课件22张PPT。第29章 投影与视图
29.2 三视图
第1课时 三视图及其画法
情境引入 这首诗教会了我们怎样观察物体(横看、侧看、
近看、身处其中看),这类似于本节课所研究的
内容——三视图.自主探究 下图表示从不同方向看到一架飞机的图形: 1.观察体验 对于同一物体,如果从不同角度观察,所得到的视图可能是不同的. 请你从前、后、左、右、上、下六个面观察同一本字典,画出得到的正投影,你有什么发现? 1.正面和背面正投影
的形状、大小一致; 2.上面和底面正投影
的形状、大小一致; 3.左面和右面正投影
的形状、大小一致.自主探究 你能说出这三个视图分别是从哪个方向观察
这本字典得到的吗?从左面看从正面看从上面看这些图形的投影面分别在什么位置?自主探究 把物体放在三个互相垂直的平面的空间:水平面正面侧面 从投影的角
度认识三视图主视图左视图俯视图自主探究 2.观察探究 用投影的方法画三视图:水平面正面侧面主视图左视图俯视图 左视图、右视图各是什么形状?自主探究将三视图结合起来:水平面正面侧面主视图左视图俯视图主视图左视图俯视图自主探究观察长方体的三视图,比较其长、宽、高.:主视图左视图俯视图高高宽宽长宽高长对正高齐平宽相等自主探究归纳:基本几何体三视图的位置规定: 主视图在左上边,它的正下方应是俯视图,左视图在主视图的右边.自主探究基本几何体三视图的大小:长对正,高平齐,宽相等.自主探究例1 画出下图所示的一些几何体的三视图. 3.应用圆 柱
(1)正三棱柱
(2) 球
(3)圆柱主视图俯视图左视图自主探究 3.应用圆 柱
(1)三棱柱主视图俯视图左视图自主探究 3.应用三棱柱
(2)球主视图俯视图左视图自主探究 3.应用 球
(3) 例2 画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.自主探究支架的三视图主视图左视图俯视图自主探究
(1) 画出如图所示的正三棱柱的三视图.正三棱柱主视图俯视图左视图自主探究 4.巩固练习圆锥主视图俯视图左视图·(2) 画出圆锥的三视图.(3) 画出半球的三视图.半球主视图俯视图左视图自主探究 1.师生小结
通过本节课的学习,你有哪些收获?你还有什么疑惑?说给老师或同学听听.总结提高 2.作业
必做题:教材习题29.2 第1,2题.
选做题:教材习题29.2 第6,7题.
总结提高课件17张PPT。第29章 投影与视图
29.2 三视图
第2课时 由三视图描述几何体
下图是某种零件的三视图,你能想象出这个零件的形状吗?1.观察体验 欣赏机械制图中三视图与对应的立体图形的图片,说说三视图与对应的立体图形有怎样的关系.2.应用例1 根据下面的三视图说出立体图形的名称.长方体解:(1)圆锥体解:(2) 例2 根据物体的三视图(如下图)描述物体的形状.解:正 五 棱 柱 例3 下图是某种零件的三视图,你能想象出这个零件的形状吗?自主探究 解:物体是圆柱,中央有一个长方体状的上下通透的孔.3.巩固练习根据下列三视图,描述物体的形状.(1)圆柱(2)三棱柱 组合体,圆柱上方正中央有一小圆柱,如图:根据下列三视图,描述物体的形状.(3)根据下列三视图,描述物体的形状.(4)组合体,如图: (补充)
下面是两个立体图形的三视图,请你分别说出它们描述的形状.四棱锥(1) (补充)
下面是两个立体图形的三视图,请你分别说出它们描述的形状.球(2) 1.师生小结
通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师或同学听听.
1.必做题:习题29.2 第4,5,8题.
2.选做题:习题29.2 第9题.课件20张PPT。第29章 投影与视图
29.2 三视图
第3课时 表面展开图
(1)下面是一个物体的三视图,请描述出它的形状. (2) 用小立方块搭出符合下列三视图的几何体. (3) 若(2)中每个小立方块的棱长为1,则此几何体的表面积为多少?221.探究体验 (1)下图中的几何体有多少个小立方块?请画出它的三视图.(2)你能移走一个小立方块使它的主视图不变吗?不唯一,如:(3)你能移走一个小立方块使它的三视图不变吗?如图:2.应用 例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请按照三视图确定制作每个密封罐所需钢板的面积(图中尺寸单位:mm). 解:由三视图可知,密封罐的形状是正六棱柱(如下图中左图).
密封罐的高为50 mm,底面正六边形的对角线为100 mm,边长为50 mm,下图中右图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积为: 例2 根据下面的三视图请说出建筑物模型是什么样子的,共有几层?一共需要多少个小正方体? 解:该建筑物模型的形状如下图所示:有3层,共需要9个小正方体.自主探究3.巩固练习 1.根据下列几何体的三视图,画出它们的展开图.(1)(2)自主探究(1) 解:该几何体是三棱柱,展开图如下:自主探究(2) 解:该几何体是圆柱,展开图如下: 2.某工厂加工一批无底帐篷,设计者给出了帐篷的三视图.请你按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm)自主探究 解:该几何体是由下面是圆柱、上面是圆锥组成的几何体,表面积为: 1.师生小结
通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师或同学听听. 2.布置作业
必做题:教材习题29.2第10题,复习题 29第6,7题.
选做题:教材复习题29第8题.