专题02 全等三角形的判定
阅读与思考
两个几何图形的全等是指两个图形之间的一种 ( http: / / www.21cnjy.com )关系,其中最基本的关系是两个图形的点的对应关系,以及对应边之间、对应角之间的相等关系.全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点,证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法.21·cn·jy·com
我们实际遇到的图形,两个全等三角形并不重合 ( http: / / www.21cnjy.com )在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的.了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素.善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关会共边、公共角的以下两类基本图形:
例题与求解
【例1】如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
【考点】全等三角形的判定.
【分析】根据全等三角形的判定方法分别进行判定即可.
【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;
B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;
C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;
D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;
故选:C.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例2】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
【考点】全等三角形的判定.
【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.
【解答】解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2·1·c·n·j·y
【例3】如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是
( )
A.AD=AE B.BD=CE C.BE=CD D.∠B=∠C
【考点】全等三角形的判定.
【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
【解答】解:∵AB=AC,∠A为公共角,
A、如添加AE=AD,利用SAS即可证明△ABE≌△ACD;
B、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;
C、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;
D、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;
故选C.
【点评】此题主要考查学生对全等三角形判定定 ( http: / / www.21cnjy.com )理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.【来源:21cnj*y.co*m】
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例4】如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC
【考点】全等三角形的判定.
【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.
【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,
(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;
(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;
(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;
(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;
故选:C.
【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.
【例5】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.
【专题】证明题.
【分析】(1)运用AAS证明△ABD≌△CAE;
(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.
【解答】证明:(1)∵AB=AC,
∴∠B=∠ACD,
∵AE∥BC,
∴∠EAC=∠ACD,
∴∠B=∠EAC,
∵AD是BC边上的中线,
∴AD⊥BC,
∵CE⊥AE,
∴∠ADC=∠CEA=90°
在△ABD和△CAE中
∴△ABD≌△CAE(AAS);
(2)AB=DE,AB∥DE,如右图所示,
∵AD⊥BC,AE∥BC,
∴AD⊥AE,
又∵CE⊥AE,
∴四边形ADCE是矩形,
∴AC=DE,
∵AB=AC,
∴AB=DE.
∵AB=AC,
∴BD=DC,
∵四边形ADCE是矩形,
∴AE∥CD,AE=DC,
∴AE∥BD,AE=BD,
∴四边形ABDE是平行四边形,
∴AB∥DE且AB=DE.
【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.【来源:21·世纪·教育·网】
【例6】问题背景:
如图1:在四边形ABCD中 ( http: / / www.21cnjy.com ),AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到 ( http: / / www.21cnjy.com )点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;2-1-c-n-j-y
( http: / / www.21cnjy.com )
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF= ( http: / / www.21cnjy.com )∠BAD,上述结论是否仍然成立,并说明理由;【出处:21教育名师】
实际应用:
如图3,在某次军事演习中,舰艇甲在 ( http: / / www.21cnjy.com )指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
【考点】全等三角形的判定与性质.
【专题】压轴题;探究型.
【分析】问题背景:根据全等三角形对应边相等解答;
探索延伸:延长FD到G,使DG=B ( http: / / www.21cnjy.com )E,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;
实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EOF= ( http: / / www.21cnjy.com )∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.
【解答】解:问题背景:EF=BE+DF;
探索延伸:EF=BE+DF仍然成立.
证明如下:如图,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
( http: / / www.21cnjy.com ),
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ( http: / / www.21cnjy.com )∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
( http: / / www.21cnjy.com ),
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
实际应用:如图,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,
∠EOF=70°,
∴∠EOF= ( http: / / www.21cnjy.com )∠AOB,
又∵OA=OB,
∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=1.5×(60+80)=210海里.
答:此时两舰艇之间的距离是210海里.
( http: / / www.21cnjy.com )
【点评】本题考查了全等三角形的判定与性质,读 ( http: / / www.21cnjy.com )懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.
能力训练
1.(2017黑龙江佳木斯 ( http: / / www.21cnjy.com ))如图,BC∥EF,AC∥DF,添加一个条件 (只需添加一个即可) ,使得△ABC≌△DEF.
( http: / / www.21cnjy.com )
2.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件 ,使得△EAB≌△BCD.
3.(2017山东聊城)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.
( http: / / www.21cnjy.com )
4.如图,AF=DC,BC∥EF,只需补充一个条件 ,就得△ABC≌△DEF.
5.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
6.(2017四川南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.21教育网
( http: / / www.21cnjy.com )
7.如图,AB=AE,∠1=∠2,∠C=∠D.
求证:△ABC≌△AED.
8.【问题提出】
学习了三角形全等的判定方 ( http: / / www.21cnjy.com )法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△A ( http: / / www.21cnjy.com )BC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
( http: / / www.21cnjy.com )
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 HL ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF ( http: / / www.21cnjy.com ),BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以 ( http: / / www.21cnjy.com )使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
9.如图,在△ABC和△ADE中,AB= ( http: / / www.21cnjy.com )AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.
(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.
( http: / / www.21cnjy.com )
参考答案:
1.(2017黑龙江佳木斯)如图,B ( http: / / www.21cnjy.com )C∥EF,AC∥DF,添加一个条件 AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可) ,使得△ABC≌△DEF.
( http: / / www.21cnjy.com )
【考点】KB:全等三角形的判定.
【分析】本题要判定△ABC≌△DEF, ( http: / / www.21cnjy.com )易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.
【解答】解:∵BC∥EF,
∴∠ABC=∠E,
∵AC∥DF,
∴∠A=∠EDF,
∵在△ABC和△DEF中, ( http: / / www.21cnjy.com ),
∴△ABC≌△DEF,
同理,BC=EF或AC=DF也可证△ABC≌△DEF.
故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).
2.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件 AE=CB ,使得△EAB≌△BCD.
【考点】全等三角形的判定.
【专题】开放型.
【分析】可以根据全等三角形的不同的判定方法添加不同的条件.
【解答】解:∵∠A=∠C=90°,AB=CD,
∴若利用“SAS”,可添加AE=CB,
若利用“HL”,可添加EB=BD,
若利用“ASA”或“AAS”,可添加∠EBD=90°,
若添加∠E=∠DBC,可利用“AAS”证明.
综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).
故答案为:AE=CB.
【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.21cnjy.com
3.(2017山东聊城)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.
( http: / / www.21cnjy.com )
【考点】KD:全等三角形的判定与性质.
【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.www.21-cn-jy.com
【解答】证明:∵AB∥CD,
∴∠ABC=∠DEF,
又∵BE=CF,
∴BE+EC=CF+EC,
即:BC=EF,
在△ABC和△DEF中
( http: / / www.21cnjy.com )
∴△ABC≌△DEF(SAS),
∴∠ACB=∠DFE,
∴AC∥DF.
4.如图,AF=DC,BC∥EF,只需补充一个条件 BC=EF ,就得△ABC≌△DEF.
【考点】全等三角形的判定.
【专题】开放型.
【分析】补充条件BC=EF,首 ( http: / / www.21cnjy.com )先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.21教育名师原创作品
【解答】解:补充条件BC=EF,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=DF,
∵BC∥EF,
∴∠EFC=∠BCF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS).
故答案为:BC=EF.
【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.www-2-1-cnjy-com
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
【考点】全等三角形的判定与性质.
【专题】证明题.
【分析】先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.
【解答】证明:∵∠1=∠2,
∴∠CAB=∠DAE,
在△BAC和△DAE中,,
∴△BAC≌△DAE(SAS),
∴BC=DE.
【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.
6.(2017四川南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.
( http: / / www.21cnjy.com )
【考点】KD:全等三角形的判定与性质.
【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.
【解答】证明:∵DE⊥AB,CF⊥AB,
∴∠DEB=∠AFC=90°,
∵AE=BF,
∴AF=BE,
在△DEB和△CFA中,
( http: / / www.21cnjy.com ),
△DEB≌△CFA,
∴∠A=∠B,
∴AC∥DB.
( http: / / www.21cnjy.com )
7.如图,AB=AE,∠1=∠2,∠C=∠D.
求证:△ABC≌△AED.
【考点】全等三角形的判定.
【专题】证明题.
【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.21世纪教育网版权所有
【解答】证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
即∠BAC=∠EAD,
∵在△ABC和△AED中,
,
∴△ABC≌△AED(AAS).
【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
8.【问题提出】
学习了三角形全等的判定方法(即“SAS ( http: / / www.21cnjy.com )”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC ( http: / / www.21cnjy.com )和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
( http: / / www.21cnjy.com )
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 HL ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF, ( http: / / www.21cnjy.com )AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ ( http: / / www.21cnjy.com )ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ∠B≥∠A ,则△ABC≌△DEF.
【考点】全等三角形的判定与性质;作图—应用与设计作图.
【专题】压轴题;探究型.
【分析】(1)根据直角三角形全等的方法“HL”证明;
(2)过点C作CG⊥AB交AB的延长线 ( http: / / www.21cnjy.com )于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;
(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;
(4)根据三种情况结论,∠B不小于∠A即可.
【解答】(1)解:HL;
(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,
∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,
∴180°﹣∠ABC=180°﹣∠DEF,
即∠CBG=∠FEH,
在△CBG和△FEH中,
( http: / / www.21cnjy.com ),
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
( http: / / www.21cnjy.com ),
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
( http: / / www.21cnjy.com ),
∴△ABC≌△DEF(AAS);
(3)解:如图,△DEF和△ABC不全等;
( http: / / www.21cnjy.com )
(4)解:若∠B≥∠A,则△ABC≌△DEF.
故答案为:(1)HL;(4)∠B≥∠A.
( http: / / www.21cnjy.com )
【点评】本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.21·世纪*教育网
9.如图,在△ABC和△ADE中,AB= ( http: / / www.21cnjy.com )AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.21*cnjy*com
(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.
( http: / / www.21cnjy.com )
【考点】全等三角形的判定与性质;等腰三角形的性质;三角形中位线定理;旋转的性质.
【专题】几何综合题.
【分析】(1)因为AF是直角三角形ABE的中线,所以BE=2AF,然后通过△ABE≌△ACD即可求得.【版权所有:21教育】
(2)延长EA交BC于G,在AG上截取AH= ( http: / / www.21cnjy.com )AD,证出△ABH≌△ACD从而证得BH=CD,然后根据三角形的中位线等于底边的一半,求得BH=2AF,即可求得.21*cnjy*com
【解答】(1)证明:如图①,
∵∠BAC+∠EAD=180°,∠BAE=90°,
∴∠DAC=90°,
在△ABE与△ACD中
( http: / / www.21cnjy.com )
∴△ABE≌△ACD(SAS),
∴CD=BE,
∵在Rt△ABE中,F为BE的中点,
∴BE=2AF,
∴CD=2AF.
(2)成立,
证明:如图②,延长EA交BC于G,在AG上截取AH=AD,
∵∠BAC+∠EAD=180°,
∴∠EAB+∠DAC=180°,
∵∠EAB+∠BAH=180°,
∴∠DAC=∠BAH,
在△ABH与△ACD中,
( http: / / www.21cnjy.com )
∴△ABH≌△ACD(SAS)
∴BH=DC,
∵AD=AE,AH=AD,
∴AE=AH,
∵EF=FB,
∴BH=2AF,
∴CD=2AF.
( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
【点评】本题考查了三角形全等的判定和性质,等腰三角形的性质,三角形中位线的性质等.作出正确的辅助线是解题关键
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)