课件11张PPT。外离O1O2> R+ r O1O2= R + r︱R -r︱ 例1、图中是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到0.01)思考:(用坐标法)
1.圆心和半径能直接求出吗?
2.怎样求出圆的方程?
3.怎样求出支柱A2P2的长度?(0,4)(10,0)解:建立如图所示的坐标系,
设圆心坐标是(0,b),
圆的半径是r ,
则圆的方程是x2+(y-b)2=r2 .所以圆的方程是: x2+(y+10.5)2=14.52把点P2的横坐标x= -2 代入圆的方程,得 (-2)2+(y+10.5)2=14.52答:支柱A2P2的长度约为3.86m.练习2:某圆拱桥的水面跨度20 m,拱高4 m. 现有一船,宽10 m,水面以上高3 m,这条船能否从桥下通过?练习1:赵州桥的跨度是37.4m,圆拱高约为7.2m ,
求这座圆拱桥的拱圆的方程。E例2、已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半.(a,0)(0,b)(c,0)(0,d)解:以四边形ABCD互相垂直的对角线作为x轴y轴,建立直角坐标系,设A(a,0),B(0,b),C(c,0),D(0,d)过四边形的外接圆圆心O’作AC、BD、AD边的垂线,垂足为M、N、E,则M、N、E分别为AC、BD、AD边的中点.由线段的中点坐标公式有:如图:用坐标法解决平面几何问题的步骤:第一步:建立适当的坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论. 理解直线与圆的位置关系的几何性质;
利用平面直角坐标系解决直线与圆的位置关系;
熟悉直线与方程的关系,并应用其解决相关问题
会用“数形结合”的数学思想解决问题. 小结