18.2.1 矩形(2)同步练习

文档属性

名称 18.2.1 矩形(2)同步练习
格式 docx
文件大小 463.9KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2018-02-05 09:49:45

图片预览

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
18.2.1矩形(2)同步练习
姓名:__________班级:__________学号:__________
本节应掌握和应用的知识点
1.有一个角是直角的平行四边形是矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
基础知识和能力拓展训练
一、选择题
1.下列叙述错误的是( )
A. 平行四边形的对角线互相平分 B. 对角线互相平分的四边形是平行四边形
C. 矩形的对角线相等 D. 对角线相等的四边形是矩形
2.如图,四边形ABCD的对角线AC、BD相交于点O,且AC=BD,则下列条件能判定四边形ABCD为矩形的是( )
A. AB=CD B. OA=OC,OB=OD C. AC⊥BD D. AB∥CD,AD=BC
3.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD. 以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
4.矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为(  )
A. 5 B. C. 6 D.
5.如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为(  )
A. 15 B. 20 C. 35 D. 40
6.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有(  )个
A. 2 B. 3 C. 4 D. 5
7.如图所示,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是 (  )
A. B. 2 C. D. 2
8.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )
A. 40° B. 35° C. 20° D. 15°
9.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为(  )
A. 2-2 B. -1 C. -1 D. 2-
10.有一块矩形的牧场如图1,它的周长为700米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是( )
A. 150米 B. 200米 C. 300米 D. 400米
二、填空题
11.如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5cm,则BD=________.
12.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________
13.如图,矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=FC,则四边形DBFE的面积为_______ cm2.
14.如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE//AB交AE于E,则四边形ADCE的形状是___________.
15.已知:如图,矩形ABCD中,E,F是CD的两个点,EG⊥AC,FH⊥AC,垂足分别为G,H,若AD=2,DE=1,CF=2,且AG=CH,则EG+FH=_____.
16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.
三、解答题
17.如图,Rt△ABE与Rt△DCF关于直线m对称,已知∠B=90°,∠C=90°,连接EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD是矩形.
18.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积
19.如图,在 ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.
20.如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ΔABF≌ΔEDF;
⑵将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,若AB=6,BC=8,求DG的长.
21.如图,在 ABCD中,各内角的平分线分别相交于点E,F,G,H.
(1)求证:△ABG≌△CDE;
(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.
22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?
并说明理由.
参考答案
1.D
【解析】A. 平行四边形的对角线互相平分,正确,不符合题意;B. 对角线互相平分的四边形是平行四边形,正确,不符合题意;C. 矩形的对角线相等,正确,不符合题意;D. 对角线相等的四边形是矩形,也可能是等腰梯形,也可能是一般四边形,故错误,符合题意,
故选D.
2.B
【解析】解:A.由AB=DC,AC=BD无法判断四边形ABCD是矩形.故错误;
B.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;
C.由AC⊥BD,AC=BD无法判断四边形ABCD是矩形,故错误.
D.由AB∥CD,AC=BD无法判断四边形ABCD是矩形,故错误.
故选B.
点睛:本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.
3.A
【解析】由甲同学的作业可知,CD=AB,AD=BC,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴ ABCD是矩形.
所以甲的作业正确;
由乙同学的作业可知,CM=AM,MD=MB,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴ ABCD是矩形.
所以乙的作业正确;
故选A.
4.B
【解析】
过E作EG⊥CD于G,
∵四边形ABCD是矩形,
∴∠A=∠D=90°,
又∵EG⊥CD,
∴∠EGD=90°,
∴四边形AEGD是矩形,
∴AE=DG,EG=AD,
∴EG=AD=BC=7,MG=DG DM=3 2=1,
∵EF⊥FM,
∴△EFM为直角三角形,
∴在Rt△EGM中,
EM====.
故选B.
点睛:本题考查了矩形的判定、勾股定理等知识,过E作EG⊥CD于G,利用矩形的判定可得,四边形AEGD是矩形,则AE=DG,EG=AD,于是可求MG=DG-DM=1,在Rt△EMG中,利用勾股定理可求EM.
5.C
【解析】试题解析:连接EF,由图可知 ,那么 ,
所以 ,同理, ,则,
故本题应选C.
6.B
【解析】试题解析:由图可知, ,因为 ,所以 ,故①正确;
因为 ,所以 ,由于 , ,所以 ,则 ,故②正确;
在△ABG与△HEC中, ,从而两三角形不全等,故③错误;
过点A作AM⊥BG于点M,由图可知 ,而 ,即
,则 ,故④错误;
因为 , , ,所以
,又因为 ,所以 ,则
,故⑤正确.
综上所述,正确的结论有3个,故选B.
点睛:矩形的对角线相等且相互平分.
7.A
【解析】先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,因为AD∥BC, ∠B=90°,则可判定四边形ABHD为矩形,所以DH=AB=2EF,
HC=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.
8.C
【解析】∵△ABE沿AE折叠到△AEF,
∴∠BAE=∠FAE,
∵∠AEB=55°,∠ABE=90°,
∴∠BAE=90° 55°=35°,
∴∠DAF=∠BAD ∠BAE ∠FAE=90° 35° 35°=20°,
故答案为:20°,故选C.
9.A
【解析】∵四边形ABCD是矩形,
∴AD∥BC.
∴∠DEC=∠BCE.
∵EC平分∠DEB,
∴∠DEC=∠BEC.
∴∠BEC=∠ECB.
∴BE=BC.
∵四边形ABCD是矩形,
∴∠A=90°.
∵∠ABE=45°,
∴∠ABE=AEB=45°.
∴AB=AE=2.
∵由勾股定理得:BE= =,
∴BC=BE=.
∴DE=AD-AE=BC-AB=-2
故选:A.
点睛:本题考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键.
10.C
【解析】试题分析:根据题意设小长方形的长为x,宽为y,则可知2(2x+3y)=700,且2y+x=2x,解得y=50,x=100,所以小长方形的周长为300米.
故选:C.
11. 矩形 5cm
【解析】试题解析:∵AO=OC,BO=OD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴四边形ABCD是矩形。
∴AC=BD
∵AC=5cm
∴BD=5cm
12.①⑤
【解析】解:要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.
13.8
【解析】试题解析:∵矩形ABCD中,AB=8cm,BC=3cm,E是DC的中点,BF=FC,
∴∠C=90°,AB=DC=8cm,DE=CE=4cm,CF=2cm,BF=1cm,
∴四边形DBFE的面积是S△BDC-S△CEF=×8cm×3cm-×2cm×4cm=8cm2
14.矩形
【解析】∵AB=AC,
∴∠B=∠ACB,
∵AE是∠BAC的外角平分线,
∴∠FAE=∠EAC,
∵∠B+∠ACB=∠FAE+∠EAC,
∴∠B=∠ACB=∠FAE=∠EAC,
∴AE∥CD,
又∵DE∥AB,
∴四边形EABD是平行四边形,
∴AE平行且等于BD,
又∵BD=DC,
∴AE平行且等于DC,
故四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴平行四边形EADC是矩形.
即四边形EADC是矩形.
故答案是:矩形。
【点睛】首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.
15.
【解析】试题解析:如图所示,过E点作EM⊥AB交AB于点M,延长EG交AB于点Q,
在△AQG和△CFH中,

所以△AQG≌△CFH(ASA), FH=QG,AQ=CF=2.
∴在△AQG中,MQ=1,EM=2,EQ=EG+GQ=EG+FH=.
16.9
【解析】利用勾股定理求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.
解:由勾股定理得,AC===10cm,
∵四边形ABCD是矩形,
∴OA=OD=AC=×10=5cm,
∵点E、F分别是AO、AD的中点,
∴EF=OD=cm,
AF=×8=4cm,
AE=OA=cm,
∴△AEF的周长=+4+=9cm.
故答案为:9.
17.证明见解析.
【解析】试题分析:先利用对称证明ABCD是平行四边形,因为∠B=90°,所以四边形ABCD是矩形.
试题解析:
解:∵Rt△ABE与Rt△DCF关于直线m对称,
∴AB=DC.
∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,
∴AB∥CD.
∴四边形ABCD是平行四边形.
∵∠B=90°,∴平行四边形ABCD是矩形.
18.12.
【解析】试题分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD BD=AD CD.
试题解析:解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.
在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.
在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD AD=CD AD=3×4=12.
点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.
19.(1)证明见解析;(2)见解析
【解析】试题分析:(1)根据已知条件易证四边形BFDE是平行四边形,再证明∠DEB=90°即可得结论;(2)根据已知条件证明AD=DF,根据等腰三角形的性质可得∠DAF=∠DFA;再由AB∥CD,可得∠DFA=∠FAB.即可得∠DAF=∠FAB,结论得证.
试题解析:
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
又∵CF=AE,
∴BE=DF.
又∵BE∥DF,
∴四边形BFDE为平行四边形.
∵DE⊥AB,
∴∠DEB=90°.
∴四边形BFDE是矩形.
(2)∵四边形BFDE是矩形,
∴∠BFD=90°.∴∠BFC=90°.
在Rt△BFC中,由勾股定理,得BC===10.
∴AD=BC=10.
又∵DF=10,
∴AD=DF.
∴∠DAF=∠DFA.
∵AB∥CD,
∴∠DFA=∠FAB.
∴∠DAF=∠FAB.
∴AF是∠DAB的平分线.
20.(1)证明见解析;(2)
【解析】试题分析:(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°,再加上一对对顶角相等,可证出△ABF≌△EDF;
(2)利用折叠知识及勾股定理可得出四边形DG的长.
试题解析:
证明:在矩形ABCD中,AB=CD, ,
由折叠的性质可知:DE=CD, ,
∴AB=DE, ,
又∵,
∴△ABF≌△EDF(AAS)
(2)解:∵AD//BC,∴,由折叠的性质可知:

∴BG=DG
设GC为,则BG=DG=8-x
在Rt△DCG中,由勾股定理可得:
解得:
21.(1)证明见解析;(2)矩形;(3).
【解析】试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;
(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;
(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.
试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵ ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);
(2)四边形EFGH是矩形.
证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵ ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;
(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.
点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.
22.(1)证明见解析;(2)5;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明见解析.
【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.
试题解析:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF==10,
∴OC=EF=5;
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.
证明:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
版权所有@21世纪教育网(www.21cnjy.com)