2017_2018学年高中物理第2章电势能与电势差(课件教学案)(打包8套)鲁科版选修3_1

文档属性

名称 2017_2018学年高中物理第2章电势能与电势差(课件教学案)(打包8套)鲁科版选修3_1
格式 zip
文件大小 6.6MB
资源类型 教案
版本资源 鲁科版
科目 物理
更新时间 2018-02-06 12:51:59

文档简介

第1节 电场力做功与电势能
1.在电场中移动电荷时,电场力做功与路径无关,只与始末位置有关。
2.电荷在电场中某点的电势能等于把电荷从这点移到选定的参考点的过程中电场力所做的功。
3.电势能有正、负之分,正、负不表示方向,是标量。其大小与零电势能参考点的选取有关。但电势能的变化量与其无关。
4.电场力做正功,电荷电势能减小;电场力做负功,电荷电势能增大。
一、电场力做功的特点
1.公式
W=qEd,适用于匀强电场。
2.特点
静电力移动电荷所做的功,只与初、末位置有关,而与电荷的路径无关。
二、电势能
1.定义
电荷在电场中某点的电势能等于把电荷从该点移到选定的参考点的过程中电场力所做的功。用Ep表示。
2.电势能的变化与电场力做功的关系
关系式:WAB=EpA-EpB=-ΔEpAB
电场力对电荷做
3.电势能的相对性
电势能是相对于参考点而言的,选取不同的参考点,电荷在电场中同一点的电势能的值是不同的。
4.电势能变化的绝对性
电场中两点间的电势能之差与选取的参考点无关。
1.自主思考——判一判
(1)电场力的功W=qEd,适用于任何电场。(×)
(2)电场中有M、N两点,沿不同路径把同一电荷从M点移到N点,电场力做功不同。(×)
(3)电势能有正、负之分,故电势能是矢量。(×)
(4)电场中有M、N两点,把电荷从M点移到N点的过程中,电场力对电荷做负功,电荷的电势能增加。(√)
(5)电场中有M、N两点,把电荷从M点移到N点的过程中,电场力对电荷做负功,M点的场强比N点的场强大。(×)
2.合作探究——议一议
(1)电场力做功与路径无关,只跟起始位置和终止位置有关,这与前边学过的哪种力做功类似?这种力做功又对应于哪种能量变化?
[提示] 重力做功 重力势能的变化
(2)当正电荷顺着电场线运动时,静电力做什么功?电势能是增加还是减少?当负电荷顺着电场线运动时,静电力做什么功?电势能是增加还是减少?
[提示] 正电荷顺着电场线运动时,静电力做正功,电势能减少。负电荷顺着电场线运动时,静电力做负功,电势能增加。
(3)如图2-1-1所示,将某电荷在一电场中由A点移到B点。若选不同的点作零势能点,表示A点(或B点)电势能的大小相同吗?表示从A到B的过程中电势能的变化相同吗?
图2-1-1
[提示] 由于电势能具有相对性,选择不同的点作零势能点,表示同一点A(或B)的电势能大小可能不相同,但在同一过程中由A到B,电场力做功相同,电势能的变化相同。
电场力做功的计算
[典例] 如图2-1-2所示,在电场强度为E的水平匀强电场中,一根长为l的绝缘杆,两端分别固定着带有电荷量+q和-q的小球(大小不计)。现让绝缘杆绕中点O逆时针转动α角,则转动过程中两个带电小球克服电场力做功为多少?
图2-1-2
[思路点拨]
→→
[解析] 电场力对带正电小球做功为W1=-qE·(1-cos α);电场力对带负电小球做功为W2=-qE·(1-cos α)。转动过程中电场力对两小球做的总功为W=W1+W2=-qEl(1-cos α),即两个带电小球克服电场力做功为qEl(1-cos α)。
[答案] qEl(1-cos α)
如何判断电场力做正功还是做负功?
(1)根据电场力和位移方向的夹角判断。此方法常用于匀强电场中恒定电场力做功的判断。夹角为锐角做正功,夹角为钝角做负功,夹角为直角不做功。
(2)根据电场力和瞬时速度方向的夹角判断。此方法常用于判断曲线运动中变化电场力的做功,夹角为锐角做正功,夹角为钝角做负功,夹角为直角不做功。    
1. (多选)如图2-1-3所示,在直角三角形ABC中,∠C=30°,D为斜边AC的中点,在顶点A处有一点电荷+Q,试探电荷q由B移至C电场力做功W1,由B移至D电场力做功W2,由D移至C电场力做功W3,关于W1、W2、W3的关系,下列说法正确的是(  )
图2-1-3
A.W1=W2+W3     B.W1=W2
C.W1=W3 D.W2=W1+W3
解析:选AC 根据电场力做功的特点,试探电荷由B移至C电场力做功与由B先经过D再移至C电场力做功相等,即W1=W2+W3,A正确,D错误;若以A点为圆心、以AB为半径画圆,则D在圆周上,将试探电荷由B点移至D点时,电荷的电势能不变,即电场力不做功,W2=0,C正确,B错误。
2.如图2-1-4所示,电荷的电荷量为+q,场强为E,A、B间距为d,分别求点电荷沿图中三条路径从A运动到B时,电场力对它所做的功。
图2-1-4
解析:当电荷沿AB连线运动到B时,W=qEd,当电荷沿ACB运动到B时,W=FLcos θ+FL′cos 90°=qEd,当电荷沿ADB运动到B时,W=FL1cos α+FL2cos β=qEd。
答案:均为qEd
电势能的理解与计算
1.电势能是标量
电势能只有大小没有方向,但有正、负之分,正值表示该点比参考点处的电势能大,负值表示该点比参考点处的电势能小。
2.电势能和重力势能的对比
电势能
重力势能
定义
电场中的电荷具有的势能——电势能
重力场中的物体具有的势能——重力势能
系统性
电荷和电场
物体和地球
相对性
电荷在某点的电势能等于把电荷从该点移到零势能位置时电场力做的功
物体在某点的重力势能等于把物体从该点移到零势能位置时重力做的功
[典例] 有一带负电的点电荷,从电场中的A点移到B点时,克服电场力做功6×10-4 J。从B点移到C点时,电场力做功9×10-4 J,问:
(1)若以A为零势能点,B、C两点的电势能各为多少?A、C间的电势能之差为多少?
(2)若以B为零势能点,A、C两点的电势能各为多少?A、C间的电势能之差为多少?
[解析] (1)从A点移到B点,克服电场力做功6×10-4 J,电势能增加6×10-4 J,由于A点的电势能为零,故B点电势能为6×10-4 J。从B点移到C点,电场力做功9×10-4 J,电势能减少9×10-4 J,故C点电势能为-3×10-4 J。由于A为零势能点,故A、C间的电势能之差为3×10-4 J。
(2)以B点为零势能点,将电荷从A点移到B点,电势能增加6×10-4 J,B点电势能为零,故A点电势能为-6×10-4 J。从B点移到C点,电势能减少9×10-4 J,故C点电势能为-9×10-4 J,A、C间的电势能之差为3×10-4 J。
[答案] (1)6×10-4 J -3×10-4 J 3×10-4 J
(2)-6×10-4 J -9×10-4 J 3×10-4 J
判断电势能变化的方法
做功判断法
电场线法
电性判断法
不论正电荷还是负电荷,只要电场力做了正功,电势能一定减少;只要电场力做了负功(克服电场力做功),电势能一定增加。
正电荷顺着电场线的方向移动,电势能一定减少,逆着电场线的方向移动,电势能一定增加;负电荷的情况则相反。
点电荷靠近同种电荷电势能增大,远离同种电荷电势能减小;点电荷靠近异种电荷电势能减小,远离异种电荷电势能增大。
1. (多选)如图2-1-5所示,固定在Q点的正点电荷产生的电场中有M、N两点,已知它们到Q点的距离lMQ<lNQ,则下列叙述正确的是(  )
图2-1-5
A.若把一正的点电荷从M点沿直线移动到N点,则电场力对该电荷做功,电势能减少
B.若把一正的点电荷从M点沿直线移动到N点,则该电荷克服电场力做功,电势能增加
C.若把一负的点电荷从M点沿直线移动到N点,则电场力对该电荷做功,电势能减少
D.若把一负的点电荷从M点沿直线移动到N点,再从N点沿不同路径移回到M点,则该电荷克服电场力做的功等于电场力对该电荷所做的功,电势能不变
解析:选AD 将正的点电荷从M点沿直线移动到N点的过程中,静电斥力方向与其位移方向夹角始终为锐角,
故电场力做正功,其电势能减少,故A正确,B错误。同理,C错误。因为电场力做功与始末位置有关,与路径无关,故D正确。
2. (多选)如图2-1-6所示,在真空中有两个等量正点电荷Q1和Q2,分别置于a、b两点,cd为ab连线的中垂线,d为无穷远处。现将另一正电荷q由c点沿cd移向d点的过程中,下列说法中正确的是(  )
图2-1-6
A.q的电势能逐渐增大
B.q的电势能逐渐减小
C.q受到的电场力一直在减小
D.q受到的电场力先增大后减小
解析:选BD 沿电场线的方向移动正电荷,电场力做正功,电势能逐渐减小,选项A错误,B正确;由c点沿中垂线cd到d点,场强由零开始逐渐增大,达到某一值时又逐渐减小,到d点时场强减为零,所以电荷受到的电场力先增大后减小,选项C错误,D正确。
3. (多选)如图2-1-7所示,实线为一匀强电场的电场线,一个带电粒子射入电场后,留下一条从a到b虚线所示的径迹,重力不计,下列判断正确的是(  )
图2-1-7
A.带电粒子带正电
B.粒子在a点的电势能小于在b点的电势能
C.粒子在a点的动能大于在b点的动能
D.场强方向向左
解析:选BC 不知道电场线的方向,无法确定带电粒子的电性,则A、D错误;由题意知,带电粒子射入电场后从a到b所受的电场力水平向左,与速度方向之间的夹角大于90°,则电场力做负功,电势能增加,动能减少,则B、C正确。
1.关于电场力做功,下列说法正确的是(  )
A.电荷沿不同路径从电场中A点运动到B点,电场力做功可能不同
B.电荷从电场中A点出发,最后又回到A点,电场力做功为零
C.电荷在电场中沿着电场线运动,所受电场力对电荷一定做正功
D.电荷在电场中运动所受电场力对电荷做功,能量守恒定律不再成立
解析:选B 电场力做的功与电荷的运动路径无关,所以选项A错误;电场力做的功只与电荷的初、末位置有关,所以电荷从A点出发又回到A点,电场力做的功为零,选项B正确;负电荷沿着电场线的方向运动,电场力对负电荷做负功,选项C错误;电荷在电场中运动,虽然有电场力做功,但是电荷的电势能和其他形式的能间的转化满足能量守恒定律,选项D错误。
2.电场中有A、B两点,把电荷从A点移到B点的过程中,电场力对电荷做正功,则(  )
A.电荷的电势能减少   B.电荷的电势能增加
C.A点的场强比B大 D.A点的场强比B小
解析:选A 由电场力做功与电势能变化的关系知A正确。
3.关于电荷的电势能,下列说法正确的是(  )
A.电荷在电场强度大的地方,电势能一定大
B.电荷在电场强度为零的地方,电势能一定为零
C.只在静电力的作用下,电荷的电势能一定减少
D.只在静电力的作用下,电荷的电势能可能增加,也可能减少
解析:选D 电场强度与电势能无关,电势能有相对性可以人为规定零势能面,故A、B均错。只在静电力作用下,若电荷从静止开始运动,电场力做正功电势能减少,若电荷在静电力作用下在电场中做减速运动,则电场力做负功电势能增大,故D正确。
4.两个带同种电荷的物体间距增大一些时(  )
A.电场力做正功,电势能增加
B.电场力做正功,电势能减小
C.电场力做负功,电势能增加
D.电场力做负功,电势能减小
解析:选B 带同种电荷时两物体间的力是斥力,距离增大,电场力做正功,则电势能减小。
5.如图1所示为某一带电粒子仅在电场力作用下,从t=0时刻开始在电场中由静止释放后所做运动的v-t图像,下列有关说法正确的是(  )
图1
A.该电场不可能是由单个电荷所形成的电场
B.该电场有可能是匀强电场
C.该粒子的电势能一定减少
D.以上说法均不对
解析:选C 由v-t图像可知,带电粒子的加速度、速度增大,这说明电场力增大,电场增强,电场力做正功,电势能减少。因此只有C是正确的。
6. (多选)如图2所示,带正电的点电荷固定于Q点,电子在库仑力作用下,做以Q为焦点的椭圆运动。M、P、N为椭圆上的三点,P点是轨道上离Q最近的点。电子在从M点到达N点的过程中(  )
图2
A.速率先增大后减小 B.速率先减小后增大
C.电势能先减小后增大 D.电势能先增大后减小
解析:选AC 根据点电荷Q的电场线分布情况可知,电子由M到N的运动轨迹为先向Q靠近,此时,电场力做正功,电势能减小,速率增大;再远离Q,此时,电场力做负功,电势能增大,速率减小。故选项A、C正确。
7.如图3所示,直线上有o、a、b、c四点,a、b间的距离与b、c间的距离相等。在o点处固定一个正点电荷。若一带负电荷的粒子仅在电场力作用下先从c点运动到b点,再从b点运动到a点,则(  )
图3
A.两过程中电场力做的功相等
B.前一过程中电场力做的功大于后一过程中电场力做的功
C.前一过程中,粒子电势能不断减小
D.后一过程中,粒子动能不断减小
解析:选C o点周围的电场线分布如图所示,负电荷由c到b再到a的过程中,电场强度不断变大,又=,故Wab>Wbc,选项A、B错误;负电荷由c→b→a过程中,电场力做正功,电势能不断减小,动能不断增大,故选项C正确,D错误。
8.(多选)一个带电小球从空中的a点运动到b点的过程中,重力做功3 J,电场力做功1 J,克服空气阻力做功0.5 J,则小球(  )
A.在a点的重力势能比在b点大3 J
B.在a点的电势能比b点小1 J
C.在a点的动能比在b点大3.5 J
D.a点的机械能比b点机械能少0.5 J
解析:选AD 重力做正功,重力势能减少,减少量等于重力做功的多少,A对;同理,电场力做正功,电势能减少,减少量等于电场力做功的多少,B错;动能的变化等于合力做功,合力做正功,动能增大,C错;机械能的变化等于除重力外其他力做功的和,D对。
9.如图4所示,在两点电荷形成的电场中,B点的合场强为零,一电子沿直线从A点移动到C点的过程中,下列说法正确的是(  )
图4
A.电子从A到B的过程中,电场力对其做正功
B.电子从A到C的过程中,电场力对其做负功
C.电子从A到C的过程中,其电势能先增大后减小
D.电子从A到C的过程中,其电势能先减小后增大
解析:选C 由于电子带负电,且B点的合场强为零,所以A→B过程中,合场强方向向右,电子受力向左,B→C的过程中,合场强方向向左,电子受力向右。所以A→C的过程中,电场力对电子先做负功,后做正功,所以电势能先增大后减小,应选C项。
10. (多选)如图5所示,实线是一个电场中的电场线,虚线是一个负的试探电荷在这个电场中仅在电场力作用下运动的轨迹。若电荷是从a处运动到b处,以下判断正确的是(  )
图5
A.电荷从a到b速度减小
B.电荷从a到b加速度增大
C.电荷从a到b电势能减小
D.电荷从a到b电势能增加
解析:选AD 根据电场线的疏密程度可以判断在a处的场强大于b处的,也就是说试探电荷在a处受到的电场力大于在b处的,由牛顿第二定律可知粒子在a处运动的加速度大于b处的,所以选项B错误;根据带电粒子做曲线运动的条件,曲线向力的方向弯曲可判定,电荷在a、b两点所受到的电场力的方向都应在电场线上并大致向左。由此判断电场线方向发散向外,粒子在电场中从a向b点运动,电场力对电荷做负功,其动能减小,电势能增大,故选项C错误,选项A、D正确。
11.如图6是一匀强电场,已知场强E=2×102 N/C。现让一个电荷量q=4×10-8 C的负电荷沿电场方向从M点移到N点,MN间的距离s=30 cm。
图6
(1)试求:电荷从M点移到N点电势能的变化。
(2)若此电荷从N点移到P点(P点在图中没有画出)电势能减少4.8×10-6 J,试求电场力对电荷做的功。
解析:(1)由题图可知,负电荷在该电场中所受电场力F方向向左。因此,从M点移到N点,电荷克服电场力做功,电势能增加,增加的电势能ΔEp等于电荷克服电场力做的功W。
电荷克服电场力做功为W=qEs=4×10-8×2×102×0.3 J=2.4×10-6 J。
即电荷从M点移到N点电势能增加了2.4×10-6 J。
(2)电势能的减少量等于电场力对电荷做的功,即W′=-ΔEp′=4.8×10-6 J。
答案:(1)增加2.4×10-6 J (2)4.8×10-6 J
12.真空中存在空间范围足够大的、水平向右的匀强电场。在电场中,若将一个质量为m、带正电的小球由静止释放,运动中小球的速度方向与竖直方向夹角为37°(sin 37°=0.6,cos 37°=0.8,重力加速度为g)。求:
(1)小球受到的电场力的大小及方向;
(2)若以速度v0竖直向上抛出该小球,求小球从抛出点至最高点的电势能变化量。
解析:(1)根据题设条件,电场力大小F=mgtan 37°=mg,方向水平向右。
(2)小球沿竖直方向做匀减速直线运动,初速度为v0,则vy=v0-gt。
沿水平方向做初速度为零的匀加速直线运动,加速度为ax,则ax==g
小球上升到最高点的时间t=,此过程中小球沿电场线方向的位移x=axt2=。
电场力做功W=Fx=mv02。
则小球上升到最高点的过程中,电势能减少mv02。
答案:(1)mg 方向水平向右 (2)减少mv02
课件25张PPT。图2-1-4物体在某点的重力势能等于把物体从该点移到零势能位置时重力做的功电荷在某点的电势能等于把电荷从该点移到零势能位置时电场力做的功相对性物体和地球电荷和电场系统性重力场中的物体具有的势能——重力势能电场中的电荷具有的势能——电势能定义电性判断法电场线法做功判断法点电荷靠近同种电荷电势能增大,远离同种电荷电势能减小;点电荷靠近异种电荷电势能减小,远离异种电荷电势能增大。正电荷顺着电场线的方向移动,电势能一定减少,逆着电场线的方向移动,电势能一定增加;负电荷的情况则相反。不论正电荷还是负电荷,只要电场力做了正功,电势能一定减少;只要电场力做了负功(克服电场力做功),电势能一定增加。第2节 电势与等势面
1.电荷在电场中某点的电势能跟电荷量的比值,叫做该点的电势。
2.电场中各点电势的值可正、可负、可为零,既与产生电场的电荷有关,也与零电势位置的选择有关。
3.沿电场线的方向,电势降低。
4.电场中电势相等的点构成的面叫做等势面。电场线和等势面垂直,且由电势较高的等势面指向电势较低的等势面。
一、电势
定义
电荷在电场中某一点的电势能与它的电荷量的比值
公式
φ=
单位
在国际单位制中,电势的单位是伏特,符号是V,1 V=1 J/C
二、等势面
1.等势面
(1)定义:电场中电势相等的点构成的面。
(2)特点:由于在等势面上电荷受到的电场力跟等势面垂直,所以电荷在同一个等势面上运动时电场力不做功。
2.几种常见电场的等势面
电场
等势面的特点
图示
点电荷的电场
等势面是一系列以点电荷为球心的球面,如图中虚线所示。
等量异种电荷的电场
左右对称,过两点电荷连线中点的中垂面是一个等势面,如图中虚线所示。
等量同种电荷的电场
左右对称,以正电荷为例,如图中虚线所示。
匀强电场
等势面是与电场线垂直的,间距相等且相互平行的一簇平面,如图所示。
三、尖端放电
1.定义
带电较多的导体,在尖端部位,场强大到使周围的空气发生电离而引起放电的现象。
2.尖端放电的应用和防止
(1)应用:避雷针是利用尖端放电的原理来防止雷击的,它的作用是可以中和云层中的部分电荷,更主要的是把云层中的大量电荷引入地下。
(2)防止:尖端放电会导致高压设备上的电能的损失,所以高压设备中导体的表面要做得尽可能地光滑。
1.自主思考——判一判
(1)沿一条电场线方向上的各点,电势不可能相同。(√)
(2)电场中某点的电势与Ep成正比,与q成反比。(×)
(3)电势与电场强度无任何关系。(√)
(4)电荷在等势面上移动时不受电场力作用,所以不做功。(×)
(5)等势面上各点电势、场强均相同。(×)
(6)电场线与等势面垂直。(√)
2.合作探究——议一议
(1)在电势越高的地方,某电荷的电势能是否越大?
[提示] 对于正电荷,在电势越高的地方,电势能越大;对于负电荷,在电势越高的地方,电势能越小。
(2)为什么等势面一定跟电场线垂直?
[提示] 在同一等势面上移动电荷时,电势能不变,所以电场力不做功,即电场力方向与等势面垂直,如果不垂直,电场强度就有一个沿着等势面的分量,在等势面上移动电荷时静电力就要做功,所以等势面一定跟电场线垂直。
(3)尖端放电的原因是什么?避雷针的原理是怎样的?
[提示] ①尖端放电的原因是尖端电荷比较密集,电场强度大,容易电离空气。
②对于带负电的云团,电子通过避雷针导入大地;对于带正电的云团,大地上的电子通过避雷针与正电荷中和。
电势、等势面的理解
1.电势的特点
(1)电势的相对性:电场中某点的电势高低与零电势点的选取有关。通常选无穷远处或地球表面为零电势点。
(2)电势是标量:电势只有大小没有方向。在规定了零电势点后,电场中各点的电势可能是正值,也可能是负值。正值表示该点的电势高于零电势;负值表示该点的电势低于零电势。显然,电势的正负只表示大小,不表示方向。
(3)电势的固有性:电势是反映电场的能的性质的物理量,由电场本身决定,与该点是否放入电荷及电荷的电性和电荷量均无关,这和许多用比值定义的物理量相同,如电场强度。
2.等势面的特点
(1)在等势面内移动电荷,电场力不做功。
(2)在空间中两等势面不相交。
(3)电场线总是和等势面垂直,且从电势较高的等势面指向电势较低的等势面。
(4)在电场线密集的地方,等差等势面密集;在电场线稀疏的地方,等差等势面稀疏。
(5)等势面的分布与零电势点的选取无关。
[典例] 如图2-2-1所示,Q1和Q2是等量异种点电荷,M、N是两个点电荷连线的垂直平分线上的两点。将正电荷q从无限远处移到电场中,下述说法不正确的是(  )
图2-2-1
A.将q沿着中垂线移到M点与移到N点电场力做的功相同
B.因为不知M、N两点的具体位置,所以无法比较移到M、N两点做功的多少
C.取无限远处电势为零,A点的电势大于零
D.取无限远处电势为零,B点的电势小于零
[思路点拨]
→→
[解析] M、N两点在同一个等势面上,且中垂面的电势与无限远处相同,所以沿等势面移动电荷电场力不做功,故A正确,B错误;根据等势面的分布可知,A点所在的等势面电势高于中垂面的电势,B点所在的等势面电势低于中垂面的电势,故C、D正确。
[答案] B
电势高低的判断方法
(1)电场线法:沿电场线方向,电势越来越低。
(2)场源电荷判断法:离场源正电荷越近的点,电势越高;离场源负电荷越近的点,电势越低。
(3)电势能判断法:对于正电荷,电势能越大,所在位置的电势越高;对于负电荷,电势能越小,所在位置的电势越高。
(4)电场力做功判断法:
①在两点间移动正电荷,如果电场力做正功,则电势能减少,电势降低;如果电场力做负功,则电势能增加,电势升高。
②在两点间移动负电荷,如果电场力做正功,则电势能减少,电势升高;如果电场力做负功,则电势能增加,电势降低。    
1.(多选)下列关于电势高低的判断,正确的是(  )
A.负电荷从A点移到B点时,外力做正功,A点的电势一定较高
B.负电荷从A点移到B点时,电势能增加,A点的电势一定较低
C.正电荷从A点移到B点时,其电势能增加,A点电势一定较低
D.正电荷只在电场力作用下从静止开始,由A点移到B点,A点的电势一定较高
解析:选CD 根据电场力做功和电势能变化的关系,不管是对正电荷做功还是对负电荷做功,只要电场力做正功电势能就减少,只要电场力做负功电势能就增加。但是正、负电荷在电势高低不同的位置具有的电势能不同,正电荷在电势高处具有的电势能多,负电荷在电势低处具有的电势能多。所以选项C、D正确。
2. (多选)如图2-2-2所示,电场中有A、B两点,则下列说法中正确的是(  )
图2-2-2
A.电势φA>φB,场强EA>EB
B.电势φA>φB,场强EA<EB
C.将+q从A点移到B点,电场力做了正功
D.将-q分别放在A、B两点时具有电势能EpA>EpB
解析:选BC B处电场线较密,故场强EA<EB,沿电场线方向电势降低,故φA>φB,A错,B正确;对正电荷,由于φA>φB,故EpA>EpB,从A到B,电势能减小,电场力做正功,C正确;对负电荷,φA>φB,EpA<EpB,D错。
3.如图2-2-3所示,P、Q是两个电荷量相等的正点电荷,它们连线的中点是O,A、B是中垂线上的两点,<,用EA、EB、φA、φB分别表示A、B两点的场强和电势,则(  )
图2-2-3
A.EA一定大于EB,φA一定大于φB
B.EA不一定大于EB,φA一定大于φB
C.EA一定大于EB,φA不一定大于φB
D.EA不一定大于EB,φA不一定大于φB
解析:选B P、Q在O点的合场强为零,且无穷远处P、Q的合场强也为零,可见沿OAB远离O点时,合场强是先增大再减小,而合场强最大处是在A、B两点之间还是在A、B两点之外,题中没有给出,故EA不一定大于EB。P、Q都为正电荷,取无穷远处电势为零,正电荷形成的电场中,各处电势均为正,且离电荷越远处的电势越低,所以必有A点电势高于B点电势。
等势面的应用
1.由等势面可以判断电场中各点电势的高低及差别。
2.由等势面可以判断电荷在电场中移动时静电力做功的情况。
3.由于等势面和电场线垂直,已知等势面的形状分布,可以绘制电场线,从而确定电场的大体分布。
4.由等差等势面的疏密,可以定性地确定某点电场强度的大小。
[典例] 如图2-2-4所示,虚线是某点电荷电场中的三个等势面,实线表示一个正电荷的运动轨迹,在正电荷从a运动到b、再运动到c的过程中,下列说法中正确的是(  )
图2-2-4
A.a点电势高于b点电势
B.电场力先做负功,后做正功,总功为零
C.电势能先减小,后增大
D.动能先增大,后减小
[解析] 从运动轨迹分析,正电荷受到的是斥力。所以场源电荷为正电荷,电场线方向远离场源电荷,所以b点电势高;当正电荷靠近场源电荷时,电场力做负功,电势能增加,动能减小;当正电荷远离场源电荷时,电场力做正功,电势能减小,动能增大。因为a、c在同一个等势面上,所以电荷在这两点的电势能相等,所以由a到c电场力做的总功为零。
[答案] B
电场中“三线”问题的解决方法
粒子运动轨迹、电场线、等势线(面)是电场中常见的三线。三线问题综合了力学、电学许多知识,是电场内容中考查的重点。
一般按以下思路解决:
(1)判断电场力的方向。
①轨迹的切线方向为速度方向;②电场线的切线方向为电场强度的方向,正电荷所受电场力的方向与电场强度方向相同,负电荷所受电场力的方向与电场强度方向相反,由此可判断出电场力的确切方向。
(2)判断电势的高低和电势(或等势面)的大小。电场力做功,电势能一定变化,电场力做多少正(或负)功,电势能就减少(或增加)多少。
(3)判断速度的大小,根据动能定理W=mvt2-mv02来讨论。    
1.图2-2-5中K、L、M为静电场中的3个相距很近的等势面(K、M之间无电荷)。一带电粒子射入此静电场中后,沿abcde轨迹运动。已知电势φK<φL<φM,且粒子在ab段做减速运动。下列说法中正确的是(  )
图2-2-5
A.粒子带负电
B.粒子在bc段做加速运动
C.粒子在a点与e点的速度大小相等
D.粒子从c点到d点的过程中电场力做负功
解析:选C 由带电粒子的运动轨迹可知,粒子所受电场力指向轨迹的凹侧。画出过a、b、c、d、e各点的电场线,因φK<φL<φM,可知粒子带正电,选项A错误;粒子由b到c的过程中,电场力做负功,速率减小,选项B错误;由于a、e两点电势相等,粒子在a、e两点的电势能相等,由能量守恒定律知,粒子在a、e两点的动能相等,速度大小相等,选项C正确;粒子从c点到d点的过程中电场力做正功,选项D错误。
2.图2-2-6为枕形导体周围的等势面和电场线(带有箭头的为电场线)示意图,已知相邻两个等势面间的电势差相等,则(  )
图2-2-6
A.a点和d点的电场强度一定相同
B.a点的电势一定低于b点的电势
C.将正电荷从c点移到d点,电场力一定做正功
D.将负电荷从c点沿虚线移到e点,电势能一定先增大后减小
解析:选B a点和d点的电场强度大小相等,方向不同,选项A错误;根据电场线由电势高的等势面指向电势低的等势面,可判断选项B正确;c点和d点在同一等势面上,将正电荷从c点移到d点,电场力不做功,选项C错误;将负电荷从c点沿虚线移到e点,电场力先做正功后做负功,电势能先减小后增大,选项D错误。
3.空间中P、Q两点处各固定一个点电荷,其中P点处为正电荷,P、Q两点附近电场的等势面分布如图2-2-7所示,a、b、c、d为电场中的4个点,则(  )
图2-2-7
A.P、Q两点处的电荷等量同种
B.a点和b点的电场强度相同
C.c点的电势低于d点的电势
D.负电荷从a到c,电势能减少
解析:选D 由电场的等势面分布可知,P、Q为等量异种电荷,Q带负电,选项A错误;a、b两点的电场强度方向不同,选项B错误;由正电荷到负电荷电势逐渐降低,可知φc>φd,故选项C错误;负电荷从a到c,电场力做正功,电势能减少,故选项D正确。
1.在静电场中,关于场强和电势的说法中正确的是(  )
A.电场强度大的地方电势一定高
B.电势为零的地方场强也一定为零
C.场强为零的地方电势也一定为零
D.场强大小相同的点电势不一定相同
解析:选D 电场强度和电势没有必然联系,场强大的地方电势不一定高,电势高处的电场强度也不一定大。故选项D正确。
2.下列说法中正确的是(  )
A.沿电场线的指向,场强一定越来越小
B.沿电场线的指向,电势一定越来越低
C.沿电场线方向移动电荷,电势能逐渐减小
D.在电场力作用下,正电荷一定从电势高处向电势低处移动
解析:选B 沿电场线方向,电势降低;沿电场线方向移动正电荷,电场力做正功电势能减小;在电场力作用下,正电荷不一定从电势高的地方向电势低的地方移动,与其初速度的方向有关。
3.关于等势面的说法,错误的是(  )
A.电荷在等势面上移动时不受电场力作用,所以不做功
B.等势面上各点的场强不一定相等
C.点电荷在真空中形成的电场的等势面是以点电荷为球心的一簇球面
D.匀强电场中的等势面是相互平行的垂直电场线的一簇平面
解析:选A 在等势面上移动电荷,电场力不做功并不是电荷不受电场力的作用,而是电场力和电荷的移动方向垂直,电场力做功为零,因此A项错误。等势面上各点的电势相等,但是场强是否相等则不一定,如在点电荷形成的电场中,等势面上各点的场强的大小相等,但是方向却不同,因此B项正确。根据所学各种等势面的分布情况可知,C、D两项是正确的。
4.关于避雷针的下列说法中正确的是(  )
A.制作避雷针要选用绝缘性能好的材料
B.避雷针避雷是将云层中积聚的电荷导入大地
C.为了美观通常把避雷针顶端设计成球形
D.避雷针安装在高大建筑物的顶端,而不必接地
解析:选B 带电云层靠近建筑物时,会在建筑物上感应出异种电荷,在云层与建筑物之间形成电场。当电荷积累到一定程度时,会发生强烈放电现象,可能发生雷击。如果建筑物安装了避雷针,云层中积聚的电荷会通过避雷针导入大地,逐渐中和云层的电荷,保护建筑物,使其免遭雷击。避雷针应选用导体材料,所以选B。
5.如图1所示的情况中,a、b两点电势相等,电场强度矢量也相等的是(  )
图1
A.甲图中带等量异种电荷的平行金属板之间的两点
B.乙图中离点电荷等距的任意两点
C.丙图中两等量同种电荷其连线的中垂线上离垂足等距的任意两点
D.丁图中两等量异种电荷其连线的中垂线上离垂足等距的任意两点
解析:选D 匀强电场的等势面是一系列的平行平面,甲图中a、b两点不在同一等势面上,所以,这两点的电势是不相等的,但这两点的场强相等;乙图中a、b两点在同一个等势面上,电势相等,但这两点的场强矢量大小相等,方向不同;丙图中a、b两点对称于两电荷的连线,所以电势相等,但在中垂线上场强矢量的方向是平行于中垂线的,而且都向外侧,故两点的场强矢量的方向不同;在丁图中,a、b两点的电势相等,场强矢量的方向是平行于两点电荷连线的,而且方向相同,D项正确。
6.一正电荷仅在电场力作用下,从A点运动到B点,速度大小随时间变化的图像如图2所示。下列关于A、B两点电场强度E的大小和电势φ的高低的判断,正确的是(  )
图2
A.EA>EB,φA>φB
B.EA=EB,φA=φB
C.EA<EB,φA>φB
D.EA<EB,φA<φB
解析:选B 电荷仅受电场力作用,合力不会为零,由运动图像可知速度的大小没有变化,故电荷只能做匀速圆周运动,故选B。
7. (多选)图3中,实线表示一簇关于x轴对称的等势面,在轴上有A、B两点,则(  )
图3
A.A点的场强小于B点的场强
B.A点的场强方向指向x轴负方向
C.A点的场强大于B点的场强
D.A点的电势高于B点的电势
解析:选AD 由电场线与等势面的关系可知,电场线一定与等势面垂直,且从电势较高的等势面指向电势较低的等势面,作出相对应的电场线分布如图中虚线所示,则可知A、B两点处的场强方向应与x轴正方向同向,由电场线的疏密可知,A点的场强小于B点的场强。故选A、D。
8. (2015·全国卷Ⅰ)如图4,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ。一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等。则(  )
图4
A.直线a位于某一等势面内,φM>φQ
B.直线c位于某一等势面内,φM>φN
C.若电子由M点运动到Q点,电场力做正功
D.若电子由P点运动到Q点,电场力做负功
解析:选B 由电子从M点分别运动到N点和P点的过程中电场力所做的负功相等可知,N、P两点在同一等势面上,且电场线方向为M→N,故选项B正确,选项A错误。M点与Q点在同一等势面上,电子由M点运动到Q点,电场力不做功,故选项C错误。电子由P点运动到Q点,电场力做正功,故选项D错误。
9.如图5中A、C是以正点电荷Q为圆心的某一圆周上的两点,B是线段AC的中点。现将一正电荷从A经B移到C,则(  )
图5
A.从A到C,电场力对该电荷一直做正功
B.从A到C,电场力对该电荷一直不做功
C.该电荷在A、B、C三点时的电势能大小关系是EpB>EpA=EpC
D.该电荷在A、B、C三点时所受电场力的大小关系是FB<FA=FC
解析:选C 根据点电荷的等势面特点(如图),可知A、C两点处于同一等势面上,两点的电势相等,B所在的等势面比A、C所在的等势面电势高,故将正电荷从A移到C点的过程中,电势先升高后降低,电势能先增大后减小,电场力先做负功后做正功,所以选项A、B错误;根据EP=qφ可知,正电荷在三点的电势能大小关系为EpB>EpA=EpC,所以选项C正确;根据点电荷的电场线分布可知,三点的电场强度的大小EB>EA=EC,根据F=qE,所以有FB>FA=FC,故D选项错误。
10.如图6所示,虚线a、b、c是电场中的三个等势面,相邻等势面间的电势差相同,实线为一个带正电的质点仅在电场力作用下,通过该区域的运动轨迹,P、Q是轨迹上的两点。下列说法中正确的是(  )
图6
A.三个等势面中,等势面a的电势最高
B.带电质点一定是从P点向Q点运动
C.带电质点通过P点时的加速度比通过Q点时小
D.带电质点通过P点时的动能比通过Q点时小
解析:选D 先画出电场线,再根据速度、合力和轨迹的关系,可以判定:质点在各点受的电场力方向是斜向右下方。由于是正电荷,所以电场线方向也沿电场力斜向右下方。
11.如果把q=1.0×10-8 C的电荷从无穷远处移至电场中的A点,需要克服电场力做功W=1.2×10-4 J,选取无穷远处为零势能点,那么:
(1)A点的电势及q在A点的电势能各是多少?
(2)q未移入电场前A点的电势是多少?
解析:(1)根据电势能的规定可知q在A点的电势能EpA=W=1.2×10-4 J
正电荷在A点的电势φA>0
φA===1.2×104 V。
(2)A点的电势由电场本身决定,跟A点是否有电荷无关,所以q未移入电场前,A点的电势也为1.2×104 V。
答案:(1)1.2×104 V 1.2×10-4 J (2)1.2×104 V
12.如图7所示,虚线方框内为一匀强电场,A、B、C为该电场中的三个点。已知φA=12 V,φB=6 V,φC=-6 V。试在该方框内作出该电场的示意图(即画出几条电场线),并要求保留作图时所用的辅助线。
图7
解析:题目中只要寻求电势相等的点即可确定等势面,因φB=6 V,φC=-6 V,由匀强电场的特点电势均匀分布知,在BC连线的中点O处的电势必为0;同理,在AC线段上找一个电势为0的点,把AC线段等分成三份,在等分点O′处的电势也必为0。连结OO′即为该电场中的一条等势线,根据电场线与等势线垂直,可以画出电场中的电场线,如图所示。
答案:见解析图
课件33张PPT。第3节 电_势_差
1.电场中两点之间的电势之差叫电势差,UAB=φA-φB。有正、负之分,但它是标量。
2.电场中移动电荷过程中,电场力做的功W等于电荷量q和电势差的乘积。WAB=qUAB适用于一切电场。
3.匀强电场中,电场强度等于沿场强方向单位距离上的电势差,E=。等差等势面越密的地方,场强越大。
一、电势差与电场力做功
1.电势差
(1)定义:电场中两点电势的差值,用符号U表示。
(2)定义式:UAB=φA-φB。
(3)单位:与电势单位相同,国际单位是伏特,符号为V。
(4)标矢性:电势差是标量,但是有正负。UAB>0,表示A点电势比B点电势高。
2.电场力做功
(1)公式:WAB=EpA-EpB=qUAB=q(φA-φB)=-ΔEpAB。
(2)电子伏特:1 eV=1.6×10-19 J,表示在电势差为1_V的两点之间电子自由移动时电场力所做的功。
二、电场强度与电势差的关系
1.关系式
UAB=Ed。
2.适用条件
(1)匀强电场。
(2)d是沿电场强度方向两点间的距离。
3.物理意义
匀强电场中两点间的电势差等于电场强度与这两点间沿电场方向的距离的乘积。
三、示波管的工作原理
1.用途
示波器是一种常用的观测电信号波形的仪器,它还可以用来测量电信号的周期、频率、电压等参数,其核心部件是示波管。
2.示波管的构造
构造如图2-3-1所示。阴极射线管示波器主要由电子枪、偏转电极、荧光屏组成,示波管内抽成真空。
图2-3-1
1.自主思考——判一判
(1)公式UAB=说明两点间的电势差UAB与电场力做功WAB成正比,与移动电荷的电荷量q成反比。(×)
(2)把正电荷从A点移到B点,电场力做正功,则有UAB>0。(√)
(3)电场中A、B两点间的电势差UAB等于把正电荷q从A点移动到B点时电场力所做的功。(×)
(4)由E=可知,E与U成正比,与d成反比。(×)
(5)电势降落的方向就是场强的方向。(×)
2.合作探究——议一议
(1)电势差是矢量还是标量?它的正负表示什么含义?
[提示] 电势是标量,故电势的差值也是标量。若电场中M、N两点间的电势差为正,即UMN>0,则表明φM>φN;若UMN<0,则表明φM<φN。
(2)公式UAB=Ed是在匀强电场中得到的,在非匀强电场中能否适用?
[提示] 在非匀强电场中,不能进行定量计算,但可以定性地分析有关问题。
(3)在示波管中荧光屏上的可视图像是怎样形成的?
[提示] 在YY′偏转电极上加一个信号电压,在XX′偏转电极上加一个扫描电压,在荧光屏上就会出现按YY′偏转电压规律变化的可视图像。
电场力做功与电势差的关系
1.对电场力做功公式WAB=qUAB的理解
(1)公式WAB=qUAB适用于任何电场,UAB为电场中A、B两点间的电势差。
(2)公式中各量均有正负,计算中W和U的角标要相互对应,即WAB=qUAB,WBA=qUBA。
2.电势、电势差、电势能、电场力做功的关系
1.对于电场中的A、B两点,下列说法正确的是(  )
A.公式UAB=,说明A、B两点间的电势差UAB与电场力做的功WAB成正比,与移动电荷的电荷量q成反比
B.A、B两点间的电势差等于将正电荷从A点移到B点电场力做的功
C.将1 C的电荷从A点移到B点,电场力做1 J的功,则这两点间的电势差为1 V
D.若电荷由A点移到B点的过程中,除受电场力外,还受其他力的作用,则电荷电势能的变化就不再等于电场力所做的功
解析:选C A、B两点间的电势差是由电场本身的性质决定的,不能说两点间的电势差UAB与电场力做的功WAB成正比,与移动电荷的电荷量q成反比,选项A错误;由公式UAB=可以看出,A、B两点间的电势差在数值上等于将单位正电荷从A点移到B点电场力做的功,选项B错误,C正确;无论电荷在电场中是否受到其他力的作用,电势能的变化都等于电场力做的功,选项D错误。
2.有一个电荷量q=-3×10-6 C的点电荷,从某电场中的A点移到B点,电荷克服电场力做6×10-4 J的功,从B点移到C点,电场力对电荷做9×10-4 J的功,求A、C两点的电势差并说明A、C两点哪点电势较高。
解析:方法一:
电荷从A移到B克服电场力做功即电场力做负功,
WAB=-6×10-4 J
UAB== V=200 V
UBC== V=-300 V
UAC=UAB+UBC=200 V-300 V=-100 V
UAC=φA-φC=-100 V
所以φA<φC,即A、C两点中,C点电势高。
方法二:
|UAB|== V=200 V
因负电荷从A移到B克服电场力做功,必是从高电势点移向低电势点,即φA>φB,UAB=200 V
|UBC|== V=300 V
因负电荷从B移到C电场力做正功,必是从低电势点移向高电势点,即φC>φB,UBC=-300 V
UAC=UAB+UBC=200 V-300 V=-100 V
UAC=φA-φC=-100 V
所以φA<φC,即A、C两点中,C点电势高。
答案:-100 V C点电势高
电场强度和电势差的区别与联系
物理量
电势差UAB
电场强度E
定义式
UAB=
E=
大小
数值上等于单位正电荷从一点移到另一点时,电场力所做的功
数值上等于单位电荷受到的力
方向
标量、无方向
规定为正电荷在该点所受电场力的方向
联系
①场强的方向是电势降落最快的方向,但电势降落的方向不一定是场强的方向
②场强的大小等于沿场强方向每单位长度上的电势降落,即E=或UAB=Ed(匀强电场)
[典例] 如图2-3-2所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0 V,点A处的电势为6 V,点B处的电势为3 V,则电场强度的大小为(  )
图2-3-2
A.200 V/m      B.200 V/m
C.100 V/m D.100 V/m
[思路点拨]
→→
[解析] x轴上OA的中点C的电势为3 V,则BC的连线为等势线,如图所示,电场的方向与等势线垂直,且由电势高处指向电势低处。根据几何图形,O点到BC的距离为d=1.5 cm,所以E== V/m=200 V/m,故选项A正确。
[答案] A
等分法计算匀强电场中的电势
(1)在匀强电场中,沿任意一个方向上,电势降落都是均匀的,故在同一直线上相同距离的两点间的电势差相等。如果把某两点间的距离等分为n段,则每段两端点间的电势差等于原电势差的。
(2)已知电场中几点的电势,如果要求某点的电势时,一般采用“等分法”在电场中找与待求点电势相同的等势点。等分法也常用在画电场线的问题中。
(3)在匀强电场中,相互平行的相等的线段两端点电势差相等,应用这一点可求解电势。    
1.如图2-3-3所示,a、b、c、d是匀强电场中的四个点,它们正好是一个矩形的四个顶点。电场线与矩形所在平面平行。已知a点的电势为20 V,b点的电势为24 V,d点的电势为4 V,由此可知c点的电势为(  )
图2-3-3
A.4 V B.8 V
C.12 V D.24 V
解析:选B Uad=φa-φd=20 V-4 V=16 V,在匀强电场中,相互平行的等长线段两端点电势差相等,故Ubc=Uad,又Ubc=φb-φc,所以φc=φb-Uad=24 V-16 V=8 V,B正确。
2.如图2-3-4所示,在匀强电场中,同一条电场线上有A、B两点,它们之间的距离为6 cm,现测得UAB=150 V。
图2-3-4
(1)求电场强度E的大小和方向;
(2)电场中A、C两点相距14 cm,A、C两点的连线与电场线成60°角,则C、A两点的电势差UCA为多大?
解析:(1)E== V/m=2.5×103 V/m
UAB=150 V>0,则φA>φB,沿电场线方向电势降低,故场强方向向右。
(2)UAC=E·ACcos 60°=2.5×103×0.14× V=1.75×102 V
所以UCA=-UAC=-1.75×102 V。
答案:(1)2.5×103 V/m,方向向右
(2)UCA=-1.75×102 V
带电粒子在电场中的加速和偏转
一、解决这类问题的基本方法
1.采用运动和力的观点:牛顿第二定律和运动学知识求解。(适用于匀强电场)
2.用能量转化的观点:动能定理和功能关系求解。(适用于任何电场)
二、对带电粒子进行受力分析时应注意的问题
1.要掌握电场力的特点,电场力的大小和方向不仅跟场强的大小和方向有关,还跟带电粒子的电性和电荷量有关。在匀强电场中,同一带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。
2.是否考虑重力要依据情况而定
基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量)。
带电粒子:如液滴、油滴、尘埃、小球等,除有说明或明确暗示外,一般都不能忽略重力。
三、带电粒子在匀强电场中加速、偏转、先加速再偏转的运动分析
(一)带电粒子的加速
匀强电场中,带电粒子在电场力F的作用下,以恒定的加速度a==做匀加速直线运动。带电粒子的速度:
1.应用牛顿运动定律:a==,v2=2ad,所以v== = 。
2.应用动能定理:WF=ΔEk,WF=qU,所以qU=mv2-0,v= 。
(二)带电粒子的偏转
1.粒子的偏转角
(1)已知电荷情况及初速度
图2-3-5
如图2-3-5所示,设带电粒子质量为m,带电荷量为q,以速度v0垂直于电场线方向射入匀强偏转电场,偏转电压为U1,若粒子飞出电场时偏转角为θ,则tan θ=,式中vy=at=·。
vx=v0,代入得:tan θ=①
小结:动能一定时tan θ与q成正比,电荷量相同时tan θ与动能成反比。
(2)已知加速电压U0
若不同的带电粒子是从静止经过同一加速电压U0加速后进入偏转电场的,则由动能定理有:
qU0=mv02②
由①②式得:tan θ=③
小结:粒子的偏转角与粒子的q、m无关,仅取决于加速电场和偏转电场。即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度总是相同的。
2.粒子的偏转量
(1)y=at2=··2④
作粒子速度的反向延长线,设交于O点,O点与电场边缘的距离为x,则x==。
小结:粒子从偏转电场中射出时,就像是从极板间的处沿直线射出。
(2)若不同的带电粒子是从静止经同一加速电压U0加速后进入偏转电场的,则由②和④,得:y=。
小结:粒子的偏转距离与粒子的q、m无关,仅取决于加速电场和偏转电场。即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转距离总是相同的。
[典例] 如图2-3-6所示,水平放置的两平行金属板,板长l为10 cm,两极板相距d为2 cm,两板间所加电压为364 V,一电子以v=4×107 m/s的初速度从两板中央水平射入板间,然后从板间飞出射到距板l1=45 cm的荧光屏D上(不计重力,荧光屏中点在两板间的中央线上,电子质量m=0.91×10-30 kg,电量e=1.6×10-19 C)。问:
(1)电子飞入两板前所经历的加速电场的电压是多大?
(2)电子在荧光屏上的偏移量是多少?
图2-3-6
[解析] (1)设加速电场的电压为U0,由动能定理得eU0=mv2,则U0== V=4.55×103 V。
(2)电子的运动分析如下图所示,设偏转电场的电压为U,电子在偏转电场中的运动时间为t,加速度为a,在电场中的侧向位移为y,则y=at2…①,a==…②,t=…③。由①②③得:y== m=1×10-2m=1 cm。
由图可知=,代入数据得y′=10 cm。
[答案] (1)4.55×103 V (2)10 cm
(1)带电粒子垂直于电场方向射入,在电场中做类平抛运动。
(2)出射速度的反向延长线交于板间直线的中点。
(3)注意三角形相似的位移比例关系。    
1.如图2-3-7所示,有一带电粒子(不计重力)紧贴A板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿轨迹①从两板中间飞出;当偏转电压为U2时,带电粒子沿轨迹②落到B板正中间;设带电粒子两次射入电场的水平速度相同,则电压U1、U2之比为(  )
图2-3-7
A.1∶1 B.1∶2
C.1∶4 D.1∶8
解析:选D 设板长为L,板间距离为d,水平初速度为v0;带电粒子的质量为m,电荷量为q;两次运动的时间分别为t1和t2。第一次射入时:L=v0t1,=·t12,联立两式解得:U1=。第二次射入时:=v0t2,d=·t22,联立两式解得:U2=。所以U1∶U2=1∶8,故D正确。
2.一束质量为m、电荷量为q的带电粒子以平行于两极板的速度v0进入匀强电场,如图2-3-8所示。如果两极板间电压为U,两极板间的距离为d,板长为L,设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为多少。(粒子的重力忽略不计)
图2-3-8
解析:水平方向匀速,则运动时间t=①
竖直方向加速,则偏移y=at2②
且a=③
由①②③得y=
则电场力做功W=qE·y=q·=
由功能原理可以得出电势能减少了。
答案:
1.下列说法正确的是(  )
A.A、B两点间的电势差,等于将正电荷从A点移到B点的过程中电场力所做的功
B.电势差是一个矢量,故有正值和负值之分
C.由于电场力所做的功跟移动电荷的路径无关,所以电势差也跟移动电荷的路径无关,只跟某两点的位置有关
D.A、B两点间的电势差是恒定的,不随零电势点选取的不同而改变,所以UAB=UBA
解析:选C 由电势差的定义式和电势差的性质知,A、B错误,C正确;因UAB=-UBA,故D错误。
2.如图1所示,匀强电场场强E=50 V/m。A、B两点相距L=20 cm,且A、B连线与电场线的夹角为60°,则A、B两点间的电势差UAB为(  )
图1
A.-10 V       B.10 V
C.-5 V D.-5 V
解析:选C A、B两点间的电势差U=Ed=ELcos 60°=50×0.2× V=5 V,根据电场线的方向可知φA<φB,故UAB=-5 V,选项C正确。
3.示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图2所示,如果在荧光屏上P点出现亮斑,那么示波管中的(  )
图2
A.极板X应带负电 B.极板X′应带正电
C.极板Y应带正电 D.极板Y′应带正电
解析:选C 电子枪发射的电子带负电,在偏转电极作用下要偏转,可知极板X应带正电,极板Y应带正电,故C正确。
4.将一正电荷从无穷远处移向电场中M点,电场力做功为6.0×10-9 J,若将一个等量的负电荷从电场中N点移向无穷远处,电场力做功为7.0×10-9 J,则M、N两点的电势φM、φN的关系为(  )
A.φM<φN<0 B.φN>φM>0
C.φN<φM<0 D.φM>φN>0
解析:选C 设无穷远处电势为φ0=0,则W∞M=q(φ0-φM),解得φM=-,同理,WN∞=-q(φN-φ0),解得φN=-,代入数据可知φN<φM<0。
5.如图3所示,a、b是电场线上的两点,将一带电荷量为q的点电荷从a移到b,电场力做功为W,且知a、b间的距离为d,则以下说法正确的是(  )
图3
A.a、b间的电势差为 B.a处的场强为E=
C.b处的场强为E= D.a点的电势为
解析:选A 由W=qU知,U=,且a点的电势比b点的高,所以A项正确。由于不知是不是匀强电场,所以a、b两点的电场强度不能使用E=进行计算,所以B、C项错。如果取b点的电势为零,a点的电势才是,而题中并没有说明何处为零电势点,所以D项错。
6. (多选)如图4所示,实线为电场线,虚线为等势线,且AB=BC,电场中的A、B、C三点的场强分别为EA、EB、EC,电势分别为φA、φB、φC,AB、BC间的电势差分别为UAB、UBC,则下列关系中正确的有(  )
图4
A.φA>φB>φC B.EC>EB>EA
C.UAB<UBC D.UAB=UBC
解析:选ABC A、B、C三点处在同一条电场线上,沿着电场线的方向电势降低,故φA>φB>φC,选项A正确;由电场线的疏密程度可看出电场强度的大小关系为EC>EB>EA,选项B正确;电场线密集的地方电势降落较快,所以UBC>UAB,选项C正确,D错误。
7.如图5所示,实线表示电场线,虚线表示等势线,a、b两点的电势分别为φa=-50 V,φb=-20 V,则a、b连线的中点c的电势满足(  )
图5
A.φc=-35 V
B.φc>-35 V
C.φc<-35 V
D.以上答案都不对
解析:选B 由图可知,这是一个非匀强电场,且Eb<Ea。若此电场为匀强电场,则φc=-35 V,而此电场中Eb<Ec<Ea,即从b到c过程中每一小段上的电势降低都要比从c到a过程中每一小段上的电势降低得慢,故φc>-35 V,应选B。
8.如图6所示,质子(11H)和α粒子(24He)以相同的初动能垂直射入偏转电场(粒子重力不计),则质子和α粒子射出电场时的侧向位移y之比为(  )
图6
A.1∶1      B.1∶2
C.2∶1 D.1∶4
解析:选B 粒子进入偏转电场后,沿初速度方向做匀速直线运动,沿电场力方向做初速度为零的匀加速直线运动,加速度a=,运动时间t=,粒子射出电场时的侧向位移y=at2==,故侧向位移之比==,选项B正确。
9. (多选)如图7所示,水平向右的匀强电场的场强为103 N/C,abcd为一矩形,且ab边与电场线平行,ab=dc=4 cm,bc=ad=3 cm。则下列计算结果正确的是(  )
图7
A.a、b之间的电势差为40 V
B.a、c之间的电势差为50 V
C.将q=-5×10-3 C的点电荷沿矩形路径abcd移动一周,电场力做功为零
D.将q=-5×10-3 C的点电荷沿abc或adc从a移动到c,电场力做的功都是-0.25 J
解析:选AC Uab=Edab=103×0.04 V=40 V,选项A正确;bc边和电场线垂直,所以a、c间的电势差与a、b间的电势差相等,选项B错误;电荷在电场中移动时电场力做的功与路径无关,只取决于电荷量和初末位置的电势差,运动一周电场力做的功为零,选项C正确;电荷沿abc或adc从a移动到c,电场力做的功都是Wac=qUac=-0.2 J,选项D错误。
10.如图8所示,在点电荷Q产生的电场中,将两个带正电的试探电荷q1、q2分别置于A、B两点,虚线为等势线。取无穷远处为零电势点,若将q1、q2移到无穷远的过程中外力克服电场力做的功相等,则下列说法正确的是(  )
图8
A.A点电势大于B点电势
B.A、B两点的电场强度相等
C.q1的电荷量小于q2的电荷量
D.q1在A点的电势能小于q2在B点的电势能
解析:选C 由题意知点电荷Q带负电,所以有φA<φB<0,得|UA∞|>|UB∞|,移动两试探电荷克服电场力做功相等,有q1|UA∞|=q2|UB∞|,所以q1<q2,选项A错误,C正确;因为E=k,rA<rB,所以EA>EB,而且A、B两点的场强方向也不同,选项B错误;根据电场力做功与电势能变化的关系,q1在A点的电势能等于q2在B点的电势能,选项D错误。
11.平行的带电金属板A、B间是匀强电场,如图9所示,两板间距离是5 cm,两板间的电压是60 V。试问:
图9
(1)两板间的场强是多大?
(2)电场中有P1和P2两点,P1点离A板0.5 cm,P2点离B板也是0.5 cm,P1和P2两点间的电势差为多大?
(3)若B板接地,P1和P2两点的电势各是多少伏?
解析:(1)根据公式E=代入数据
E= V/m=1 200 V/m。
(2)P1P2沿电场方向的距离为
d12=5 cm-(0.5 cm+0.5 cm)=4 cm
根据公式U12=Ed12=1 200×4×10-2 V=48 V。
(3)由公式φ1-φB=Ed1B=1 200×4.5×10-2 V=54 V得:φ1=54 V
同理φ2-φB=Ed2B=1 200×0.5×10-2 V=6 V得φ2=6 V。
答案:(1)1 200 V/m (2)48 V (3)54 V 6 V
12.一束电子流在经U=5 000 V的加速电压加速后,在距两极板等距离处垂直进入平行板间的匀强电场,如图10所示。若两极板间距离d=1.0 cm,板长l=5.0 cm,那么,要使电子能从平行板间飞出,两个极板上最大能加多大电压?
图10
解析:加速过程中,由动能定理得eU=mv02①
进入偏转电场后,电子在平行于板面的方向上做匀速运动l=v0t②
在垂直于板面的方向做匀加速直线运动,加速度a==③
偏距y=at2④
能飞出的条件y≤⑤
解①~⑤式得
U′≤= V=4.0×102 V
即要使电子能飞出,所加电压最大为400 V。
答案:400 V
课件38张PPT。数值上等于单位电荷受到的力数值上等于单位正电荷从一点移到另一点时,电场力所做的功大小定义式①场强的方向是电势降落最快的方向,但电势降落的方向不一定是场强的方向
②场强的大小等于沿场强方向每单位长度上的电势降落,即E=或UAB=Ed(匀强电场)联系规定为正电荷在该点所受电场力的方向标量、无方向方向电场强度E电势差UAB物理量第4节 电容器__电容
1.电路中具有储存电荷功能的装置叫电容器,两块彼此绝缘的平行金属板组成一类最简单的电容器,叫平行板电容器。
2.电容是反映电容器容纳电荷本领的物理量,数量上等于电容器电量与两端电压的比值,即C=。C与Q、U无关。平行板电容器电容的决定式C=。
3.电容器和电源相连,极板电压不变;电容器和电源断开,极板电荷量不变。
一、电容器
1.组成
两个彼此绝缘又相隔很近的导体,组成一个电容器。
2.充、放电过程
过程
内容  
充电过程
放电过程
过程示意
电荷运动
正电荷向A板移动,负电荷向B板移动
正电荷由A板移向B板(或负电荷由B板移向A板)
电流方向
流向正极板
流出正极板
联系
两个过程互逆,电容器的电量、场强、能量变化趋势相反
3.电容
(1)定义:电容器所带的电荷量Q与电容器两极板间的电势差U的比值叫做电容器的电容。
(2)公式:C=(或C=)。
(3)物理意义:描述电容器容纳电荷本领大小的物理量,在数值上等于使电容器两极板间的电势差为1 V所需要带的电荷量。
(4)电容的单位是法拉,简称法,符号是F。1 F=106 μF=1012 pF。
(5)电场能:电容器充电过程中由电源获得的能量储存在电场中,称为电场能。
二、平行板电容器的电容
1.决定电容的因素:平行板电容器的电容C与正对面积S成正比,与极板间的距离d成反比,与极板之间电介质的介电常数ε成正比。
2.决定式:C=,真空中时:C=。
三、常见电容器及其构造 电容器的应用
1.电容器的分类
(1)按电介质分:空气电容器、云母电容器、纸质电容器、陶瓷电容器、涤纶电容器、电解电容器等。
(2)按电容是否可变分:可变电容器、固定电容器等。
2.电容器的应用
(1)用于照相机的电子闪光灯:先由电容器储存能量,释放能量时发生放电,从而导致电子闪光灯管内的气体发出耀眼的白光。
(2)利用电容器测量水位:水位变化引起电容变化,从而可测出水位变化。
(3)用于高能物理实验或工程中。
(4)驻极体话筒。
1.自主思考——判一判
(1)电容的定义式C=,C与Q、U无关。(√)
(2)电容器的一个极板带正电荷,另一极板带等量负电荷,其带电荷量指的是一个极板上电荷量的多少。(√)
(3)电容器在充电过程中,其他形式能转化为电场能,放电过程相反。(√)
(4)平行板电容器的S、d变大时,其电容变大。(×)
(5)C=中ε是相对介电常数,空气的相对介电常数为1。(√)
2.合作探究——议一议
(1)有些同学认为“电容越大,电容器所带的电荷量就越多,反之就越少”,这种观点正确吗?
[提示] 这种观点是错误的,其原因是不能将电容器“能容纳电荷的多少”与“实际所带电荷量的多少”区分开来。电容是表征电容器容纳电荷本领大小的物理量,电容越大说明其容纳电荷的本领越大,但不能说其所带的电荷量一定越多。
(2)某电容器上标有“1.5 μF,9 V”的字样,9 V指什么电压?
[提示] 额定电压。
(3)生活中,经常用照相机进行拍照,遇到光线较暗的情况,常常要用照相机的闪光灯发出强烈的闪光,这需要通过电容器来实现。拍照前先对电容器充电,拍照时电容器瞬间放电发出耀眼的白光。照相机每次闪光前后,能量发生怎样的变化?
[提示] 闪光前,电容器先充电,将其他形式的能(如化学能)转化为电场能储存起来;然后放电,将电场能转化为光能释放出来。
对电容器、电容的理解
1.C=是电容的定义式,对某一电容器来说,Q∝U但C=不变,反映电容器容纳电荷的本领,C=是电容器电容的决定式,C∝S,C∝ε,C∝,说明了电介质的材料、极板的正对面积和极板间的距离是电容大小的决定因素。
2.Q-U图像是一条过原点的直线,如图2-4-1所示,其中Q为一个极板上所带电荷量的绝对值,U为两板间的电势差,直线的斜率表示电容大小。因而电容器的电容也可以表示为C=,即电容的大小在数值上等于两极板间的电压增加(或减小)1 V时电容器上增加(或减小)的电荷量。
图2-4-1
1.用6 V干电池对一个电容器充电,下列说法中正确的是(  )
A.只要电路不断开,电容器的带电量就会不断增加
B.接电源正极的极板带正电,接电源负极的极板带负电
C.电容器两极板所带电荷量之和叫做电容器所带的电荷量
D.充电后电容器两极板之间不存在电场
解析:选B 电容器所带电荷量Q=CU,故A错;电容器带电量指的是一个极板所带电荷量,故C错;充电后两极板间认为是匀强电场,故D错。
2.一个平行板电容器,使它每板电荷量从Q1=30×10-6 C增加到Q2=36×10-6 C时,两板间的电势差从U1=10 V增加到U2,求:
(1)这个电容器的电容多大?
(2)U2为多少?
(3)如要使两极板电势差从10 V降为U2′=6 V,则每板需减少多少电荷量?
解析:(1)电容器的电容C== F=3×10-6 F=3 μF
(2)因为电容器的电容不变,故
U2== V=12 V。
(3)根据电容的定义,它等于每增加1 V电势差所需增加的电荷量,即C=,要求两极板间电势差降为6 V,则每板应减少的电荷量为
ΔQ′=CΔU′=3×10-6×(10-6) C=1.2×10-5 C。
答案:(1)3 μF (2)12 V (3)1.2×10-5 C
电容器的动态分析
平行板电容器的两类典型问题
始终与电源连接
充电后与电源断开
不变量
U不变
Q不变
自变量
以d为例
以S为例
因变量
E=,d变大,E变小;d变小,E变大
E=,S变大,E变小;S变小,E变大
Q=U,d变大,Q变小;d变小,Q变大
U=Q,S变大,U变小;S变小,U变大
[典例] (多选)如图2-4-2所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U,现使B板带正电,则下列判断正确的是(  )
图2-4-2
A.增大两极板之间的距离,静电计指针张角变大
B.将A板稍微上移,静电计指针张角变大
C.若将玻璃板插入两板之间,则静电计指针张角变大
D.若将A板拿走,则静电计指针张角变为零
[思路点拨]
→→→→
[解析] 电容器上所带电荷量一定,由公式C=,当d变大时,C变小,再由C=得U变大;当A板上移时,正对面积S变小,C也变小,U变大;当插入玻璃板时,C变大,U变小;当将A板拿走时,相当于使d变得更大,C更小,故U应更大,故选A、B。
[答案] AB
平行板电容器定性分析的解题步骤
(1)确定不变量。电容器与电源相连时,电压U不变;电容器充电后与电源断开时,所带电荷量Q不变。
(2)根据决定式C=和S、ε、d的变化分析平行板电容器电容的变化。
(3)根据定义式C=分析电容器所带电荷量Q或两极板间电压U的变化。
(4)用E=或E∝分析电容器两极板间场强的变化,或根据电容器带电量Q的变化分析回路中的电流方向。    
1. (多选)如图2-4-3所示,一平行板电容器与电源E、电阻R和电流表相连接,接通开关S,电源即给电容器充电,下列说法中正确的是(  )
图2-4-3
A.保持S接通,使两极板的面积错开一些(仍平行),则两极板间的电场强度减小
B.保持S接通,减小两极板间的距离,则电流表中有从左到右的电流流过
C.断开S,增大两极板间的距离,则两极板间的电压增大
D.断开S,在两极板间插入一块电介质板,则两极板间的电势差减小
解析:选BCD 先明确物理量C、Q、U、E中保持不变的量,再依据物理公式来讨论。保持开关S接通,电容器上电压U保持不变,正对面积S减小时,由E=可知U和d都不变,则场强E不变,A错误。减小距离d时,由C∝可知电容C增大,因为开关S接通U不变,由Q=CU得电荷量Q将增大,故电容器充电,电路中有充电电流,B正确。断开开关S后,电容器的电荷量Q保持不变,当d增大时电容C减小,由C=可得电压U将增大,C正确。插入电介质,ε增大,电容C增大,因为断开S后Q不变,由C=知电压U将减小,D正确。
2.如图2-4-4所示,平行放置的金属板A、B组成一个平行板电容器。在开关S闭合时,试讨论以下两种情况电容器两板电势差U、电荷量Q、板间电场强度E的变化情况。
图2-4-4
(1)使A板向上平移一些。
(2)使A板向右平移一些。
解析:因为开关S闭合,故该题属于U不变的情况。
(1)因为平行板电容器的电容C∝,当d↑时,C↓;又因为电容器所带电荷量Q=CU,U不变,C↓时,Q↓;平行板电容器内部为匀强电场,根据E=,因U不变,d↑,故E↓。
(2)两板错开意味着正对面积S↓,由C∝S可知C↓,由Q=CU可知Q↓。但两板间距d不变,由E=判定此时E没有变化。
答案:见解析
1.电容器是一种常用的电子元件。对电容器认识正确的是(  )
A.电容器的电容表示其储存电荷的能力
B.电容器的电容与它所带的电荷量成正比
C.电容器的电容与它两极板间的电压成反比
D.电容的常用单位有μF和pF,1 μF=103 pF
解析:选A C=是电容的定义式,不是决定式,故C与Q、U无关,B、C错。1 μF=106 pF,D错。电容是表示电容器储存电荷的能力的物理量,A选项正确。
2.如图是描述对给定的电容器充电时电荷量Q、电压U、电容C之间相互关系的图像,其中错误的是(  )
解析:选A 电容器的电容只由电容器本身的性质决定,与电容器带电荷量及极板间电压无关,故A错误,B、D正确;由电容定义式C=可知,Q=CU。当C一定时,Q与U成正比,故C正确。
3.关于平行板电容器的电容,下列说法中正确的是(  )
A.跟两极板的正对面积S有关,S越大,C越大
B.跟两极板的间距d有关,d越大,C越大
C.跟两极板上所加电压U有关,U越大,C越大
D.跟两极板上所带电量Q有关,Q越大,C越大
解析:选A 根据平行板电容器电容的决定式C=,可知S越大,C越大;d越大,C越小,故A正确,B错误。C与U、Q无关,故C、D错误。
4.下列关于电容器充电和放电的说法中正确的是(  )
A.电容器充电和放电时电流都由大变小
B.当电容器的电量最大时,电路中电流最大
C.当电容器两极板间的电压等于零时,电路中的电流最大
D.当电路中的电流最大的时候,电容器储存的电能最大
解析:选A 充电过程,电路中电流为零时,说明自由移动的电荷“全部”聚焦到了电容器上,电容器的两极板所带的电量最大,两极板间的电压最大,场强最大;电路中电流最大时,说明聚集到电容器的自由移动的电荷数为零,则电容器的两极板所带的电量为零,两极板间的电压为零,场强为零。放电过程,开始时两板间含电荷量最大,电压最高,场强最大,电流也最大,最后两极板间电量为零时,电压为零电流也为零。所以电容器充电和放电时电流都由大变小,选项A正确,选项B、C错误;充电过程当电容器上电量最大时,电容器上储存的电能最大,电路中的电流为零,选项D错误。
5.用控制变量法,可以研究影响平行板电容器的因素(如图1所示)。设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,则(  )
图1
A.保持S不变,增大d,则θ变大
B.保持S不变,增大d,则θ变小
C.保持d不变,减小S,则θ变小
D.保持d不变,减小S,则θ不变
解析:选A 保持S不变,增大d时,电容器的电容C减小,Q不变时,电压U增大,静电计指针偏角θ变大,选项A正确,B错误;保持d不变,减小S时,电容C减小,Q不变,则电压U增大,静电计指针偏角θ变大,选项C、D错误。
6.板间距为d的平行板电容器所带电荷量为Q时,两极板间电势差为U1,板间场强为E1,现将电容器所带电荷量变为2Q,板间距变为d,其他条件不变,这时两极板间电势差为U2,板间场强为E2,下列说法正确的是(  )
A.U2=U1,E2=E1    B.U2=2U1,E2=4E1
C.U2=U1,E2=2E1 D.U2=2U1,E2=2E1
解析:选C 由公式E=、C=和C∝可得E∝,所以Q加倍,E也加倍,再由U=Ed可得U相等。C正确。
7.如图2所示,金属芯柱与导电液体构成一个电容器,将该电容器与指示器相接,则指示器就能显示出h的变化情况,下列关于该装置的说法中正确的是(  )
图2
A.导电液体相当于电容器的一个电极
B.金属芯柱外套的绝缘层越厚,该电容器的电容越大
C.金属芯柱浸入液体深度h越大相当于电容器的正对面积越小
D.如果指示器显示出电容减小,则说明导电液体液面升高
解析:选A 由电容器的定义可知,该装置中的金属芯柱和导电液体相当于电容器的两个极板,故选项A正确;根据平行板电容器的电容C=定性分析可知,选项B、C、D错误。
8. (多选)如图3所示,两块平行带电金属板,带正电的极板接地,两板间P点处固定着一个负电荷(电荷量很小)。现让两板保持距离不变而水平错开一段距离,则(  )
图3
A.两板间电压变大,P点场强变大
B.两板间电压变小,P点场强变小
C.P点电势变大,负电荷的电势能变小
D.P点电势变小,负电荷的电势能变大
解析:选AD 由U==,E==∝,S减小,致使U变大,E变大;根据-φP=Ed,Ep=(-q)·(-φP),负电荷在此电场中具有的电势能变大。
9.某电容式话筒的原理示意图如图4所示,E为电源,R为电阻,薄片P和Q为两金属极板。对着话筒说话时,P振动而Q可视为不动。在P、Q间距增大过程中(  )
图4
A.P、Q构成的电容器的电容增大
B.P上电荷量保持不变
C.M点的电势比N点的低
D.M点的电势比N点的高
解析:选D 由极板电容器的电容C=可知,当P、Q之间的距离d增大时,电容器的电容C减小,A错误;而电容器两极板之间的电势差不变,根据Q=CU可知,电容器两极板上的电荷量减小,B错误;此时电容器对外放电,故M点的电势高于N点的电势,D正确。
10. (多选)如图5所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。若一带电粒子恰能沿图中所示的水平直线通过电容器,则在此过程中,该粒子(  )
图5
A.所受重力与电场力平衡 B.电势能逐渐增加
C.动能逐渐增加 D.做匀变速直线运动
解析:选BD 由题意可知粒子做直线运动,受到竖直向下的重力和垂直极板的电场力,考虑到电场力和重力不可能平衡,故只有电场力与重力的合力方向水平向左才能满足直线运动条件,故粒子做匀减速直线运动,电场力做负功,电势能逐渐增加,B、D对。
11.如图6所示,一平行板电容器跟一电源相接,当S闭合时,平行板电容器极板A、B间的一带电液滴恰好静止。若将两板间距离增大为原来的两倍,那么液滴的运动状态如何变化?若先将S断开,再将两板间距离增大为原来的两倍,液滴的运动状态又将如何变化?
图6
解析:S闭合时,U不变,d↑,E↓,即E′===
合外力F=mg-Eq=mg=ma,
所以a=,方向向下。液滴将向下做初速度为零,加速度为g的匀加速直线运动。
S断开时,电容器的电荷量保持不变,当d′=2d时,由公式E∝可知,E不变,E′=E
因此,液滴受力情况不变,仍处于静止状态。
答案:见解析
12.如图7所示,水平放置的平行金属板A、B的距离为d,开始两板都不带电,现将电荷量为+q、质量为m的液滴从小孔正上方h处无初速度滴下,通过小孔落向B板并把电荷全部传给B板,若第N滴液滴在A、B间恰好做匀速运动,求电容器的电容。
图7
解析:第N滴液滴做匀速运动时,板上电荷量:
Q=(N-1)q①
由平衡条件得:qE=mg②
两极板间电压:U=Ed③
电容器电容:C=④
由①②③④联立解得:C=。
答案:
                          电场能的性质
1.下列关于匀强电场中场强和电势差关系的说法正确的是(  )
A.在相同距离上,电势差大的其场强也必定大
B.任意两点的电势差,等于场强与这两点间距离的乘积
C.沿着电场线方向,相同距离上的电势降落必定相等
D.电势降低的方向,必定是电场强度的方向
解析:选C 由匀强电场的特点知A、B错,C对;电势降低最快的方向才是电场强度方向,D错。
2. (多选)位于A、B处的两个带有不等量负电的点电荷在平面内电势分布如图1所示,图中实线表示等势线,则(  )
图1
A.a点和b点的电场强度相同
B.正电荷从c点移到d点,电场力做正功
C.负电荷从a点移到c点,电场力做正功
D.正电荷从e点沿图中虚线移到f点电势能先减小后增大
解析:选CD a点和b点所在处的等势线疏密程度不同,故两处的场强不同,方向也不同,A错;从c点到d点电势升高,正电荷的电势能增大,电场力做负功,B错;从a点到c点,电势升高,负电荷的电势能减小,电场力做正功,C对;从e点沿虚线到f点,电势先减小后增大,则正电荷的电势能先减小后增大,D对。
3.喷墨打印机的简化模型如图2所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中(  )
图2
A.向负极板偏转
B.电势能逐渐增大
C.运动轨迹是抛物线
D.运动轨迹与带电荷量无关
解析:选C 由于微滴带负电,电场方向向下,因此微滴受到的电场力方向向上,微滴向正极板偏转,A项错误;偏转过程中电场力做正功,根据电场力做功与电势能变化的关系,电势能减小,B项错误;微滴在垂直于电场方向做匀速直线运动,位移x=vt,沿电场反方向做初速度为零的匀加速直线运动,位移y=t2=2,此为抛物线方程,C项正确;从式中可以看出,运动轨迹与带电荷量q有关,D项错误。
4. (多选)(2015·海南高考)如图3,两电荷量分别为Q(Q>0)和-Q的点电荷对称地放置在x轴上原点O的两侧,a点位于x轴上O点与点电荷Q之间,b点位于y轴O点上方。取无穷远处的电势为零。下列说法正确的是(  )
图3
A.b点电势为零,电场强度也为零
B.正的试探电荷在a点的电势能大于零,所受电场力方向向右
C.将正的试探电荷从O点移到a点,必须克服电场力做功
D.将同一正的试探电荷先后从O、b两点移到a点,后者电势能的变化较大
解析:选BC 由两等量异种点电荷的电场线分布知:过Q和-Q连线的垂直平分线Ob的等势面为零势能面,因此将同一正的试探电荷先后从O、b两点移到a点做的功相同,因此正试探电荷电势能的变化相同,D错。点b在零势能面上,b点电势为零,由场强的合成法则知,b点的场强不为零,方向平行x轴向右,A错。在a点放一正的试探电荷,所受的电场力方向向右,当沿x轴正方向移动时,电场力做正功电势能减少,在O点减为零,过了O点电势能为负值,所以正的试探电荷在a点电势能大于零,反之若从O点移到a点,电场力与运动方向相反,因此电场力做负功即克服电场力做功,B、C正确。
5.如图4所示,虚线为某电场的等势面,今有两个带电粒子(重力不计),以相同的速率,沿不同的方向,从A点飞入电场后,沿不同的轨迹1和2运动,由轨迹可以断定(  )
图4
A.两个粒子的电性一定相同
B.两个粒子带电量一定相同
C.粒子1的动能和粒子2的电势能都是先减少后增大
D.经过B、C两点时,两粒子的速率一定相等
解析:选C 由等势面的形状可知,这是一个位于圆心的点电荷产生的电场,两个粒子与点电荷的作用情况是相反的,所以两个粒子的电性一定不同,电量关系无法确定,A、B错误。粒子1的动能先减小后增大,粒子2的电势能先减小后增大,C正确。两个粒子经过B、C两点时因做功多少无法具体确定,两粒子的质量关系也未知,则速率可能相同也可能不同,D错误。
6. (2015·海南高考)如图5,一充电后的平行板电容器的两极板相距l。在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子。在电场力的作用下,两粒子同时从静止开始运动。已知两粒子同时经过一平行于正极板且与其相距l的平面。若两粒子间相互作用力可忽略,不计重力,则M∶m为(  )
图5
A.3∶2         B.2∶1
C.5∶2 D.3∶1
解析:选A 因两粒子同时经过一平行于正极板且与其相距l的平面,电荷量为q的粒子通过的位移为l,电荷量为-q的粒子通过的位移为l,由牛顿第二定律知它们的加速度分别为a1=、a2=,由运动学公式有l=a1t2=t2①,l=a2t2=t2②,得=。B、C、D错,A对。
7. (多选)(2015·四川高考)如图6所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平,a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零,则小球a(  )
图6
A.从N到Q的过程中,重力与库仑力的合力先增大后减小
B.从N到P的过程中,速率先增大后减小
C.从N到Q的过程中,电势能一直增加
D.从P到Q的过程中,动能减少量小于电势能增加量
解析:选BC 小球a从N点释放一直到达Q点的过程中,a、b两球的距离一直减小,库仑力变大,a受重力不变,重力和库仑力的夹角从90°一直减小,故合力变大,选项A错误;小球a从N到P的过程中,速度方向与重力和库仑力的合力方向的夹角由小于90°到大于90°,故库仑力与重力的合力先做正功后做负功,a球速率先增大后减小,选项B正确;小球a由N到Q的过程中库仑力一直做负功,电势能一直增加,选项C正确;小球a从P到Q的过程中,减少的动能转化为重力势能和电势能之和,故动能的减少量大于电势能的增加量,则选项D错误。
8. (多选)空间某一静电场的电势φ在x轴上分布如图7所示,x轴上两点B、C的电场强度在x方向上的分量分别是EBx、ECx,下列说法中正确的有(  )
图7
A.EBx的大小大于ECx的大小
B.EBx的方向沿x轴正方向
C.电荷在O点受到的电场力在x方向上的分量最大
D.负电荷沿x轴从B移到C的过程中,电场力先做正功,后做负功
解析:选AD 本题的入手点在于如何判断EBx和ECx的大小,由题图像可知在x轴上各点的电场强度在x轴方向的分量不相同,如果在x轴方向上取极小的一段,可以把此段看做是匀强电场,用匀强电场的处理方法思考,从而得到结论,此方法为微元法。在B点和C点附近分别取很小的一段d,由题图像可知,B点很小的一段对应的电势差大于C点很小的一段对应的电势差,看做匀强电场有E=,可见EBx>ECx,同理可知O点场强最小,电荷在该点受到的电场力最小,故A正确,C错误。沿电场方向电势降低,在O点左侧,EBx的方向沿x轴负方向;在O点右侧,ECx的方向沿x轴正方向,故B错误。负电荷从高电势的B点移到低电势的C点,电场力先做正功后做负功,电势能先减少后增加,故D正确。
9. (多选)如图8所示,两块平行金属板正对着水平放置,两板分别与电源正、负极相连。当开关闭合时,一带电液滴恰好静止在两板间的M点。则(  )
图8
A.当开关闭合时,若减小两板间距,液滴仍静止
B.当开关闭合时,若增大两板间距,液滴将下降
C.当开关断开后,若减小两板间距,液滴仍静止
D.当开关断开后,若增大两板间距,液滴将下降
解析:选BC 当开关闭合时,电容器两端电压为定值,等于电源电压,设为U,两板间的距离为d,带电液滴处于平衡状态,则mg=q,当两板间的距离减小时,所受电场力大于重力,液滴将向上做匀加速运动,A错误;两板间的距离增大时,所受电场力小于重力,液滴将向下做匀加速运动,B正确;当开关断开后,电容器无法放电,两板间的电荷量不变,设为Q,此时两板间的场强大小E==∝,可见场强大小与两板间距离无关,即场强大小保持不变,电场力不变,液滴保持静止,C正确,D错误。
10. (多选)如图9所示,A、B、C、D是匀强电场中的四个点,D是BC的中点,A、B、C构成一直角三角形,AB=L m,电场线与三角形所在的平面平行,已知A点的电势为5 V,B点的电势为-5 V,C点的电势为15 V,据此可以判断(  )
图9
A.场强方向由C指向B
B.场强方向垂直AD连线指向B
C.场强大小为 V/m
D.场强大小为 V/m
解析:选BD 根据B、C点的电势可以确定其中点D的电势为5 V,A、D的连线为一条等势线,电场线与等势面垂直,且由高等势面指向低等势面,故场强方向垂直AD连线指向B,A错误,B正确;匀强电场的场强E=,其中UAB=10 V,d=L cos 30°,解得E= V/m,C错误,D正确。
11. (多选)如图10所示,长为L、倾角为θ的光滑绝缘斜面处于某电场中,一带电量为+q、质量为m的小球,以初速度v0由斜面底端的A点开始沿斜面上滑,到达斜面顶端的速度仍为v0,则(  )
图10
A.小球在B点的电势能一定小于小球在A点的电势能
B.小球在B点的电势能一定大于小球在A点的电势能
C.若电场是匀强电场,则该场强的最小值一定是
D.若电场是匀强电场,则该场强的最小值一定是
解析:选AC 由能量守恒定律知,小球的动能、重力势能、电势能的总和保持不变,由于小球在A、B两点动能相等,而在B点的重力势能大于在A点的重力势能,因此在B点的电势能一定小于在A点的电势能,选项A正确,B错误;当匀强电场方向沿斜面向上时场强最小,此时小球做匀速直线运动,由受力分析可知,qE=mgsin θ,因此场强的最小值为,选项C正确,D错误。
12.如图11所示是示波管的示意图,竖直偏转电极的极板长l=4 cm,板间距离d=1 cm。板右端距离荧光屏L=18 cm(水平偏转电极上不加电压,没有画出)。电子沿中心线进入竖直偏转电场的速度是1.6×107 m/s,电子电荷量e=1.60×10-19 C,质量m=0.91×10-30 kg。要使电子束不打在偏转电极的极板上,加在竖直偏转电极上的最大偏转电压U不能超过多大?
图11
解析:经过偏转电场的时间为t=,偏转位移=at2=··t2,所以U===91 V。
答案:91 V
13.如图12所示,匀强电场中电场线与AC平行,把电荷量为10-8 C的负电荷从A点移到B点,电场力做功6×10-8 J,AB长为6 cm。
图12
(1)求场强方向。
(2)设B处电势为1 V,则A处电势为多少?
(3)若AC与AB的夹角为θ=60°,场强为多少?
解析:(1)将负电荷从A点移到B点,电场力做正功,所以电场力方向由A到C,又因为是负电荷,场强方向与负电荷受力方向相反,所以场强方向应为由C到A,即该电场的场强方向沿电场线向下。
(2)由W=qU,得UAB== V=-6 V
又UAB=φA-φB,φB=1 V
解得φA=φB+UAB=1 V-6 V=-5 V。
(3)如图所示,由B向AC作垂线交AC于D,D与B在同一等势面上。UDA=UBA=-UAB=6 V,沿场强方向A、D两点间距离为d=A·cos θ=6 cm×=0.03 m
所以E== V/m=200 V/m。
答案:见解析
                      第2章 电势能与电势差
(时间:50分钟 满分:100分)
一、选择题(本题共8小题,每小题6分,共48分,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求,全都选对的得6分,选对但不全的得3分,有选错的得0分)
1.下列关于电容器和电容的说法中不正确的是(  )
A.根据C=可知,电容器的电容与其所带电荷量成正比,跟两板间的电压成反比
B.对于确定的电容器,其所带的电荷量与两板间的电压(小于击穿电压且不为零)成正比
C.无论电容器的电压如何变化(小于击穿电压且不为零),它所带的电荷量与电压的比值恒定不变
D.电容器的电容是表示电容器容纳电荷本领的物理量,其大小与加在两极板上的电压无关
解析:选A 由电容器的定义和电容器的物理意义知A错误,C、D正确。由Q=CU知B正确。
2.如图1所示,在一个粗糙水平面上,彼此靠近地放置两个带同种电荷的小物块。由静止释放后,两个物块向相反方向运动,并最终停止。在物块运动的过程中,下列表述正确的是(  )
图1
A.两个物块的电势能逐渐减少
B.物块受到的库仑力不做功
C.两个物块的机械能守恒
D.物块受到的摩擦力始终小于其受到的库仑力
解析:选A 小物块间的作用力为斥力,因此在远离过程中,电场力做正功,则电势能逐渐减少,选项A正确,B错误;由于运动过程中,有重力以外的力——电场力和摩擦力做功,故机械能不守恒,选项C错误;在物块运动过程中,开始电场力大于摩擦力,后来电场力小于摩擦力,选项D错误。
3.如图2所示,在xOy平面内有一个以O为圆心、半径R=0.1 m的圆,P为圆周上的一点,O、P两点连线与x轴正方向的夹角为θ。若空间存在沿y轴负方向的匀强电场,场强大小E=100 V/m,则O、P两点的电势差可表示为(  )
图2
A.UOP=-10sin θ(V)
B.UOP=10sin θ(V)
C.UOP=-10cos θ(V)
D.UOP=10cos θ(V)
解析:选A 在匀强电场中,两点间的电势差U=Ed,而d是沿场强方向上的距离,所以UOP=-10sin θ(V),选项A正确。
4.两个固定的等量异号点电荷所产生电场的等势面如图3中虚线所示,一带负电的粒子以某一速度从图中A点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中(  )
图3
A.做直线运动,电势能先变小后变大
B.做直线运动,电势能先变大后变小
C.做曲线运动,电势能先变小后变大
D.做曲线运动,电势能先变大后变小
解析:选C 由题图等势面可知两固定的等量异号点电荷的电场分布如图所示。带负电的粒子在等量异号点电荷所产生电场中的偏转运动轨迹如图所示,则粒子在电场中做曲线运动。电场力对带负电的粒子先做正功后做负功,电势能先变小后变大,故C正确。
5. (2015·全国卷Ⅱ)如图4,两平行的带电金属板水平放置。若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态。现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将(  )
图4
A.保持静止状态
B.向左上方做匀加速运动
C.向正下方做匀加速运动
D.向左下方做匀加速运动
解析:选D 两板水平放置时,放置于两板间a点的带电微粒保持静止,带电微粒受到的电场力与重力平衡。当将两板逆时针旋转45°时,电场力大小不变,方向逆时针偏转45°,受力如图,则其合力方向沿二力角平分线方向,微粒将向左下方做匀加速运动。选项D正确。
6.如图5所示的匀强电场区域内,由A、B、C、D、A′、B′、C′、D′作为顶点构成一正方体空间,电场方向与面ABCD垂直,则下列说法正确的是(  )
图5
A.A、D两点间的电势差UAD与A、A′两点间的电势差UAA′相等
B.带正电的粒子从A点沿路径ADD′移到D′点,电场力做正功
C.带负电的粒子从A点沿路径ADD′移到D′点,电势能减小
D.带电粒子从A点移到C′点,沿对角线AC′与沿路径ABB′C′电场力做的功相同
解析:选BD 在匀强电场中,因为AD垂直于电场线,所以φA=φD,UAD=0,又UAA′≠0,故选项A错误;因为φD>φD′,则沿ADD′移动正电荷电场力做正功,选项B正确;沿ADD′移动负电荷电场力做负功,电势能增加,选项C错误;电场力做功与路径无关,只与两点间的电势差有关,故选项D正确。
7.在两块平行金属板A、B间加如图6所示变化的电压,此电压的值不变,但每过改变一次极性。t=0时,A板电势为正,若在此时由B板自由释放一电子,那么(  )
图6
A.电子会一直向A板运动
B.电子在A、B两板间来回运动
C.在t=T时,电子回到出发点
D.在t=时电子具有最大速度
解析:选AD 根据电子的受力情况和牛顿第二定律知,在0~时间内,电子向A板做匀加速直线运动,在时刻速度达到最大值;在到T时间内,电子向A板做匀减速直线运动,在T时刻速度减为零;随后重复刚才的运动,故A、D正确。
8.三个分别带正电、负电和不带电的质量相同的颗粒,从水平放置的平行带电金属板左侧以相同速度v0垂直电场线方向射入匀强电场,分别落在带正电荷的下板上的a、b、c三点,如图7所示,下列判断正确的是(  )
图7
A.落在a点的颗粒带正电,c点的带负电,b点的不带电
B.三个颗粒在电场中的加速度的关系是aa>ab>ac
C.三个颗粒在电场中运动的时间关系是ta>tb>tc
D.电场力对落在c点的颗粒做负功
解析:选BD 三个颗粒在电场中均做类平抛运动,水平方向x=v0t,竖直方向y=at2。由xaab>ac,由此可判断落在a点的颗粒带负电,b点的不带电,c点的带正电,电场力对落在c点的颗粒做负功。故选项B、D正确。
二、计算题(本题共3小题,共52分)
9. (16分)(2015·全国卷Ⅱ)如图8,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点。已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B点时速度方向与电场方向的夹角为30°。不计重力。求A、B两点间的电势差。
图8
解析:设带电粒子在B点的速度大小为vB。粒子在垂直于电场方向的速度分量不变,即
vB sin 30°=v0sin 60°①
由此得vB=v0②
设A、B两点间的电势差为UAB,由动能定理有
qUAB=m(vB2-v02)③
联立②③式得UAB=。④
答案:
10. (18分)如图9所示,一质量m=5×10-3 kg(忽略重力)的微粒带正电,其电荷量为q=1×10-4 C。从距上极板5 cm处以2 m/s的水平初速度进入长为20 cm、板间距也为20 cm的两极板间,如果两极板不带电,微粒将运动到距极板最右端10 cm的竖直荧光屏上的O点。现将两极板间加200 V的电压,带电微粒打到荧光屏上的A点。
图9
(1)带电微粒从进入电场到到达荧光屏上的A点所经历的时间为多少?
(2)OA两点的间距为多少?
(3)带电微粒进入电场到打到荧光屏上的A点过程中电场力对其做功多少?
解析:(1)设板长为l1,极板最右端到荧光屏的距离为l2,微粒初速度为v,由于带电微粒在水平方向上的速度始终不变,则t== s=0.15 s。
(2)设微粒在两极板间的偏转位移为y,则
y=at2== m=0.1 m。在类平抛运动中,利用速度的反向延长线交于水平位移的中点。再根据三角形相似,求得OA长为0.2 m。
(3)W=qEy== J=0.01 J。
答案:(1)0.15 s (2)0.2 m (3)0.01 J
11. (18分)如图10所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O点,另一端系一带正电的小球在竖直平面内做圆周运动。小球带的电荷量为q,质量为m,绝缘细线长为L,电场的电场强度为E,若带电小球恰好能通过最高点A,则:
图10
(1)在A点时小球的速率v1为多大?
(2)小球运动到最低点B时的速率v2为多大?
(3)运动到B点时细线对小球的拉力为多大?
解析:(1)小球受重力、电场力、细线的拉力作用,它恰好能通过最高点,说明细线拉力TA=0,这时重力和电场力的合力提供小球做圆周运动的向心力,故有
qE+mg=m解得v1= 。
(2)小球由A运动到B点,绳子拉力不做功,重力和电场力做功,由动能定理得
(qE+mg)·2L=mv22-mv12
解得v22=+v12
将v1的表达式代入得v2= 。
(3)在B点,三个力的合力提供小球做圆周运动所需的向心力,有TB-mg-Eq=
TB=6(mg+qE)。
答案:(1)  (2) 
(3)6(mg+qE)
课件22张PPT。因变量以S为例以d为例自变量Q不变U不变不变量