三角形,结论是它的内角和等于180°.
师:这个命题与图形有关吗?
生:有关.
师:那我们要画出什么图形?
生:一个三角形.
教师在黑板上画出一个三角形.
师:题目中没有已知、求证,我们自己要写出来.已知就是条件,求证的就是要证的结论.应该怎么写?
生:已知:△ABC,如图所示.求证:∠A+∠B+∠C=180°.
教师板书.
师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发,现在我们通过作图来实现这种转化,给出证明.【来源:21·世纪·教育·网】
教师边操作边讲解:
在剪拼中我们可以把∠B剪下,放在这个位置,在证明中我们可以作出一个角与∠B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题?21·世纪*教育网
生:延长BC到D,以点C为顶点、CD为一边作∠2=∠B.
教师作图:
师:对.如果再知道什么条件就能得到结论了?
学生讨论后回答.
生:因为∠1+∠2+∠ACB是一个平角,等于180°,如果∠A=∠1,那么就有∠A+∠B+∠C=∠1+∠2+∠ACB=180°,这样就证出了结论.21世纪教育网版权所有
师:对.现在我们看怎样证∠A=∠1?
学生交流讨论.
教师提示:∠A和∠1是什么角?
生:内错角.
师:怎么证两个内错角相等?
生:两直线平行,内错角相等.
师:在题中要证哪两条直线平行?怎么证它们平行?
生:证明CE∥BA,因为∠2=∠B,由同位角相等,两直线平行,就可以证出CE∥BA了.
师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚才是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.www.21-cn-jy.com
学生口述,教师板书.
师:现在大家想一想,如果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少?
生:90°.
师:对.两个角的和是90°,我们可以称它们之间是什么关系?
生:互余.
师:对.由此我们得到三角形内角和定理的第一个推论.
教师板书:
推论1 直角三角形的两锐角互余.
三、边讲边练
师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路?
生:过点A作DE∥BC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证出了.
师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.
学生完成练习第1题.
师:第二个练习的思路大家清楚吗?
学生交流讨论后回答.
生:过三角形一边上一点作两条平行线,然后根据平行线的性质使△ABC的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180°.
师:很好!请同学们把证明过程补充完整.
学生补充练习第2题的证明,教师巡视指导,然后集体订正.
四、课堂小结
师:我们今天学习了哪些内容?你有什么收获?
学生发言,教师点评.
教学反思
本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在证明三角形内角和定理的第一种证法中,我带领他们回顾了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.21教育网
第4课时 三角形内角和定理的推论——三角形的外角性质
教学目标
【知识与技能】
1.掌握三角形内角和定理的推论——三角形的外角性质.
2.熟悉并掌握较简单命题的证明方法及其表述.
3.会灵活地运用三角形内角和定理的推论——三角形的外角性质解决实际问题.
【过程与方法】
让学生在思考与探索的过程中了解三角形内角和定理的推论——三角形的外角性质.
【情感、态度和价值观】
1.通过探索三角形内角和定理的推论——三角形的外角性质,让学生体会到数学的严谨性和推理的用途.
2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.
3.通过生动的教学活动,发展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.
重点难点
【重点】
三角形内角和定理的推论——三角形的外角性质.
【难点】
三角形内角和定理的推论——三角形的外角性质.
教学过程
一、创设情境,导入新知
师:在前面我们学习了三角形的内角和定理及其有关直角三角形的两个推论,你还记得它的内容吗?
学生回答.
师:大家回忆一下我们是用什么方法证明三角形的内角和定理的?
生:用折叠、剪拼和度量的方法.
师:很好!在上节课我们主要学习了定理的证明过程,以及由定理而得出的两个有关直角三角形的性质,这节课在上节课的基础上我们继续研究三角形的另外两个性质,是有关三角形的外角的.21教育网
二、共同探究,获取新知
师:在三角形内角和定理的证明中,我们曾经如图中所示那样把△ABC的一边BC延长至点D,得到∠ACD,像这样由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.在上图中,△ABC的外角,也就是∠ACD与它不相邻的内角∠A、∠B有怎样的关系?你能给出证明吗?21cnjy.com
学生小组交流讨论后回答.
生:∠ACD与∠ACB的和是180°,所以∠ACD=180°-∠ACB;根据三角形内角和定理,∠A+∠B+∠C=180°,∠A+∠B=180°-∠C.由等式的性质,得到∠ACD=∠A+∠B.
师:很好!除了这个相等关系,还能得到什么大小关系?
生:∠ACD>∠A,∠ACD>∠B.
师:很好!在证明中主要应用了三角形内角和定理,我们把这两个结论称为这个定理的两个推论.
教师板书:
推论3 三角形的外角等于与它不相邻的两个内角的和.
推论4 三角形的外角大于与它不相邻的任何一个内角.
师:像这样,由公理、定理直接得出的真命题叫做推论.推论3可以用来计算角的大小,推论4可以用来比较两个角的大小.21·cn·jy·com
【例】 已知:如图所示,∠1、∠2、∠3是△ABC的三个外角.
求证:∠1+∠2+∠3=360°.
师:这个问题实质上是三角形外角和定理,即三角形三个外角的和是360°.请大家想一下,怎么证明这个命题?21世纪教育网版权所有
学生交流讨论后回答,然后集体订正.
证明:∵∠1=∠ABC+∠ACB,
∠2=∠BAC+∠ACB,
∠3=∠BAC+∠ABC,
(三角形的一个外角等于与它不相邻的两个内角的和)
∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC).(等式性质)
∵∠ABC+∠ACB+∠BAC=180°,(三角形内角和定理)
∴∠1+∠2+∠3=360°.
三、课堂小结
师:我们今天学习了哪些内容?你有什么收获?
学生发言,教师点评.
教学反思
本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.