首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标B版
选修4-5
第三章 数学归纳法与贝努利不等式
本章复习与测试
2017_2018学年高中数学第三章数学归纳法与贝努利不等式(课件学案)(打包6套)新人教B版选修4_5
文档属性
名称
2017_2018学年高中数学第三章数学归纳法与贝努利不等式(课件学案)(打包6套)新人教B版选修4_5
格式
zip
文件大小
2.4MB
资源类型
教案
版本资源
人教新课标B版
科目
数学
更新时间
2018-03-02 15:33:00
点击下载
文档简介
3.1 数学归纳法原理
[读教材·填要点]
1.数学归纳法原理
对于由归纳法得到的某些与自然数有关的命题p(n),可以用以下两个步骤来证明它的正确性:
(1)证明当n取初始值n0(例如n0=0,n0=1等)时命题成立;
(2)假设当n=k(k为自然数,且k≥n0)时命题正确,证明当n=k+1时命题也正确.
在完成了这两个步骤后,就可以断定命题对于从初始值n0开始的所有自然数都正确.
2.数学归纳法的基本过程
[小问题·大思维]
1.在数学归纳法中,n0一定等于0吗?
提示:不一定.n0是适合命题的自然数中的最小值,有时是n0=0或n0=1,有时n0值也比较大,而不一定是从0开始取值.
2.数学归纳法的适用范围是什么?
提示:数学归纳法的适用范围仅限于与自然数有关的数学命题的证明.
3.数学归纳法中的两步的作用是什么?
提示:在数学归纳法中的第一步“验证n=n0时,命题成立”,是归纳奠基、是推理证明的基础.第二步是归纳递推,保证了推理的延续性,证明了这一步,就可以断定这个命题对于n取第一个值n0后面的所有自然数也都成立.
用数学归纳法证明恒等式
[例1] 用数学归纳法证明:1-+-+…+-=++…+(n∈N+).
[思路点拨] 本题考查数学归纳法在证明恒等式中的应用,解答本题需要注意等式的左边有2n项,右边有n项,由k到k+1时,左边增加两项,右边增加一项,而且左、右两边的首项不同,因此由“n=k”到“n=k+1”时,要注意项的合并.
[精解详析] (1)当n=1时,左边=1-=,右边=,命题成立.
(2)假设当n=k(k≥1,且k∈N+)时命题成立,即有
1-+-+…+-
=++…+.
则当n=k+1时,
左边=1-+-+…+-+-
=++…++-
=++…++,
从而可知,当n=k+1时,命题亦成立.
由(1)(2)可知,命题对一切正整数n均成立.
(1)用数学归纳法证明代数恒等式的关键有两点:一是准确表述n=n0时命题的形式,二是准确把握由n=k到n=k+1时,命题结构的变化特点.
(2)应用数学归纳法时的常见问题
①第一步中的验证,对于有些问题验证的并不是n=0,有时需验证n=1,n=2.
②对n=k+1时式子的项数以及n=k与n=k+1的关系的正确分析是应用数学归纳法成功证明问题的保障.
③“假设n=k时命题成立,利用这一假设证明n=k+1时命题成立”,这是应用数学归纳法证明问题的核心环节,对待这一推导过程决不可含糊不清,推导的步骤要完整、严谨、规范.
1.用数学归纳法证明:对任意的n∈N+,
++…+=.
证明:(1)当n=1时,左边==,右边==,左边=右边,等式成立.
(2)假设当n=k(k∈N+且k≥1)时等式成立,
即有++…+=,
则当n=k+1时,++…++=+
=
===,
所以当n=k+1时,等式也成立.
由(1)(2)可知,对一切n∈N+等式都成立.
用数学归纳法证明整除问题
[例2] 求证:二项式x2n-y2n(n∈N+)能被x+y整除.
[思路点拨] 本题考查数学归纳法在证明整除问题中的应用,解答本题需要设法将x2n-y2n进行分解因式得出x+y,由于直接分解有困难,故采用数学归纳法证明.
[精解详析] (1)当n=1时,x2-y2=(x+y)(x-y),
∴能被x+y整除.
(2)假设n=k(k≥1,且k∈N+)时,
x2k-y2k能被x+y整除,
当n=k+1时,
即x2k+2-y2k+2=x2·x2k-x2y2k+x2y2k-y2·y2k
=x2(x2k-y2k)+y2k(x2-y2).
∵x2k-y2k与x2-y2都能被x+y整除,
∴x2(x2k-y2k)+y2k(x2-y2)能被x+y整除.
即n=k+1时,x2k+2-y2k+2能被x+y整除.
由(1)(2)可知,对任意的正整数n命题均成立.
利用数学归纳法证明整除问题时,关键是整理出除数因式与商数因式积的形式,这就往往要涉及到“添项”与“减项”等变形技巧,例如,在本例中,对x2k+2-y2k+2进行拼凑,即减去x2y2k再加上x2y2k,然后重新组合,目的是拼凑出n=k时的归纳假设,剩余部分仍能被x+y整除.
2.求证:n3+(n+1)3+(n+2)3能被9整除.
证明:(1)当n=1时,13+(1+1)3+(1+2)3=36,能被9整除,命题成立.
(2)假设n=k时,命题成立,即
k3+(k+1)3+(k+2)3能被9整除.
当n=k+1时,(k+1)3+(k+2)3+(k+3)3
=(k+1)3+(k+2)3+k3+3k2·3+3k·32+33
=k3+(k+1)3+(k+2)3+9(k2+3k+3).
由归纳假设,上式中k3+(k+1)3+(k+2)3能被9整除,又9(k2+3k+3)也能被9整除.
故n=k+1时命题也成立.
由(1)(2)可知,对任意n∈N*命题成立.
用数学归纳法证明几何命题
[例3] 平面上有n(n≥2,且n∈N+)条直线,其中任意两条直线不平行,任意三条不过同一点,
求证:这n条直线被分成f(n)=n2.
[思路点拨] 本题考查数学归纳法在证明几何命题中的应用,解答本题应搞清交点随n的变化而变化的规律,然后采用数学归纳法证明.
[精解详析] (1)当n=2时,
∵符合条件的两直线被分成4段,
又f(2)=22=4.∴当n=2时,命题成立.
(2)假设当n=k(k≥2且k∈N+)时命题成立,就是该平面内满足题设的任何k条直线被分成f(k)=k2段,则当n=k+1时,任取其中一条直线记为l,如图,剩下的k条直线为l1,l2,…,lk.由归纳假设知,它们被分为f(k)=k2段.
由于l与这k条直线均相交且任意三条不过同一点,所以直线l被l1,l2,l3,…,lk分为k+1段,同时l把l1,l2,…,lk中每条直线上的某一段一分为二,其增加k段.
∴f(k+1)=f(k)+k+1+k
=k2+2k+1=(k+1)2.
∴当n=k+1时,命题成立.
由(1)(2)可知,命题对一切n∈N+且n≥2成立.
对于几何问题的证明,可以从有限情形中归纳出一般变化规律,或者说体会出是怎么变化的,然后再去证明,也可以采用递推的办法.利用数学归纳法证明几何问题时,关键是正确分析由n=k到n=k+1时几何图形的变化规律.
3.证明:凸n边形的对角线的条数f(n)=n·(n-3)(n≥4).
证明:(1)n=4时,f(4)=·4·(4-3)=2,四边形有两条对角线,命题成立.
(2)假设n=k时命题成立,即凸k边形的对角线的条数f(k)=k(k-3)(k≥4).
当n=k+1时,凸k+1边形是在k边形基础上增加了一边,增加了一个顶点Ak+1,增加的对角线条数是顶点Ak+1与不相邻顶点连线再加上原k边形的一边A1Ak,共增加的对角线条数为(k+1-3)+1=k-1.
f(k+1)=k(k-3)+k-1=(k2-k-2)
=(k+1)(k-2)=(k+1)[(k+1)-3].
故n=k+1时由(1)、(2)可知,对于n≥4,n∈N+公式成立.
[对应学生用书P42]
一、选择题
1.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到( )
A.1+2+22+…+2k-2+2k-1=2k+1-1
B.1+2+22+…+2k+2k+1=2k-1+2k+1
C.1+2+22+…+2k-1+2k+1=2k+1-1
D.1+2+22+…+2k-1+2k=2k+1-1
解析:由条件知,左边是从20,21一直到2n-1都是连续的,因此当n=k+1时,左边应为1+2+22+…+2k-1+2k,而右边应为2k+1-1.
答案:D
2.用数学归纳法证明:(n+1)(n+2)… ·(n+n)=2n×1×3…(2n-1)时,从“k到k+1”左边需增乘的代数式是( )
A.2k+1 B.
C.2(2k+1) D.
解析:当n=k+1时,左边=(k+1+1)(k+1+2)… ·(k+1+k+1)=(k+1)·(k+2)·(k+3)…(k+k)·=(k+1)(k+2)(k+3)…(k+k)·2(2k+1).
答案:C
3.某个命题与正整数n有关,如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时,命题也成立.现已知当n=5时该命题不成立,那么可推得( )
A.当n=6时该命题不成立
B.当n=6时该命题成立
C.当n=4时该命题不成立
D.当n=4时该命题成立
解析:与“如果当n=k(k∈N+)时命题成立,那么可推得当n=k+1时命题也成立”等价的命题为“如果当n=k+1时命题不成立,则当n=k(k∈N+)时,命题也不成立”.
故知当n=5时,该命题不成立,可推得当n=4时该命题不成立.
答案:C
4.用数学归纳法证明不等式1+++…+>(n∈N+)成立,其初始值至少应取( )
A.7 B.8
C.9 D.10
解析:左边=1+++…+==2-,
代入验证可知n的最小值是8.
答案:B
二、填空题
5.设f(n)=1+++…+(n∈N+),则f(n+1)-f(n)等于________.
解析:因为f(n)=1+++…+,所以f(n+1)=1+++…++++.所以f(n+1)-f(n)=++.
答案:++
6.设平面内有n条直线(n≥2),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=________;当n>4时,f(n)=________(用n表示).
解析:f(2)=0,f(3)=2,f(4)=5,f(5)=9,每增加一条直线,交点增加的个数等于原来直线的条数.
所以f(3)-f(2)=2,f(4)-f(3)=3,f(5)-f(4)=4,…,f(n)-f(n-1)=n-1.
累加,得f(n)-f(2)=2+3+4+…+(n-1)
=(n-2).
所以f(n)=(n+1)(n-2).
答案:5 (n+1)(n-2)
7.已知n为正偶数,用数学归纳法证明1-+-+…+=2时,若已假设n=k(k≥2,且k为偶数)时命题为真,则还需要用归纳假设再证n=________时等式成立.
解析:n=k(k≥2,且k为偶数)的下一个偶数为k+2,根据数学归纳法的步骤可知.再证n=k+2.
答案:k+2
8.用数学归纳法证明+cos α+cos 3α+…+cos(2n-1)α=·sin α·cos α(α≠nπ,n∈N),在验证n=1等式成立时,左边计算所得的项是________.
解析:由等式的特点知:
当n=1时,左边从第一项起,一直加到cos(2n-1)α,故左边计算所得的项是+cos α.
答案:+cos α
三、解答题
9.用数学归纳法证明:
++…+=++…+.
证明:(1)当n=1时,左边==,右边=,等式成立.
(2)假设当n=k时,等式成立,即
++…+=++…+,则当n=k+1时,
++…++
=++…++
=++…+++
=++…+++
=++…++
,
即当n=k+1时,等式成立.
根据(1)(2)可知,对一切n∈N+,等式成立.
10.用数学归纳法证明对于整数n≥0,An=11n+2+122n+1能被133整除.
证明:(1)当n=0时,A0=112+12=133能被133整除.
(2)假设n=k时,Ak=11k+2+122k+1能被133整除.
当n=k+1时,
Ak+1=11k+3+122k+3=11·11k+2+122·122k+1
=11·11k+2+11·122k+1+(122-11)·122k+1
=11·(11k+2+122k+1)+133·122k+1.
∴n=k+1时,命题也成立.
根据(1)、(2),对于任意整数n≥0,命题都成立.
11.将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S1+S3+S5+…+S2n-1的结果,并用数学归纳法证明.
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,
S6=16+17+18+19+20+21=111,
解:由题意知,当n=1时,S1=1=14;
当n=2时,S1+S3=16=24;
当n=3时,S1+S3+S5=81+34;
当n=4时,S1+S3+S5+S7=256=44.
猜想:S1+S3+S5+…+S2n-1=n4.
下面用数学归纳法证明:
(1)当n=1时,S1=1=14,等式成立.
(2)假设当n=k(k≥2,k∈N+)时等式成立,即S1+S3+S5+…+S2k-1=k4,
那么,当n=k+1时,
S1+S3+S5+…+S2k+1
=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)]
=k4+(2k+1)(2k2+2k+1)
=k4+4k3+6k2+4k+1
=(k+1)4,
这就是说,当n=k+1时,等式也成立.
根据(1)和(2),可知对于任意的n∈(N+,S1+S3+S5+…+S2n-1=n4都成立.
课件39张PPT。第三章把握热点考向考点一理解教材新知考点二应用创新演练读教材·填要点小问题·大思维3.1数学归纳法原理考点三第三章 数学归纳法与贝努利不等式
知识整合与阶段检测
[对应学生用书P46]
[对应学生用书P46]
归纳——猜想——证明
不完全归纳的作用在于发现规律,探求结论,但结论是否为真有待证明,因而数学中我们常用归纳——猜想——证明的方法来解决与正整数有关的归纳型和存在型问题.
[例1] 设数列{an}满足an+1=a-nan+1,n=1,2,3,…
(1)当a1=2时,求a2,a3,a4,并由此猜想出数列{an}的一个通项公式.
(2)当a1≥3时,证明对所有的n≥1,有①an≥n+2;②++…+≤.
[解] (1)由a1=2,得a2=a-a1+1=3;
由a2=3,得a3=a-2a2+1=4;
由a3=4,得a4=a-3a3+1=5.
由此猜想:an=n+1(n∈N+).
(2)①用数学归纳法证明:
当n=1时,a1≥3=1+2,不等式成立;
假设当n=k时,不等式成立,即ak≥k+2,
那么当n=k+1时,
ak+1=a-kak+1=ak(ak-k)+1
≥(k+2)(k+2-k)+1=2(k+2)+1
≥k+3=(k+1)+2,
也就是说,当n=k+1时,ak+1≥(k+1)+2.
综上可得,对于所有n≥1,有an≥n+2.
②由an+1=an(an-n)+1及①,对k≥2,有
ak=ak-1(ak-1-k+1)+1≥ak-1(k-1+2-k+1)+1
=2ak-1+1≥2·(2ak-2+1)+1=22ak-2+2+1
≥23ak-3+22+2+1≥…
∴ak≥2k-1a1+2k-2+…+2+1=2k-1a1+2k-1-1
=2k-1(a1+1)-1,
于是1+ak≥2k-1(a1+1),≤·,k≥2.
∴++…+
≤+
=
=·<≤=.
因此,原不等式成立.
利用数学归纳法证明不等式的常用技巧
在使用数学归纳法证明时,一般说来,第一步验证比较简明,而第二步归纳步骤情况较复杂.因此,熟悉归纳步骤的证明方法是十分重要的,其实归纳步骤可以看作是一个独立的证明问题,归纳假设“P(k)成立”是问题的条件,而“命题P(k+1)成立”就是所要证明的结论,因此,合理运用归纳假设这一条件就成了归纳步骤中的关键,下面简要分析一些常用技巧.
1.分析综合法
用数学归纳法证明关于正整数n的不等式,从“P(k)”到“P(k+1)”,常常可用分析综合法.
[例2] 求证:
++…+<,n∈N+.
[证明] (1)当n=1时,因为=<1,所以原不等式成立.
(2)假设n=k(k≥1,k∈N+)时,原不等式成立,即有++…+<,
当n=k+1时,
++…++<+.
因此,欲证明当n=k+1时,原不等式成立,
只需证明+<成立.
即证明->.
从而转化为证明>,
也就是证明>+,
即()2-(+)2
=k2+k+1-2
=[-1]2>0,
从而>+.
于是当n=k+1时,原不等式也成立.
由(1)、(2)可知,对于任意的正整数n,原不等式都成立.
2.放缩法
涉及关于正整数n的不等式,从“k”过渡到“k+1”,有时也考虑用放缩法.
[例3] 用数学归纳法证明:对一切大于1的自然数,不等式·…·>均成立.
[证明] (1)当n=2时,左边=1+=,
右边=.
∵左边>右边,∴不等式成立.
(2)假设当n=k(k≥2,且k∈N+)时不等式成立,
即·…·>.
则当n=k+1时,
·…·
>·==
>==.
∴当n=k+1时,不等式也成立.
由(1)(2)知,对于一切大于1的自然数n,不等式都成立.
3.递推法
用数学归纳法证明与数列有关的问题时,有时要利用an与an+1的关系,实现从“k”到“k+1”的过渡.
[例4] 设0
求证:对一切n∈N+,有1
[证明] 用数学归纳法.
(1)当n=1时,a1>1,又a1=1+a<,显然命题成立.
(2)假设n=k(k≥1,k∈N+)时,命题成立,
即1
当n=k+1时,由递推公式,知
ak+1=+a>(1-a)+a=1,
同时,ak+1=+a<1+a=<,
当n=k+1时,命题也成立.
即1
综合(1)、(2)可知,对一切正整数n,有1
4.学会借用同一题中已证明过的结论
在从k到k+1的过程中,若仅仅利用已知条件,有时还是没有证题思路,这时考查同一题中已证明过的结论,看是否可借用,这种“借用”思想非常重要.
[例5] 设{xn}是由x1=2,xn+1=+(n∈N+)定义的数列,求证:不等式
[解] 受阻过程:由于对于任意的k∈N+,xk+1=+>2=.
所以xn>(n∈N+)显然成立.
下面证明:xn<+(n∈N+).
(1)当n=1时,x1=2<+1,不等式成立.
(2)假设当n=k(k≥1,k∈N+)时,不等式成立,
即xk<+,
那么,当n=k+1时,xk+1=+.
由归纳假设,xk<+,
则<+ ①
> ②
因为①、②不是同向不等式,所以由递推式无法完成由k到(k+1)的证明,到此好像“山重水复疑无路”,证题思路受到阻碍.
受阻原因分析:
要利用递推式xk+1=+,只要找出关系式
因此,只有寻觅出xk>这样一个条件,才可以接通思路.当注意到前面已证明xn>以后,问题就可以解决了.思路受阻的原因就在于不会借用前面已经证明的结论.事实上,
∵xk>,∴<.
∴xk+1=+<++
=+≤+.即xk+1<+.
一、选择题
1.用数学归纳法证明“对于任意x>0和正整数n,都有xn+xn-2+xn-4+…+++≥n+1”时,需验证的使命题成立的最小正整数值n0应为( )
A.n0=1 B.n0=2
C.n0=1,2 D.以上答案均不正确
解析:先验证n=1时,x+≥1+1成立,再用数学归纳法证明.
答案:A
2.设f(n)=+++…+(n∈N+),则f(n+1)-f(n)=( )
A. B.
C.+ D.-
解析:由题意知f(n)=++…+,
f(n+1)=++…+++,
故f(n+1)-f(n)=+-
=+=-.
答案:D
3.已知数列{an}中,a1=1,a2=2,an+1=2an+an-1(n∈N+),用数学归纳法证明a4n能被4整除,假设a4k能被4整除,然后应该证明( )
A.a4k+1能被4整除 B.a4k+2能被4整除
C.a4k+3能被4整除 D.a4k+4能被4整除
解析:由假设a4k能被4整除,则当n=k+1时,应该证明a4(k+1)=a4k+4能被4整除.
答案:D
4.在数列{an}中,a1=,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为( )
A. B.
C. D.
解析:因为a1=,
由Sn=n(2n-1)an,
得a1+a2=2×(2×2-1)a2,
解得a2==,
a1+a2+a3=3×(2×3-1)a3,
解得a3==,
a1+a2+a3+a4=4×(2×4-1)a4,
解得a4==.
猜想an=.
答案:C
二、填空题
5.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N+)命题为真时,进而需证n=________时,命题亦真.
解析:由数学归纳法及n为正奇数,在假设n=2k-1成立,需证n=2k+1命题成立.
答案:2k+1
6.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是f(k+1)=________.
解析:∵f(k)=12+22+…+(2k)2,
∴f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2,
∴f(k+1)=f(k)+(2k+1)2+(2k+2)2.
答案:f(k)+(2k+1)2+(2k+2)2
7.用数学归纳法证明:cos α+cos 3α+cos 5α+…+cos(2n-1)α=(sinα≠0,n∈N+),在验证n=1时,等式右边的式子是__________.
解析:本题在n=1时,右边考查二倍角的正弦公式,右===cos α.
答案:cos α
8.设{an}是首项为1的正项数列,且(n+1)·a-na+an+1·an=0(n=1,2,3,…),则它的通项an=________.
解析:法一:分别令n=1,2,3求出a2=,a3=,通过不完全归纳法知an=.
法二:对已知等式因式分解得
[(n+1)an+1-nan]·(an+1+an)=0.
由an>0知=,再由累乘法求得an=.
答案:
三、解答题
9.在数列{an}中,a1=a2=1,当n∈N+时,满足an+2=an+1+an,且设bn=a4n,求证:{bn}各项均为3的倍数.
证明:(1)∵a1=a2=1,
故a3=a1+a2=2,a4=a3+a2=3.
∴b1=a4=3,当n=1时,b1能被3整除.
(2)假设n=k时,即bk=a4k是3的倍数,
则n=k+1时,
bk+1=a4(k+1)=a4k+4=a4k+3+a4k+2
=a4k+2+a4k+1+a4k+1+a4k
=3a4k+1+2a4k.
由归纳假设,a4k是3的倍数,3a4k+1是3的倍数,故可知bk+1是3的倍数,∴n=k+1时命题也正确.
综合(1)、(2)可知,对正整数n,数列{bn}的各项都是3的倍数.
10.用数学归纳法证明:
×××…×<对n∈N+时成立.
证明:(1)当n=1时,<,不等式成立.
(2)假设n=k时不等式成立.
即×××…×<.
则n=k+1时,×××…××<×===<
==即n=k+1时不等式成立.
由(1)、(2)知不等式对任意n∈N+都成立.
11.已知数列{an}的前n项和为Sn,且满足a1=,an+2SnSn-1=0(n≥2).
(1)判断{}是否为等差数列?并证明你的结论;
(2)求Sn和an;
(3)求证:S+S+…+S≤-.
解:(1)S1=a1=,∴=2.
当n≥2时,an=Sn-Sn-1,
即Sn-Sn-1=-2SnSn-1.
∴-=2,故{}是以2为首项,2为公差的等差数列.
(2)由(1)得=2+(n-1)·2=2n,Sn=(n∈N+),
当n≥2时,an=-2SnSn-1=-.
当n=1时,a1=,
∴an=
(3)证明:①当n=1时,S==-,成立.
②假设n=k(k≥1,且k∈N+)时,不等式成立,
即S+S+…+S≤-成立,
则当n=k+1时,
S+S+…+S+S≤-+
=-=-·
<-·=-.
即当n=k+1时,不等式成立.
由①,②可知对任意n∈N+不等式成立.
[对应学生用书P53]
(时间90分钟,总分120分)
一、选择题(本大题共10小题,每小题5分,共50分)
1.设S(n)=+++…+,则( )
A.S(n)共有n项,当n=2时,S(2)=+
B.S(n)共有n+1项,当n=2时,S(2)=++
C.S(n)共有n2-n项,当n=2时,S(2)=++
D.S(n)共有n2-n+1项,当n=2时,S(2)=++
解析:S(n)共有n2-n+1项,S(2)=++.
答案:D
2.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )
A.2 B.3
C.5 D.6
解析:取n0=1,2,3,4,5验证,可知n0=5.
答案:C
3.已知a1=,an+1=,n∈N+,则an的取值范围是( )
A.(,2) B.[,2)
C.(0,) D.[0,]
解析:①n=1时,a2==>,排除C,D.②an+1>an为递增数列.③可用数学归纳法证明an<2,故选B.
答案:B
4.用数学归纳法证明对一切大于1的自然数n,不等式…>成立时,当n=2时验证的不等式是( )
A.1+>
B.>
C.≥
D.以上都不对
解析:当n=2时,左边=1+=1+,右边==,∴1+>.
答案:A
5.用数学归纳法证明“Sn=+++…+>1(n∈N+)”时,S1等于( )
A. B.
C.+ D.++
解析:因为S1的首项为=,末项为=,所以S1=++,故选D.
答案:D
6.已知f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( )
A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
B.若f(4)≥16成立,则当k≥4时,均有f(k)
C.若f(7)≥49成立,则当k<7时,均有f(k)
D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立
解析:∵f(k)≥k2成立时f(k+1)≥(k+1)2成立,当k=4时,f(4)=25>16=42成立.
∴当k≥4时,有f(k)≥k2成立.
答案:D
7.用数学归纳法证明34n+1+52n+1(n∈N+)能被8整除时,当n=k+1时,对于34(k+1)+1+52(k+1)+1可变形为( )
A.56·3(4k+1)+25(34k+1+52k+1)
B.34·34k+1+52·52k
C.34k+1+52k+1
D.25(34k+1+52k+1)
解析:34(k+1)+1+52(k+1)+1变形中必须出现n=k时归纳假设,故变形为56·34k+1+25(34k+1+52k+1)
答案:A
8.若k棱柱有f(k)个对角面,则(k+1)棱柱对角面的个数为( )
A.2f(k) B.k-1+f(k)
C.f(k)+k D.f(k)+2
解析:由n=k到n=k+1时增加的对角面的个数与底面上由n=k到n=k+1时增加的对角线一样,设n=k时,底面为A1A2…Ak,n=k+1时底面为A1A2A3…AkAk+1,增加的对角线为A2Ak+1,A3Ak+1,A4Ak+1…,
Ak-1Ak+1,A1Ak,共有(k-1)条,因此对角面也增加了(k-1)个.
答案:B
9.下列代数式,n∈N+,可能被13整除的是( )
A.n3+5n B.34n+1+52n+1
C.62n-1+1 D.42n+1+3n+2
解析:A中,n=1时,1+5=6,不能被13整除;B中,n=1时,35+53=368不能被13整除;
C中,n=1时,6+1=7亦不能被13整除.
答案:D
10.用数学归纳法证明(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)(n∈N+)时,从k到k+1,左边需要增加的代数式为( )
A.2k+1 B.2(2k+1)
C. D.
解析:当n=k时左边的最后一项是2k,n=k+1时左边的最后一项是2k+2,而左边各项都是连续的,所以n=k+1时比n=k时左边少了(k+1),而多了(2k+1)(2k+2).因此增加的代数式是=2(2k+1).
答案:B
二、填空题(本大题共有4小题,每小题5分,共20分)
11.设a,b均为正实数,n∈N+,已知M=(a+b)n,N=an+nan-1b,则M,N的大小关系为________(提示:利用贝努利不等式,令x=).
解析:由贝努利不等式(1+x)n>1+nx(x>-1,且x≠0,n>1,n∈N+),
当n>1时,令x=,
所以n>1+n·,
所以n>1+n·,即(a+b)n>an+nan-1b,
当n=1时,M=N,故M≥N.
答案:M≥N
12.若数列{an}的通项公式an=,记cn=2(1-a1)·(1-a2)…(1-an),试通过计算c1,c2,c3的值,推测cn=________.
解析:c1=2(1-a1)=2×=,
c2=2(1-a1)(1-a2)=2××=,
c3=2(1-a1)(1-a2)(1-a3)=2×××=,故cn=.
答案:
13.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,归纳出:1-4+9-16+…+(-1)n+1n2=__________.
解析:等式的左边符号正负间隔出现,先正后负,所以最后一项系数应为(-1)n+1,和的绝对值是前n个自然数的和为.
答案:(-1)n+1·
14.设数列{an}满足a1=2,an+1=2an+2,用数学归纳法证明an=4×2n-1-2的第二步中,设n=k(k≥1,k∈N+)时结论成立,即ak=4×2k-1-2,那么当n=k+1时,需证明ak+1=________________.
解析:当n=k+1时,把ak代入,要将4×2k-2变形为4×2(k+1)-1-2的形式.
答案:4×2(k+1)-1-2
三、解答题(本大题共有4小题,共50分)
15.(本小题满分12分)用数学归纳法证明:
12+32+52+…+(2n-1)2=n(4n2-1).
证明:(1)当n=1时,左边=1,右边=1,命题成立.
(2)假设当n=k时(k≥1,k∈N+),命题成立,
即12+32+52+…+(2k-1)2=k(4k2-1).
那么当n=k+1时,12+32+52+…+(2k-1)2+[2(k+1)-1]2=k(4k2-1)+(2k+1)2
=k(2k+1)(2k-1)+(2k+1)2
=(2k+1)(2k+3)(k+1)
=(k+1)[4(k+1)2-1].
∴当n=k+1时,命题也成立.
由(1)(2)得:对于任意n∈N+,等式都成立.
16.(本小题满分12分)求证:++…+>,(n≥2,n∈N+).
证明:(1)当n=2时,左边=+++>,
不等式成立.
(2)假设当n=k(k≥2,k∈N+)时,命题成立,
即++…+>,
则当n=k+1时,
++…++++
=++…++
>+
>+=.
所以当n=k+1时,不等式也成立.
由(1)(2)可知,原不等式对一切n≥2,n∈N+均成立.
17.(本小题满分12分)利用数学归纳法证明(3n+1)·7n-1(n∈N+)能被9整除.
证明:(1)当n=1时,(3×1+1)×71-1=27,
能被9整除,所以命题成立.
(2)假设当n=k(k≥1,k∈N+)时,命题成立,
即(3k+1)·7k-1能被9整除.
那么当n=k+1时,
[3(k+1)+1]·7k+1-1=(3k+4)·7k+1-1
=(3k+1)·7k+1-1+3·7k+1
=[(3k+1)·7k-1]+3·7k+1+6·(3k+1)·7k
=[(3k+1)·7k-1]+7k(21+6×3k+6)
=[(3k+1)·7k-1]+9·7k(2k+3).
由归纳假设知,(3k+1)·7k-1能被9整除,
而9·7k(2k+3)也能被9整除,
故[3(k+1)+1]·7k+1-1能被9整除.
这就是说,当n=k+1时,命题也成立.
由(1)(2)知,对一切n∈N+,(3n+1)·7n-1都能被9整除.
18.(本小题满分14分){an}是由非负整数组成的数列,满足a1=0,a2=3,an+1an=(an-1+2)(an-2+2),n=3,4,5,….
(1)求a3;
(2)证明:an=an-2+2(n≥3,且n∈N+).
解:(1)由已知a4a3=(a2+2)(a1+2)=5×2=10×1,
∴a3可能取值1,2,5,10.
若a3=1,a4=10,
从而a5===,
显然a5不是非负整数,与题设矛盾.
若a3=10,则a4=1,从而a5=60.
但再计算a6=,也与题设矛盾.
∴a3=2,a4=5.(因a3=5,a4=2?a5?N,舍去)
(2)用数学归纳法证明:
①当n=3时,a3=2,a1+2=0+2,
∴a3=a1+2,即n=3时等式成立;
②假设n=k(k≥3)时,等式成立,
即ak=ak-2+2,
由题设ak+1ak=(ak-1+2)(ak-2+2),
因为ak=ak-2+2≠0.
所以ak+1=ak-1+2,也就是说,
当n=k+1时,等式ak+1=ak-1+2成立.
则根据①②知,对于n≥3(n∈N+),有an=an-2+2.
模块综合检测
(时间90分钟,总分120分)
一、选择题(本大题共10小题,每小题5分,共50分)
1.已知a,b为非零实数,且a
A.a2
C.< D.<
解析:A项中a2-b2=(a+b)(a-b),
由a
但a+b的符号不确定,故A项错误.
B项中,ab2-a2b=ab(b-a),
由a
0,
但ab的符号不确定,故B项错误.
C项中,-==,
由a
∴-<0,即<.
D项中,-==,
由于的符号不确定,故D项错误.
答案:C
2.t,s∈R+,A=,B=+,则A与B的关系为( )
A.A>B B.A
C.A=B D.不确定
解析:B=+>+==A.
答案:B
3.已知函数f(x)、g(x),设不等式|f(x)|+|g(x)|
0)的解集是M,不等式|f(x)+g(x)|
0)的解集为N,则集合M与N的关系是( )
A.N?M B.M=N
C.M?N D.M?N
解析:由绝对值不等式的性质知|f(x)+g(x)|≤|f(x)|+|g(x)|,
∴集合N与集合M成M?N关系.
答案:C
4.已知θ∈R,则4+cos θ的最大值是( )
A.2 B.3
C. D.
解析:由4+cos θ≤·=3.当且仅当4cos θ=,即sin θ=±,cos θ=时,等号成立,故选B.
答案:B
5.不等式|x-1|+|x+2|≥5的解集为( )
A.(-∞,-2]∪[2,+∞)
B.(-∞,-1]∪[2,+∞)
C.(-∞,-2]∪[3,+∞)
D.(-∞,-3]∪[2,+∞)
解析:由题意不等式|x-1|+|x+2|≥5的几何意义为数轴上到1,-2两个点的距离之和大于等于5的点组成的集合,而-2,1两个端点之间的距离为3,由于分布在-2,1以外的点到-2,1的距离要计算两次,而在-2,1内部的距离则只计算一次,因此只要找出-2左边到-2的距离等于=1的点-3,以及1右边到1的距离等于=1的点2,这样就得到原不等式的解集为(-∞,-3]∪[2,+∞).
答案:D
6.已知θ为锐角,a,b均为正实数.则下列不等式成立的是( )
A.(a+b)2≤+
B.(a+b)2≥+
C.a2+b2=+
D.(a+b)2<+
解析:设m=,n=(cos θ,sin θ),
则|a+b|=
≤ ·=,
所以(a+b)2≤+.
答案:A
7.(安徽高考)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )
A.5或8 B.-1或5
C.-1或-4 D.-4或8
解析: 当a≥2时,f(x)=
如图1可知,当x=-时,f(x)min=f=-1
=3,可得a=8;
当a<2时,f(x)=
如图2可知,当x=-时,f(x)min=f=-+1=3,可得a=-4.综上可知,答案为D.
答案:D
8.当x>1时,不等式a≤x+恒成立,则实数a的取值范围是( )
A.(-∞,2) B.[2,+∞)
C.[3,+∞) D.(-∞,3]
解析:a≤x+,
由x+=x-1++1≥3,即x+的最小值为3.
答案:D
9.若实数x、y满足+=1,则x2+2y2有( )
A.最大值3+2 B.最小值3+2
C.最大值6 D.最小值6
解析:由题知,x2+2y2=(x2+2y2)·=3++≥3+2,当且仅当=时,等号成立.
答案:B
10.若x>1,则函数y=x++的最小值为( )
A.16 B.8
C.4 D.非上述情况
解析:y=x++=x++≥2=8,当且仅当x=2+时等号成立.
答案:B
二、填空题(本大题共有4小题,每小题5分,共20分)
11.若x,y,z是正数,且满足xyz(x+y+z)=1,则(x+y)·(y+z)的最小值为________.
解析:(x+y)(y+z)=xy+y2+yz+zx
=y(x+y+z)+zx≥2
=2.
答案:2
12.(广东高考)不等式|x-1|+|x+2|≥5的解集为________.
解析:当x<-2时,原不等式即1-x-x-2≥5?x≤-3,此时得到x≤-3;当-2≤x≤1时,原不等式即1-x+x+2≥5,此时无解;当x>1时,原不等式即x-1+x+2≥5?x≥2,此时得到x≥2.于是原不等式的解集为{x≤-3或x≥2}.
答案:{x|x≤-3或x≥2}
13.若不等式|x-a|+|x-2|≥1对任意实数x均成立,则实数a的取值范围为________.
解析:由题得|x-a|+|x-2|≥|(x-a)-(x-2)|=|a-2|,∴|a-2|≥1,解得a∈(-∞,1]∪[3,+∞).
答案:(-∞,1]∪[3,+∞)
14.设正数a,b,c的乘积abc=1,++的最小值为________.
解析:设a=,b=,c=,则xyz=1,则++可化为++,不妨设x≥y≥z,则≥≥,
据排序不等式得
++≥z·+x·+y·,
++≥y·+z·+x·,
两式相加并化简可得2≥3.
即++≥.
即++≥.
所以++的最小值为.
答案:
三、解答题(本大题共有4小题,共50分)
15.(本小题满分12分)已知a,b是不相等的正实数.
求证:(a2b+a+b2)(ab2+a2+b)>9a2b2.
证明:因为a,b是正实数,
所以a2b+a+b2≥3=3ab>0,
当且仅当a2b=a=b2,即a=b=1时,等号成立;
同理:ab2+a2+b≥3=3ab>0,
当且仅当a=b=1时,等号成立.
所以(a2b+a+b2)(ab2+a2+b)≥9a2b2,
当且仅当a=b=1时,等号成立.
因为a≠b,所以(a2b+a+b2)(ab2+a2+b)>9a2b2.
16.(本小题满分12分)若a1≤a2≤…≤an,b1≤b2≤…≤bn,求证:≥·.
证明:由题设和排序不等式,可知有以下n组式子成立:
a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbn,
a1b1+a2b2+…+anbn≥a1b2+a2b3+…+anb1,
……
a1b1+a2b2+…+anbn≥a1bn+a2b1+…+anbn-1.
将上述n个不等式叠加后,两边同除以n2,即得欲证的不等式.
17.(本小题满分12分)(新课标全国卷Ⅱ)设函数f(x)=+|x-a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.
解:(1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2.当且仅当“a=1”时等号成立.
所以f(x)≥2.
(2)f(3)=+|3-a|.
当a>3时,f(3)=a+,
由f(3)<5得3
当0<a≤3时,f(3)=6-a+,
由f(3)<5得
综上,a的取值范围是.
18.(本小题满分14分)数列{an}满足Sn=2n-an(n∈N+).
(1)计算a1,a2,a3,a4,并由此猜想通项公式an.
(2)用数学归纳法证明(1)中的猜想.
解:(1)当n=1时,a1=S1=2-a1,所以a1=1;
当n=2时,a1+a2=S2=2×2-a2,所以a2=;
当n=3时,a1+a2+a3=S3=2×3-a3,所以a3=;
当n=4时,a1+a2+a3+a4=S4=2×4-a4,
所以a4=.
由此猜想an=(n∈N+).
(2)当n=1时,a1=1,结论成立.
假设n=k(k≥1且k∈N+)时,结论成立,即ak=,
那么n=k+1(k≥1且k∈N+)时,
ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak
=2+ak-ak+1.
所以2ak+1=2+ak,
所以ak+1===,
这就是说当n=k+1时,结论也成立,
综上可得an=(n∈N+).
课件37张PPT。知识整合与阶段检测知识结构图示命题热点例析考点一考点二阶段质量检测跟踪演练
点击下载
同课章节目录
第一章不等式的基本性质和证明的基本方法
不等式的基本性质和证明的基本方法
不等式的基本性质和一元二次不等式的解法
基本不等式
绝对值不等式的解法
绝对值的三角不等式
不等式证明的基本方法
第二章柯西不等式与排序不等式及其应用
柯西不等式与排序不等式及其应用
柯西不等式
排序不等式
平均值不等式(选学)
最大值与最小值问题,优化的数学模型
第三章 数学归纳法与贝努利不等式
数学归纳法与贝努利不等式
数学归纳法原理
用数学归纳法证明不等式,贝努利不等式
点击下载
VIP下载