第十三章 光
第1节 光的反射和折射
一、光的反射及反射定律
1.光的直线传播:光在____________中沿直线传播。
2.光的反射:光从第1种介质射到与第2种介质的_______时,一部分光会返回到第1种介质的现象。
3.反射定律:反射光线与入射光线、法线处在_________________内;反射光线与入射光线分别位于____________;反射角_____________入射角。
二、光的折射及折射定律
1.光的折射及折射定律
光的折射
光从第1种介质斜射到与第2种介质的分界面时,一部分光_______________的现象
入射角、
折射角
入射角:入射光线与______的夹角
折射角:折射光线与_______的夹角
折射定律
折射光线与入射光线、法线处在___________内,折射光线与入射光线分别位于法线的____________;入射角的正弦与折射角的正弦成正比,即=n12
2.光路可逆性
在光的反射和折射现象中,光路都是可逆的。
三、折射率
1.物理意义:反映介质的光学性质的物理量。
2.定义:光从真空射入某种介质发生折射时,____________与______________之比,叫做这种介质的绝对折射率,简称折射率:n=。
3.研究表明,光在不同介质中的速度不同,某种介质的折射率,等于光在__________的传播速度c与光在____________中的传播速度v之比,即n=。
同种均匀介质 分界面 同一平面 法线的两侧 等于
进入第2种介质 法线 法线 同一平面 两侧
入射角的正弦 折射角的正弦 真空中 这种介质
一、反射定律和折射定律
1.光的方向
光从一种介质进入另一种介质时,传播方向一般要发生变化(斜射)。并非一定变化,当光垂直界面入射时,传播方向就不发生变化。
2.光的传播速度
光从一种介质进入另一种介质时,传播速度一定发生变化,当光垂直界面入射时,光的传播方向虽然不变,但也属于折射,光传播的速度发生变化。
3.入射角与折射角的大小关系
光从一种介质进入另一种介质时,折射角与入射角的大小关系不要一概而论,要视两种介质的折射率大小而定。当光从折射率小的介质斜射入折射率大的介质时,入射角大于折射角,当光从折射率大的介质斜射入折射率小的介质时,入射角小于折射角。
【例题1】如图所示,光线以入射角θ1从空气射向折射率为n=的玻璃表面。
(1)当入射角θ1=45°时,反射光线与折射光线间的夹角θ为多大?
(2)当入射角θ1为多少时,反射光线与折射光线垂直?
参考答案:(1)105° (2)arctan
二、折射率
1.关于常数n
入射角的正弦值跟折射角的正弦值之比是一个常数,但不同介质具有不同的常数,说明常数反映了该介质的光学特性。
2.折射率与光速的关系
光在介质中的传播速度v跟介质的折射率n有关,即n=,由于光在真空中的传播速度c大于光在任何其他介质中的传播速度v,所以任何介质的折射率n都大于1。
3.决定因素
介质的折射率是反映介质的光学性质的物理量,它的大小由介质本身及光的性质共同决定,不随入射角、折射角的变化而变化。
【例题2】一束光从某种介质射入空气中时,入射角θ1=30°,折射角θ2=60°,折射光路如图所示,则下列说法正确的是
A.此介质的折射率为
B.此介质的折射率为
C.相对于空气此介质是光密介质
D.光在该介质中的速度比在空气中的大
参考答案:BC
试题解析:根据折射定律可得n=,选项A错误,B正确;此介质的折射率比空气的大,故此介质相对于空气是光密介质,选项C正确;由n=可知选项D错误。
三、测定玻璃的折射率
1.实验步骤
(1)如图所示,将白纸用图钉钉在平木板上。
(2)在白纸上画出一条直线aa'作为界面(线),过aa'上的一点O画出界面的法线NN',并画一条线段AO作为入射光线。
(3)把长方形玻璃砖放在白纸上,使它的长边跟aa'对齐,画出玻璃砖的另一边bb'。
(4)在直线AO上竖直插上两枚大头针P1、P2,透过玻璃砖观察大头针P1、P2的像,调整视线方向直到P2的像挡住P1的像。再在观察者一侧竖直插上两枚大头针P3、P4,使P3挡住P1、P2的像,P4挡住P3及P1、P2的像,记下P3、P4的位置。
(5)移去大头针和玻璃砖,过P3、P4所在处作直线O'B与bb'交于O',直线O'B就代表了沿AO方向入射的光线通过玻璃砖后的传播方向。
(6)连接OO',入射角θ1=∠AON,折射角θ2=∠O'ON',用量角器量出入射角和折射角。
(7)用上述方法测出入射角分别为30°、45°、60°时的折射角。
2.数据处理
(1)计算法:通过测量入射角和折射角,然后查数学用表,得出入射角和折射角的正弦值,再代入n=中求多次不同入射角时n的值,然后取其平均值,即为玻璃砖的折射率。
(2)图象法:求出多组对应的入射角与折射角的正弦值,作出sin θ1–sin θ2图象,由n=可知图象应为直线,如图所示,其斜率为折射率。
(3)单位圆法:在不使用量角器的情况下,可以用画单位圆法。
①以入射点O为圆心,以一定长度R为半径画圆,交入射光线OA于E点,交折射光线OO'于E'点,过E作NN'的垂线EH,过E'作NN'的垂线E'H',如图所示。
②由图中关系sin θ1=,sin θ2=,OE=OE'=R,则n=,只要用刻度尺测出EH、E'H' 的长度就可以求出n。
3.注意事项
(1)实验时,尽可能将大头针竖直插在纸上,且大头针之间及大头针与光线转折点之间的距离要稍大一些。
(2)入射角θ1应适当大一些,以减小测量角度的误差,但入射角不宜太大。
(3)在操作时,手不能触摸玻璃砖的光洁面,更不能把玻璃砖界面当尺子画界线。
(4)在实验过程中,玻璃砖与白纸的相对位置不能改变。
(5)玻璃砖应选用宽度较大的,宜在5 cm以上。若宽度太小,则测量误差较大。
4.实验误差
(1)入射光线和出射光线画得不够精确。因此,要求插大头针时两大头针间距应稍大。
(2)入射角、折射角测量不精确。为减小测角时的相对误差,入射角要稍大些,但不宜太大,入射角太大时,反射光较强,折射光会相对较弱。
【例题3】一块玻璃砖有两个相互平行的表面,其中一个表面是镀银的(光线不能通过此表面)。现要测定此玻璃的折射率。给定的器材还有:白纸、铅笔、大头针4枚(P1、P2、P3、P4)、带有刻度的直角三角板、量角器。
实验时,先将玻璃砖放到白纸上,使上述两个相互平行的表面与纸面垂直。在纸上画出直线aa'和bb',aa'表示镀银的玻璃表面,bb'表示另一表面,如图所示。然后,在白纸上竖直插上两枚大头针P1、P2(位置如图)。用P1、P2的连线表示入射光线。
(1)为了测量折射率,应如何正确使用大头针P3、P4?试在题图中标出P3、P4的位置。
(2)然后,移去玻璃砖与大头针。试在题图中通过作图的方法标出光线从空气到玻璃中的入射角θ1与折射角θ2。简要写出作图步骤。
(3)写出用θ1、θ2表示的折射率公式。
参考答案:见解析
试题解析:(1)在bb'一侧观察P1、P2(经过bb'折射aa'反射,再经bb'折射后)的像,在适当的位置插上P3,使得P3与P1、P2的像在一条直线上,即让P3挡住P1、P2的像;再插上P4,让它挡住P2(或P1)的像和P3。P3、P4的位置如图。
名师点睛:对于玻璃三棱镜折射率的测定,其方法与球形玻璃折射率的测定方法是一样的:(1)在玻璃的一侧竖直插两枚大头针P1和P2。
(2)在另一侧再先后插两枚大头针P3和P4,使从另一侧隔着玻璃观察时,大头针P4、P3和P2、P1的像恰好在一条直线上。
(3)移去玻璃和大头针后得到如图所示的光路图,可以按光路图确定入射光线AO,出射光线O'B,则OO'为折射光线。
(4)用量角器量出i、r,即可求出折射率n=。
1.如图所示,一束单色光从空气入射到棱镜的AB面上,经AB和AC两个面折射后从AC面进入空气。当出射角i′和入射角i相等时,出射光线相对于入射光线偏转的角度为θ。已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为
A. B.
C. D.
2.两束平行的细激光束,垂直于半圆柱玻璃的平面射到半圆柱玻璃上,如图所示。已知光线1沿直线穿过玻璃,它的入射点是O;光线2的入射点为A,穿过玻璃后两条光线交于P点。已知玻璃截面的圆半径为R,OA=,OP=R,光在真空中的传播速度为c。据此可知
A.光线2在圆弧面的入射角为45°
B.玻璃材料的折射率为
C.光线1在玻璃中传播速度为
D.光线1在玻璃中传播时间为
3.如图所示,P、Q是两种透明材料制成的两块相同的直角梯形棱镜,叠合在一起组成一个长方体,一束单色光从P的上表面射入,折射光线正好垂直通过两棱镜的界面,已知材料的折射率nPA.光线一定从Q的下表面射出
B.光线若从Q的下表面射出,出射光线与下表面的夹角一定等于θ
C.光线若从Q的下表面射出,出射光线与下表面的夹角一定大于θ
D.光线若从Q的下表面射出,出射光线与下表面的夹角一定小于θ
4.一束光由空气射入某种介质,当入射光线和界面的夹角为30°时,折射光线恰好与反射光线垂直,则光在该介质中的传播速度是(真空中光速为c)
A.c B.
C.c D.c
5.如图所示的四种情景中,属于光的折射的是
A. B.
C. D.
6.两束不同频率的单色光a、b从空气平行射入水中,发生了如图所示的折射现象(α>β)。下列结论中正确的是
A.光束b的频率比光束a低
B.在水中的传播速度,光束a比光束b小
C.水对光束a的折射率比水对光束b的折射率小
D.若光束从水中射向空气,则光束b的临界角比光束a的临界角大
7.一束由红、蓝两单色光组成的光以入射角θ由空气射到半圆形玻璃砖表面的A处,AB是半圆的直径。进入玻璃后分为两束,分别为AC、AD,它们从A到C和从A到D的时间分别为t1和t2,则
A.AC是蓝光,t1小于t2 B.AC是红光,t1小于t2
C.AC是蓝光,t1等于t2 D.AC是红光,t1大于t2
8.如图所示,一束光由空气射入某种介质,该介质的折射率等于
A. B.
C. D.
9.某同学通过实验测定半圆形玻璃砖的折射率n。如图甲所示,O是圆心,MN是法线,AO、BO分别表示某次测量时光线在空气和玻璃砖中的传播路径。该同学测得多组入射角i和折射角r,作出sin i–sin r图象如图乙所示,则
A.光由B经O到A,n=0.67 B.光由A经O到B,n=1.5
C.光由B经O到A,n=1.5 D.光由A经O到B,n=0.67
10.如图所示,井口大小和深度相同的两口井,一口是枯井,一口是水井(水面在井口之下),两井底部各有一只青蛙,则
A.水井中的青蛙觉得井口大些,晴天的夜晚,水井中的青蛙能看到更多的星星
B.枯井中的青蛙觉得井口大些,晴天的夜晚,水井中的青蛙能看到更多的星星
C.水井中的青蛙觉得井口小些,晴天的夜晚,枯井中的青蛙能看到更多的星星
D.两只青蛙觉得井口一样大,晴天的夜晚,水井中的青蛙能看到更多的星星
11.如图,足够宽的液槽中水的折射率n=,M是可绕轴转动的平面镜,M与水平面的夹角为。光线从液槽的侧壁水平射入水中,若,则经平面镜反射后的光线从水面射出时折射角的正弦值为
A. B.
C. D.
12.现在高速公路上的标志牌都用“回归反光膜”制成,夜间行车时,它能把车灯射出的光逆向返回,所以标志牌上的字特别醒目.这种“回归反光膜”是用球体反射元件制作的.如图反光膜内部均匀分布着直径为10 μm的细玻璃珠,所用玻璃的折射率n=,为使入射的车灯光线经玻璃珠折射一反射一再折射后恰好和入射光线平行,第一次入射时入射角i应是
A.15° B.30°
C.45° D.60°
13.如图所示,平面镜OM与ON镜面之间夹角为α,在两平面镜角平分线上有一个点光源S,如果要保证S发出的任意一条光线最多只能产生四次反射,则α的最小值是
A.30° B.40°
C.50° D.60°
14.如图甲所示为光学实验用的长方体玻璃砖,它的__________(填“磨砂面”或“光学面”)不能用手直接接触。在用插针法测定玻璃砖折射率的实验中,两位同学绘出的玻璃砖和三个针孔a、b、c的位置相同,且插在c位置的针正好挡住插在a、b位置的针的像,但最后一个针孔的位置不同,分别为d、e两点,如图乙所示。计算折射率时,用________(填“d”或“e”)点得到的值较小,用________(填“d”或“e”)点得到的值误差较小。
15.如图所示,O1O2是透明介质制成的半圆柱体的对称面和纸面的交线,A、B是关于O1O2轴等距且平行的两束单色细光束,从半圆柱体右方射出的光路如图所示。根据该光路图,下列说法正确的是________。
A.该介质对A光的折射率比对B光的折射率小
B.该介质对两束光的折射率都小于
C.CA光的频率比B光的频率高
D.在真空中,A光的波长比B光的波长长
E.光从空气进人该介质后,其频率变高
16.如图所示,平静湖面岸边的垂钓者,眼睛恰好位于岸边P点正上方0.9 m的高度处,浮标Q离P点1.2 m远,鱼饵灯M在浮标正前方1.8 m处的水下,垂钓者发现鱼饵灯刚好被浮标挡住,已知水的折射率n=,求鱼饵灯离水面的深度。
17.如图所示,一束单色光以一定的入射角从A点射入玻璃球体,已知光线在玻璃球内经两次反射后,刚好能从A点折射回到空气中。已知入射角为45°,玻璃球的半径为,光在真空中传播的速度为3×108 m/s,求:
(1)玻璃球的折射率及光线第一次从玻璃球内出射时相对于射入玻璃球的光线的偏向角。
(2)光线从A点进入及第一次从A点射出时在玻璃球体运动的时间。
18.如图所示,一横截面为半圆的玻璃砖,AB为水平直径界面,O是圆心:半径为R。—束单色光从其空中射向玻璃砖上的O点,已知入射角、折射角,光束从圆孤界面上的C点射出。求该光束在玻璃砖中的传播时间。
19.(2017·江苏卷)人的眼球可简化为如图所示的模型,折射率相同、半径不同的两个球体共轴,平行光束宽度为D,对称地沿轴线方向射入半径为R的小球,会聚在轴线上的P点。取球体的折射率为,且D=R,求光线的会聚角α。(示意图未按比例画出)
20.(2017·新课标全国Ⅰ卷)如图,一玻璃工件的上半部是半径为R的半球体,O点为球心;下半部是半径为R、高位2R的圆柱体,圆柱体底面镀有反射膜。有一平行于中心轴OC的光线从半球面射入,该光线与OC之间的距离为0.6R。已知最后从半球面射出的光线恰好与入射光线平行(不考虑多次反射)。求该玻璃的折射率。
21.(2016·四川卷)某同学通过实验测定半圆形玻璃砖的折射率n。如图甲所示,O是圆心,MN是法线,AO、BO分别表示某次测量时光线在空气和玻璃砖中的传播路径。该同学测得多组入射角i和折射角r,做出sin i–sin r图象如图乙所示。则
A.光由A经O到B,n=1.5
B.光由B经O到A,n=1.5
C.光由A经O到B,n=0.67
D.光由B经O到A,n=0.67
22.(2015·安徽卷)如图所示,一束单色光从空气入射到棱镜的AB面上,经AB和AC两个面折射后从AC面进入空气。当出射角和入射角i相等时,出射光线相对于入射光线偏转的角度为。已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为
A. B.
C. D.
1.A【解析】由折射定律可知,因入射角和出射角相等,即,故由几何关系可知,,故折射率,A正确。
3.D【解析】由于没有确定几何尺寸,所以光线可能射向Q的右侧面,也可能射向Q的下表面,A项错误;当光线射向Q的下表面时,它的入射角与在P中的折射角相等,由于,进入空气中的折射角大于进入P上表面的入射角,那么出射光线与下表面的夹角一定小于,BC两项错误,D项正确。
4.D【解析】当入射光线与界面间的夹角为30°时,入射角i=60°,折射光线与反射光线恰好垂直,则折射角r=90°–60°=30°,故折射率为,这束光在此介质中传播的速度为,故选D。
5.B【解析】A属于光沿直线传播;B属于光的折射;C属于光沿直线传播,C属于光的反射,故B正确。
6.C【解析】光束b的偏折角大,水对光束b的折射率,光束b的频率大,波长小,速度小,临界角小,故选C。
7.C【解析】光的偏折程度比较大,则介质对AC光的折射率比较大,AC光的频率比较大,所以AC光应是蓝光。设AC光与法线方向成α角,AC光在介质中的传播速度为:,则有,又,由以上两式得:,可知,AC光与AD光的传播时间相等,故C正确,ABD错误。
8.C【解析】根据折射定律可得,C正确。
10.A【解析】如图所示,枯井中的青蛙看到井外的范围,可根据光的直线传播确定.而外界光线斜射到水面时,入射角大于折射角,根据光线可逆性,故水井中的青蛙看到的范围超出光直线传播看到的范围,即水井中的青蛙看到井外的范围较大,晴天的夜晚,水井中的青蛙能看到更多的星星,故A正确。
【名师点睛】解答本题应抓住:外界从同一方向射到青蛙眼中光线的方向相同,由于光的折射,外界光线斜射到水面时,入射角大于折射角,根据光线可逆性,可知水井中的青蛙看到井外的范围较大。
11.B【解析】作出光线经平面镜反射后从水面射出的光路如图所示。在水面发生折射的入射角:β=90°–2α;由折射定律,有:;代入数据得折射角γ的正弦值:,故选B。
【名师点睛】画出光路图是解决几何光学问题的基础,本题要充分运用平面镜的光学特征和几何知识研究出入射角和折射角,作出光线的光路,就能轻松解答。
12.D【解析】由几何知识知,i=2r;根据折射定律得;则得,r=30°,所以i=60°,故选D。
14.(1)光学 (2)d (3)e
【解析】(1)玻璃砖的光学面不能用手触摸;
(2)若光线沿cd方向射出,光线在玻璃砖内的折射角较大,所以折射率较小;
(3)玻璃砖是平行的,理论上出射光线与入射光线平行,所以ce方向误差较小。
16.2.4 m
【解析】(1)设入射角、折射角分别为i、r,设鱼饵灯离水面的深度为h2
则:,
根据光的折射定律可知:,得:h2=2.4 m
17.(1),偏向角 (2)
【解析】(1)作出光路图,由对称性及光路可逆可知,
第一次折射的折射角为300,则折射率公式可知
由几何关系可知,光线第一次从玻璃球内出射时相对于射入玻璃球的光线的偏向角
(2)光线从A点进入及第一次从A点射出时的玻璃球中运动的距离为
在玻璃中运动的速度为
运动时间
18.
【解析】由折射定律得:
该光在此玻璃砖中的折射率:①
光在玻璃中传播速度:②
该光束在玻璃砖中传播时间:③
19.30°
【解析】由几何关系,解得
则由折射定律,解得
且,解得
20.
由①③④式和题给数据得⑤
21.B【解析】由图线可知,可得n=1.5;因i是入射角,r是折射角,折射角大于入射角,故光由B经O到A,故选B。
22.A【解析】由几何关系,得入射角等于,折射角等于,所以折射率为,故选A。