名称 | 第10讲:必修3第三章《概率》单元检测题-高中数学单元检测题 Word版含解析 | ![]() | |
格式 | zip | ||
文件大小 | 358.7KB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2018-02-08 20:22:36 |
C.P(A)=P(B) D.P(A)、P(B)大小不确定
10.如图所示,△ABC为圆O的内接三角形,AC=BC,AB为圆O的直径,向该圆内随机投一点,则该点落在△ABC内的概率是( )
A. B.
C. D.
11.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是( )
A. B.
C. D.
12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.已知半径为a的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.
14.在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则落入E中的概率为________.
15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.
16.在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于的概率是________.
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)已知函数f(x)=-x2+ax-b.
若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.
18.(本小题满分12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.
19.(本小题满分12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于的概率.
20.(本小题满分12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
21.(本小题满分12分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
22.(本小题满分12分)已知实数a,b∈{-2,-1,1,2}.
(1)求直线y=ax+b不经过第四象限的概率;
(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.
必修3第三章《概率》单元检测题参考答案
选择题答案
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
B
A
A
B
D
D
B
C
A
B
A
【第1题解析】只有选项①和④中的两个事件在一次试验中不可能同时发生,故选D.
【第2题解析】画图分析由几何概型的概率公式得选B,故选B.
【第3题解析】记“甲碰到同性同学”为事件A,“甲碰到异性同学”为事件B,则P(A)=,P(B)=,故P(A)
【第4题解析】在区间[-,],0
【第9题解析】横坐标与纵坐标为0的可能性是一样的.故选C.
【第10题解析】连接OC,设圆O的半径为R,记“所投点落在△ABC内”为事件A,则P(A)==.故选A.
【第11题解析】本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x2+y2>25的次数与总试验次数的比就近似为本题结果.即=.故选B.
【第12题解析】可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得P==.故选A.
填空题答案
第13题
第14题
第15题
第16题
【第13题解析】因为球半径为a,则正方体的对角线长为2a,设正方体的边长为x,则2a=x,∴x=,由几何概型知,所求的概率P===. 故填.
【第14题解析】如图所示,区域D表示边长为4的正方形的内部(含边界),区域E表示单位圆及其内部,
因此P==. 故填 .
【第16题解析】
由题意可知>,如图所示,三棱锥S-ABC与三棱锥S-APC的高相同,因此==>(PM,BN为其高线),又=,故>,故所求概率为(长度之比)。故填.
【第17题答案】
【第17题解析】a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a2≥4b”的概率为P=.
【第18题答案】0.225.
【第18题解析】设A、B、C分别表示炸中第一、第二、第三军火库这三个事件.
则P(A)=0.025,P(B)=P(C)=0.1,
设D表示军火库爆炸这个事件,则有
D=A∪B∪C,其中A、B、C是互斥事件,
∴P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.
【第19题答案】
【第20题答案】(1)12;(2);(3)此游戏公平.
【第20题解析】(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.
(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为.
(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P1=,同理乙胜的概率P2=.因为P1=P2,所以此游戏公平.
【第21题答案】(1) ;(2) .
【第21题解析】(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用M表示“A1恰被选中”这一事件,则
M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},
事件M由6个基本事件组成,因而P(M)==.
(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件表示“B1、C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件由3个基本事件组成,
所以P()==,由对立事件的概率公式得:P(N)=1-P()=1-=.
【第22题答案】(1);(2) .
(2)若直线y=ax+b与圆x2+y2=1有公共点,则必须满足≤1,即b2≤a2+1.
若a=-2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值;
若a=-1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值;
若a=1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值,
若a=2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值.
∴满足条件的实数对(a,b)共有12种不同取值.∴P(B)==.
故直线y=ax+b与圆x2+y2=1有公共点的概率为.