数学三年级上人教版9 数学广角——集合教案(3套)

文档属性

名称 数学三年级上人教版9 数学广角——集合教案(3套)
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2018-01-17 15:49:13

文档简介

《数学广角──集合》教学设计
一、教学目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断
“集合问题”是人教版三年级上册第九单元“
( http: / / www.21cnjy.com )数学广角”的内容,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
  三、教学重难点
  教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
  教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
  (1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:(1)“重叠”或“重复
( http: / / www.21cnjy.com )”一词;(2)列式中“减1”的意义;(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
【设计意图】设计2组简单实例,既有生活中的
( http: / / www.21cnjy.com )问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
1.情境引入(课件出示“通知”)
(1)了解信息,提出问题
你认为三(1)班要选拔多少名同学参加这两项比赛?
让学生尝试回答参加比赛的总人数。
(2)出示名单,引发认知冲突
课件出示三(1)班参赛学生的名单的统计表,让学生观察。
2.观察名单,验证人数,初悟“重复”
问题:仔细观察过这份报名表,你有什么发现?
让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。
【设计意图】根据学生熟悉情
( http: / / www.21cnjy.com )境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。
(三)合作探究,体验过程
1.策略分析
谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。
借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。
【设计意图】通过分析,让学生认识到要解
( http: / / www.21cnjy.com )决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
(1)选出几种不同作品展示,理解分析不同整理方法。
预设:方法一
方法二:
( http: / / www.21cnjy.com )
方法三:

( http: / / www.21cnjy.com )
(2)交流不同思想,比较各自的优缺点。
(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。
课件出示:
(4)介绍韦恩,拓宽视野
课件出示:在数学中,经常用平面上封闭曲线的内部代表集合。这种图称为维恩图(也叫文氏图
( http: / / www.21cnjy.com"
\o
"欢迎登陆21世纪教育网"
\t
"http: / / zhidao. / _blank )),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。
【设计意图】让学生亲历整理过程,在
( http: / / www.21cnjy.com )这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?
让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。
4.据图列式,运用集合图
谈话:你了解图中各部分的意义吗?
(1)课件演示各部分,让学生比较正确表述各部分的意义。
(2)利用数据,列式计算出该班参加比赛的人数。
指名学生计算,反馈交流,理解各算式的意义。
可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)
【设计意图】让学生借助直观图,理解
( http: / / www.21cnjy.com )集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。
5.变式练习,内化集合思想
课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。
跳绳
9
13
17
18
25
29
33
38
42
踢毽子
17
25
28
30
31
39
40
44

教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。
请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。
师生小结。
【设计意图】变式练习是让学生从集合图中会看信
( http: / / www.21cnjy.com )息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
1.基础性练习
(1)完成教材上105页“做一做”第1题.
指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义
2.趣味性练习
3.拓展性练习
估计三(3)班可能有多少同学参加比赛。
讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:参赛的同学最多有17人。(
)参赛的同学最少有
8人。(

小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。
【设计意图】设计一组由梯度
( http: / / www.21cnjy.com )的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
师:今天我们认识了用集合
( http: / / www.21cnjy.com )图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。《数学广角──集合》教材分析
本单元教材第一次安排了简单的集
( http: / / www.21cnjy.com )合思想的教学。集合思想是数学中最基本的思想,虽然学生在计数和计算的学习中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。学生在早期学习数学时就已经开始运用集合的思想方法。如:分类的思想与方法,再如:一年级时接触过这样题:“有一列小朋友,从前数明明排第5,从后数明明排第3,这一列有几人?”对于“重复的人数要减去”,学生是有经验的,能够列式解答。集合数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。这一数学思想的引入为培养学生的逻辑思维能力提供了良好的素材。在今后的学习经常运用到维恩图表示关系,如:三角形的分类、各种四边形关系等。都是让学生在体会运用上解决实际问题,为今后学习奠定基础。
本单元共有9个用集合思想方法解决的题目
( http: / / www.21cnjy.com )(含例题、“做一做”、练习题),涉及学生在生活(比赛人数、水果品种、参观人数等)和学习(按要求填数、写成语等)中经常遇到的问题:求两个集合的并集或交集的元素个数。让学生通过观察、操作、猜测、推理与交流等活动,初步感受数学思想方法的奇妙与作用,受到数学思维的训练,逐步形成有序地、严密地思考问题的意识,同时使他们逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。教材中体现以下几点:
1.重视学生的已有基础,唤起学生学习的“兴趣点”,自主探索与接受学习有机结合
(1)在例1教学中,用统计表的形式给出三(
( http: / / www.21cnjy.com )1)班参加跳绳、踢毽比赛的学生名单,提出要解决的问题。教师要让学生自主探索,思考解决问题的方法。呈现了一一列举出参加两项比赛的学生姓名(两个集合的元素),把重复的连起来(找到交集的元素)解决问题的方法,让学生体会在求两个集合的并集时,它们的公共元素在并集中只能出现一次。
(2)介绍用Venn图表示集合及其运算的方法,让学生体会集合元素的特性:互异性和无序性,体会集合的运算:交集、并集。
(3)提出问题“可以怎样列式
( http: / / www.21cnjy.com )解答?”让学生用计算解决两个集合的并集的元素个数问题,脱离具体的集合元素,从集合基数(元素个数)的角度思考解决问题的方法。
2.利用直观的数形结合,突破探究的“拐弯点”,帮助学生感悟集合思想
在数学中,经常用平面上封闭曲线的内部代
( http: / / www.21cnjy.com )表集合,这种图被称为维恩图。这种表示方法直观、形象,尤其对于解决比较复杂的问题(例如,涉及三个以上的集合的并、交的问题)更能显示出它的优越性。因此,教科书注重借助维恩图表示集合及其运算,帮助学生理解集合的知识,并让学生掌握画维恩图的方法。在通过例题介绍了用维恩图表示集合及其运算的方法后,接下来的练习中,不断让学生应用维恩图解决简单的实际问题,并利用维恩图帮助学生进一步理解集合概念及其关系。
3.提供丰富的练习内容,完善思维的“结构点”,有层次地渗透集合知识
首先,注重联系学生生活实际,帮助学生学
( http: / / www.21cnjy.com )习掌握新知。本单元共有9个题目来源于学生熟悉的情境,学生虽然熟悉这些情境,但以前不一定从集合的角度来思考并解决问题。因此,这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。其次,有层次地设计练习,逐步丰富并完善学生对集合知识的理解。例如,例题“做一做”和练习二十三的第1~4题,都提供了具体的集合元素的支撑,帮助学生理解集合及其运算。在学生积累了较丰富的活动经验的基础上,练习二十三的第5题和第6题,则脱离了具体的集合元素的支撑,让学生从集合元素的个数的角度抽象地探索解决此类问题的方法,提升思维的水平。再如,除了提供两个集合之间有交集且部分元素相同的情况外,为避免思维定势,还给出了两个集合没有交集(练习二十三第4题第(1)题)、有包含关系的两个集合(练习二十三第6题第(1)题)等情况,丰富学生对集合间关系的认识。《数学广角──集合》重难点突破
1.引发认知冲突,激发探究欲望
突破建议
(1)激发学生学习的原点,唤起学生对于“
( http: / / www.21cnjy.com )重复的人数要减去”的知识经验,充分尊重学生的基础。如:有一行同学在做操,从前数航航排第5,从后数航航排第6,这一行有多少人同学在做操?再如:趣味题:有两对父子,可只有3个人,你知道为什么吗?
(2)呈现例1主题图中统计表,提出“这两项比赛共有多少人参加”的问题,激发学生探究的欲望。
2.重视多元表征,感悟集合思想
突破建议
(1)放手让学生自主探索解决问题的
( http: / / www.21cnjy.com )方法,并充分展示学生的方法。学生画的图示并不一定是标准的维恩图,只要能清楚地表示出两个集合的关系,教师都应给予充分的肯定。
(2)注重通过语言描述,用表达逻辑关
( http: / / www.21cnjy.com )系的语言,如:“既…又…”和“或”提出两个关于集合运算后的元素个数问题,让学生体会如何用生活语言表述两个集合的运算,能在图示与算式这两种表征之间进行转换,感受集合的知识。
(3)借助直观,深刻理解维恩图中每一部
( http: / / www.21cnjy.com )分的含义,加深对集合知识的理解。例如,当学生列式为9+8-3=14后,让学生结合维恩图说一说求出的是哪一部分,体会两个集合的并集,再说一说这样列式的理由,体会“求两个的并集的基数,就是用两个集合的基数的和减去它们的交集的基数”这一基本方法。再如,学生列式为8-3=5,9+5=14时。让学生说明“8-3表示只参加踢毽比赛的”,在维恩图上指一指是哪两部分相减,体会差集,在说明“9+5表示参加跳绳比赛的加上只参加踢毽比赛的”的同时,在维恩图上指一指是哪两部分相加,体会并集。
3.设计丰富练习,内化集合思想
突破建议:
设计和选择一些趣味性、基础性、开放性和实践性的素材练习,围绕着集合思想的感悟、理解和运用展开,提升学生用数学解决现实问题的意识和技能。
如果学生不能画出维恩图,不必
( http: / / www.21cnjy.com )一味让学生“创造”,教师可以用讲授法让学生认识并理解。出示维恩图让学生先独立填写,再汇报交流。同时利用多媒体课件或教具,配合学生汇报直观演示将两个集合圈合并的过程。因此,教师在教学中要注意把握好知识的难度和要求,尽量用通俗易懂的语言渗透集合思想。例如,对于集合的术语,如集合,元素、交集、并集等,虽然在教学中可以介绍给学生,但并不需要让学生掌握,只要学生能用自己的语言表达和交流就可以了。教科书中出现的解决问题都是计算运算后的集合(并集或交集)的元素个数,但重点不是熟练计算,而是让学生通过解决此类问题,了解、体会集合概念及运算的道理。另外,教科书中只给出了利用Venn图表示两个集合的交和并的问题,没有出现三个集合的情况。如果学生在解决练习二十三第4题和第6题的时候,尝试用维恩图表示三个集合的运算,教师应给予鼓励和指导。