2017_2018学年高中数学第二章推理与证明教学案(打包5套)新人教A版选修2_2

文档属性

名称 2017_2018学年高中数学第二章推理与证明教学案(打包5套)新人教A版选修2_2
格式 zip
文件大小 2.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-03-13 12:04:42

文档简介

2.1.1 合情推理
 预习课本P70~77,思考并完成下列问题
(1)归纳推理的含义是什么?有怎样的特征?
 
 
(2)类比推理的含义是什么?有怎样的特征?


(3)合情推理的含义是什么?
 
 

1.归纳推理和类比推理
[点睛] (1)归纳推理与类比推理的共同点:都是从具体事实出发,推断猜想新的结论.
(2)归纳推理的前提和结论之间的联系不是必然的,结论不一定正确;而类比推理的结果具有猜测性,不一定可靠,因此不一定正确.
2.合情推理

1.判断(正确的打“√”,错误的打“×”)
(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理.(  )
(2)类比推理得到的结论可以作为定理应用.(  )
(3)由个别到一般的推理为归纳推理.(  )
答案:(1)√ (2)× (3)√
2.由“若a>b,则a+c>b+c”得到“若a>b,则ac>bc”采用的是(  )
A.归纳推理       B.演绎推理
C.类比推理 D.数学证明
答案:C
3.数列5,9,17,33,x,…中的x等于________.
答案:65
归纳推理在数、式中的应用
[典例] (1)观察下列各式:
a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=(  )
A.28        B.76
C.123 D.199
(2)已知f(x)=,设f1(x)=f(x),fn(x)=fn-1(fn-1(x))(n>1,且n∈N*),则f3(x)的表达式为________,猜想fn(x)(n∈N*)的表达式为________.
[解析] (1)利用归纳法:a+b=1,a2+b2=3,a3+b3=3+1=4,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.
(2)∵f(x)=,∴f1(x)=.
又∵fn(x)=fn-1(fn-1(x)),
∴f2(x)=f1(f1(x))==,
f3(x)=f2(f2(x))==,
f4(x)=f3(f3(x))==,
f5(x)=f4(f4(x))==,
∴根据前几项可以猜想fn(x)=.
[答案] (1)C (2)f3(x)= fn(x)=
1.已知等式或不等式进行归纳推理的方法
(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;
(2)要特别注意所给几个等式(或不等式)中结构形式的特征;
(3)提炼出等式(或不等式)的综合特点;
(4)运用归纳推理得出一般结论.
2.数列中的归纳推理
在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.
(1)通过已知条件求出数列的前几项或前n项和;
(2)根据数列中的前几项或前n项和与对应序号之间的关系求解;
(3)运用归纳推理写出数列的通项公式或前n项和公式.    
  [活学活用]
1.观察下列等式:
-2+-2=×1×2;
-2+-2+-2+-2=×2×3;
-2+-2+-2+…+-2=×3×4;
-2+-2+-2+…+-2=×4×5;
……
照此规律,
-2+-2+-2+…+-2=________.
解析:通过观察已给出等式的特点,可知等式右边的是个固定数,后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,后面第二个数是第一个数的下一个自然数,所以,所求结果为×n×(n+1),即n(n+1).
答案:n(n+1)
2.已知数列{an}的前n项和为Sn,a1=3,满足Sn=6-2an+1(n∈N*).
(1)求a2,a3,a4的值.
(2)猜想an的表达式.
解:(1)因为a1=3,且Sn=6-2an+1(n∈N*),
所以S1=6-2a2=a1=3,解得a2=,
又S2=6-2a3=a1+a2=3+,解得a3=,
又S3=6-2a4=a1+a2+a3=3++,
解得a4=.
(2)由(1)知a1=3=,a2==,a3==,
a4==,…,猜想an=(n∈N*).
归纳推理在几何中的应用
[典例] 有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是(  )
A.26 B.31
C.32 D.36
[解析] 有菱形纹的正六边形个数如下表:
图案
1
2
3

个数
6
11
16

由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.
[答案] B
利用归纳推理解决几何问题的两个策略
(1)通项公式法:数清所给图形中研究对象的个数,列成数列,观察所得数列的前几项,探讨其变化规律,归纳猜想通项公式.
(2)递推公式法:探究后一个图形与前一个图形中研究对象的个数之间的关系,把各图形中研究对象的个数看成数列,列出递推公式,再求通项公式.     
[活学活用]
1.用火柴棒摆“金鱼”,如图所示:
按照上面的规律,第n个“金鱼”图需要火柴棒的根数为(  )
A.6n-2          B.8n-2
C.6n+2 D.8n+2
解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,所以第n个“金鱼”图需要的火柴棒的根数为an=6n+2.
2.(陕西高考)观察分析下表中的数据:
多面体
面数(F)
顶点数(V)
棱数(E)
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
猜想一般凸多面体中F,V,E所满足的等式是________.
解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.
答案:F+V-E=2
类比推理的应用
[典例] 如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.
[解] 如图所示,在四面体P-ABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.
1.类比推理的步骤
(1)找出两类对象之间可以确切表述的相似性(或一致性).
(2)用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.
(3)检验这个猜想.
2.平面图形与空间图形类比如下
平面图形
空间图形

线
线



三角形
四面体
线线角
二面角
边长
面积
周长
表面积
面积
体积


    
[活学活用]
1.在△ABC中,D为BC的中点,则=(+),将命题类比到四面体中去,得到一个命题为:______________________________________.
解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.
答案:在四面体A-BCD中,G是△BCD的重心,则AG―→=(++)
2.在Rt△ABC中,若∠C=90°,则cos2A+cos2B=1,在空间中,给出四面体性质的猜想.
解:如图,在Rt△ABC中,
cos2A+cos2 B=2+2==1.
于是把结论类比到四面体P-A′B′C′中,我们猜想,三棱锥P-A′B′C′中,若三个侧面PA′B′,PB′C′,PC′A′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.
层级一 学业水平达标
1.观察图形规律,在其右下角的空格内画上合适的图形为(  )
A.         B.△
C. D.○
解析:选A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.
2.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).
A.①② B.①③④
C.①②④ D.②④
解析:选C ①是类比推理;②④是归纳推理,∴①②④都是合情推理.
3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为(  )
A.1∶2 B.1∶4
C.1∶8 D.1∶16
解析:选C 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.
4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:
①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是(  )
A.①② B.②③
C.③④ D.①④
解析:选B 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论.
5.观察下列各等式:+=2,+=2,+=2,+=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.+=2
B.+=2
C.+=2
D.+=2
解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.
6.观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第n个等式为________.
解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n-1,故第n行等式左边的数依次是n,n+1,n+2,…,(3n-2);每一个等式右边的数为等式左边加数个数的平方,从而第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
7.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.
解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.
答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大
8.如图(甲)是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,…,OAn,…的长度构成数列{an},则此数列{an}的通项公式为an=__________.
解析:根据OA1=A1A2=A2A3=…=A7A8=1和图(乙)中的各直角三角形,由勾股定理,可得a1=OA1=1,a2=OA2===,a3=OA3===,…,故可归纳推测出an=.
答案:
9.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n边形有几条对角线?
解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n边形的对角线条数比凸(n-1)边形多(n-2)条对角线,由此凸n边形的对角线条数为2+3+4+5+…+(n-2),由等差数列求和公式可得n(n-3)(n≥4,n∈N*).
所以凸n边形的对角线条数为n(n-3)(n≥4,n∈N*).
10.已知f(x)=,分别求f(0)+f(1) ,f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论.
解:f(x)=,
所以f(0)+f(1)=+=,
f(-1)+f(2)=+=,
f(-2)+f(3)=+=.
归纳猜想一般性结论;f(-x)+f(x+1)=.
证明如下:f(-x)+f(x+1)=+
=+=+
===.
层级二 应试能力达标
1.由代数式的乘法法则类比得到向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt?m=x”类比得到“p≠0,a·p=x·p?a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
其中类比结论正确的个数是(  )
A.1            B.2
C.3 D.4
解析:选B 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B.
2.类比三角形中的性质:
(1)两边之和大于第三边;
(2)中位线长等于底边长的一半;
(3)三内角平分线交于一点.
可得四面体的对应性质:
(1)任意三个面的面积之和大于第四个面的面积;
(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的;
(3)四面体的六个二面角的平分面交于一点.
其中类比推理方法正确的有(  )
A.(1) B.(1)(2)
C.(1)(2)(3) D.都不对
解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.
3.观察下列式子:1+<,1++<,1+++<,…,根据以上式子可以猜想:1+++…+<(  )
A. B.
C. D.
解析:选C 观察可以发现,第n(n≥2)个不等式左端有n+1项,分子为1,分母依次为12,22,32,…,(n+1)2;右端分母为n+1,分子成等差数列,首项为3,公差为2,因此第n个不等式为1+++…+<,所以当n=2 016时不等式为:1+++…+<.
4.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体P-ABC的体积为V,则r=(  )
A. B.
C. D.
解析:选C 将△ABC的三条边长a,b,c类比到四面体P-ABC的四个面面积S1,S2,S3,S4,将三角形面积公式中系数,类比到三棱锥体积公式中系数,从而可知选C.证明如下:以四面体各面为底,内切球心O为顶点的各三棱锥体积的和为V,∴V=S1r+S2r+S3r+S4r,∴r=.
5.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为____________.
解析:每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).
答案:S=4(n-1)(n≥2)
6.可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k,那么甲的面积是乙的面积的k倍.你可以从给出的简单图形①、②中体会这个原理.现在图③中的两个曲线的方程分别是+=1(a>b>0)与x2+y2=a2,运用上面的原理,图③中椭圆的面积为______________.
解析:由于椭圆与圆截y轴所得线段之比为,
即k=,∴椭圆面积S=πa2·=πab.
答案:πab
7.观察下列两个等式:
①sin210°+cos240°+sin 10°cos 40°=①;
②sin26°+cos236°+sin 6°cos 36°=②.
由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想.
解:由①②知若两角差为30°,则它们的相关形式的函数运算式的值均为.
猜想:若β-α=30°,则β=30°+α,sin2α+cos2(α+30°)+sin αcos(α+30°)=.下面进行证明:
左边=sin2α+cos(α+30°)[cos(α+30°)+sin α]
=sin2α+
=sin2α+cos2α-sin2α==右边.
所以,猜想是正确的.
故sin2α+cos2(α+30°)+sin αcos(α+30°)=.
8.已知在Rt△ABC中,AB⊥AC,AD⊥BC于点D,有=+成立.那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.
解:猜想:类比AB⊥AC,AD⊥BC,可以猜想四面体A-BCD中,AB,AC,AD两两垂直,AE⊥平面BCD.则=++.
下面证明上述猜想成立
如图所示,连接BE,并延长交CD于点F,连接AF.
∵AB⊥AC,AB⊥AD,
AC∩AD=A,
∴AB⊥平面ACD.
而AF?平面ACD,∴AB⊥AF.
在Rt△ABF中,AE⊥BF,
∴=+.
在Rt△ACD中,AF⊥CD,
∴=+.
∴=++,故猜想正确.
2.1.2 演绎推理
预习课本P78~81,思考并完成下列问题
(1)什么是演绎推理?它有什么特点?
 
 
 
(2)什么是三段论?一般模式是什么?
 
 
 
 
(3)合情推理与演绎推理有什么区别与联系?
 
[新知初探]
1.演绎推理
(1)概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
(2)特点:演绎推理是从一般到特殊的推理.
(3)模式:三段论.
2.三段论
“三段论”是演绎推理的一般模式,包括:
“三段论”的结论
①大前提——已知的一般原理;
②小前提——所研究的特殊情况;
③结论——根据一般原理,对特殊情况做出的判断
“三段论”的表示
①大前提:M是P;
②小前提:S是M;
③结论:S是P
[点睛] 用集合的观点理解三段论
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)“三段论”就是演绎推理.(  )
(2)演绎推理的结论是一定正确的.(  )
(3)演绎推理是由特殊到一般再到特殊的推理.(  )
答案:(1)× (2)× (3)×
2.平行于同一直线的两直线平行,因为a∥b,b∥c,所以a∥c,这个推理称为(  )
A.合情推理  B.归纳推理 
C.类比推理  D.演绎推理
答案:D
3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理中“三段论”中的__________是错误的.
答案:小前提
把演绎推理写成三段论的形式
[典例] 将下列推理写成“三段论”的形式:
(1)向量是既有大小又有方向的量,故零向量也有大小和方向;
(2)0.33是有理数;
(3)y=sin x(x∈R)是周期函数.
[解] (1)大前提:向量是既有大小又有方向的量.
小前提:零向量是向量.
结论:零向量也有大小和方向.
(2)大前提:所有的循环小数都是有理数.
小前提:0.33是循环小数.
结论:0.33是有理数.
(3)大前提:三角函数是周期函数.
小前提:y=sin x(x∈R)是三角函数.
结论:y=sin x(x∈R)是周期函数.
用三段论写推理过程的技巧
(1)关键:用三段论写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般原理,小前提提供了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.
(2)何时省略:有时可省略小前提,有时甚至也可将大前提、小前提都省略.
(3)如何寻找:在寻找大前提时可找一个使结论成立的充分条件作大前提. 
 [活学活用]
下面四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数
B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数
解析:选B 对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式.
演绎推理在几何中的应用
[典例] 如图所示,D,E,F分别是BC,CA,AB边上的点,∠BFD=∠A,DE∥BA,求证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提)
∠BFD和∠A是同位角,且∠BFD=∠A,(小前提)
所以DF∥AE.(结论)
(2)两组对边分别平行的四边形是平行四边形,(大前提)
DE∥BA且DF∥EA,(小前提)
所以四边形AFDE为平行四边形.(结论)
(3)平行四边形的对边相等,(大前提)
DE和AF为平行四边形的对边,(小前提)
所以ED=AF.(结论)
几何证明中应用演绎推理的两个关注点
(1)大前提的正确性:几何证明往往采用演绎推理,它往往不是经过一次推理就能完成的,常需要几次使用演绎推理,每一个推理都暗含着大、小前提,前一个推理的结论往往是下一个推理的前提,在使用时不仅要推理的形式正确,还要前提正确,才能得到正确的结论.
(2)大前提可省略:在几何证明问题中,每一步都包含着一般原理,都可以分析出大前提和小前提,将一般原理应用于特殊情况,就能得出相应结论.
提醒:在应用“三段论”进行推理的过程中,大前提、小前提或推理形式之一错误,都可能导致结论错误. 
[活学活用]
如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.
证明:三角形的中位线平行于底边,大前提
点E,F分别是AB,AD的中点,小前提
所以EF∥BD.结论
若平面外一条直线平行于平面内一条直线,
则这条直线与此平面平行,大前提
EF?平面BCD,BD?平面BCD,EF∥BD,小前提
所以EF∥平面BCD.结论
演绎推理在代数中的应用
[典例] 已知函数f(x)=ax+(a>1),求证:函数f(x)在(-1,+∞)上为增函数.
[证明] 对于任意x1,x2∈(-1,+∞),且x1<x2,若f(x1)<f(x2),则y=f(x)在(-1,+∞)上是增函数.(大前提)
设x1,x2∈(-1,+∞),且x1<x2,
则f(x1)-f(x2)=ax1+-ax2-
=ax1-ax2+-
=ax1-ax2+,
∵a>1,且x1<x2,∴ax1<ax2,x1-x2<0.
又∵x1>-1,x2>-1,∴(x1+1)(x2+1)>0.
∴f(x1)-f(x2)<0,即f(x1)<f(x2).(小前提)
∴函数f(x)在(-1,+∞)上为增函数.(结论)
应用演绎推理解决的代数问题
(1)函数类问题:比如函数的单调性、奇偶性、周期性和对称性等.
(2)导数的应用:利用导数研究函数的单调区间,求函数的极值和最值,证明与函数有关的不等式等.
(3)三角函数的图象与性质.
(4)数列的通项公式、递推公式以及求和,数列的性质.
(5)不等式的证明. 
[活学活用]
已知函数f(x)=x2-aln x在区间[1,2]内是增函数,g(x)=x-a在区间(0,1]内是减函数,则a=______.
解析:f′(x)=2x-,依题意f′(x)≥0,x∈[1,2],
即a≤2x2,x∈[1,2].
因为上式恒成立,所以a≤2.①
又g′(x)=1-,
依题意g′(x)≤0,x∈(0,1],
即a≥2,x∈(0,1].
因为上式恒成立,所以a≥2.②
由①②得a=2.
答案:2
层级一 学业水平达标
1.下面说法:
①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.
其中正确的有(  )
A.1个           B.2个
C.3个 D.4个
解析:选C ①③④都正确.
2.若三角形两边相等,则该两边所对的内角相等,在△ABC中,AB=AC,所以在△ABC中,∠B=∠C,以上推理运用的规则是(  )
A.三段论推理 B.假言推理
C.关系推理 D.完全归纳推理
解析:选A ∵三角形两边相等,则该两边所对的内角相等(大前提),在△ABC中,AB=AC,(小前提),∴在△ABC中,∠B=∠C(结论),符合三段论推理规则,故选A.
3.推理过程“大前提:__________,小前提:四边形ABCD是矩形.结论:四边形ABCD的对角线相等.”应补充的大前提是(  )
A.正方形的对角线相等
B.矩形的对角线相等
C.等腰梯形的对角线相等
D.矩形的对边平行且相等
解析:选B 由三段论的一般模式知应选B.
4.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在(  )
A.大前提 B.小前提
C.推理过程 D.没有出错
解析:选A 要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确.因为任何实数的平方都大于0,又因为a是实数,所以a2>0,其中大前提是:任何实数的平方都大于0,它是不正确的.
5.在证明f(x)=2x+1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f(x)=2x+1满足增函数的定义是大前提;④函数f(x)=2x+1满足增函数的定义是小前提.其中正确的命题是(  )
A.①④ B.②④
C.①③ D.②③
解析:选A 根据三段论特点,过程应为:大前提是增函数的定义;小前提是f(x)=2x+1满足增函数的定义;结论是f(x)=2x+1为增函数,故①④正确.
6.求函数y= 的定义域时,第一步推理中大前提是有意义时,a≥0,小前提是  有意义,结论是____________.
解析:由三段论方法知应为log2x-2≥0.
答案:log2x-2≥0
7.某一三段论推理,其前提之一为肯定判断,结论为否定判断,由此可以推断,该三段论的另一前提必为________判断.
解析:根据三段论的特点,三段论的另一前提必为否定判断.
答案:否定
8.函数y=2x+5的图象是一条直线,用三段论表示为:
大前提:_______________________________________________________________.
小前提:___________________________________________________________________.
结论:_____________________________________________________________.
解析:本题忽略了大前提和小前提.大前提为:一次函数的图象是一条直线.小前提为:函数y=2x+5为一次函数.结论为:函数y=2x+5的图象是一条直线.
答案:①一次函数的图象是一条直线 ②y=2x+5是一次函数 ③函数y=2x+5的图象是一条直线
9.将下列演绎推理写成三段论的形式.
(1)菱形的对角线互相平分.
(2)奇数不能被2整除,75是奇数,所以75不能被2整除.
解:(1)平行四边形的对角线互相平分(大前提);
菱形是平行四边形(小前提);
菱形的对角线互相平分(结论).
(2)一切奇数都不能被2整除(大前提);
75是奇数(小前提);
75不能被2整除(结论).
10.下面给出判断函数f(x)=的奇偶性的解题过程:
解:由于x∈R,且=·
===-1.
∴f(-x)=-f(x),故函数f(x)为奇函数.
试用三段论加以分析.
解:判断奇偶性的大前提“若x∈R,且f(-x)=-f(x),则函数f(x)是奇函数;若x∈R,且f(-x)=f(x),则函数f(x)是偶函数”.在解题过程中往往不用写出来,上述证明过程就省略了大前提.解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(-x)=-f(x).层级二 应试能力达标
1.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是(  )
A.类比推理       B.归纳推理
C.演绎推理 D.一次三段论
解析:选C 这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.
2.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为(  )
A.大前提错误 B.小前提错误
C.推理形式错误 D.非以上错误
解析:选C 用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.
3.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是点B,D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的(  )
A.AC⊥β
B.AC⊥EF
C.AC与BD在β内的射影在同一条直线上
D.AC与α,β所成的角相等
解析:选D 只要能推出EF⊥AC即可说明BD⊥EF.当AC与α,β所成的角相等时,推不出EF⊥AC,故选D.
4.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,则必有(  )
A.bf(a)<af(b) B.af(b)<bf(a)
C.af(a)<f(b) D.bf(b)<f(a)
解析:选B 构造函数F(x)=xf(x),
则F′(x)=xf′(x)+f(x).
由题设条件知F(x)=xf(x)在(0,+∞)上单调递减.
若a<b,则F(a)>F(b),即af(a)>bf(b).
又f(x)是定义在(0,+∞)上的非负可导函数,
所以bf(a)>af(a)>bf(b)>af(b).故选B.
5.已知函数f(x)=a-,若f(x)为奇函数,则a=________.
解析:因为奇函数f(x)在x=0处有定义且f(0)=0(大前提),而奇函数f(x)=a-的定义域为R(小前提),所以f(0)=a-=0(结论).解得a=.
答案:
6.已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1)给出以下三个结论:
(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正确结论为________.
解析:由条件可知,
因为f(m,n+1)=f(m,n)+2,且f(1,1)=1,
所以f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=
f(1,1)+8=9.
又因为f(m+1,1)=2f(m,1),
所以f(5,1)=2f(4,1)=22f(3,1)=23f(2,1)
=24f(1,1)=16,
所以f(5,6)=f(5,1)+10=24f(1,1)+10=26.
故(1)(2)(3)均正确.
答案:(1)(2)(3)
7.已知y=f(x)在(0,+∞)上有意义、单调递增且满足f(2)=1,f(xy)=f(x)+f(y).
(1)求证:f(x2)=2f(x);
(2)求f(1)的值;
(3)若f(x)+f(x+3)≤2,求x的取值范围.
解:(1)证明:∵f(xy)=f(x)+f(y),(大前提)
∴f(x2)=f(x·x)=f(x)+f(x)=2f(x).(结论)
(2)∵f(1)=f(12)=2f(1),(小前提)
∴f(1)=0.(结论)
(3)∵f(x)+f(x+3)=f(x(x+3))≤2=2f(2)
=f(4),(小前提)
函数f(x)在(0,+∞)上单调递增,(大前提)
∴
解得0<x≤1.(结论)
8.已知a,b,m均为正实数,b<a,用三段论形式证明<.
证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)
b<a,m>0,(小前提)
所以mb<ma.(结论)
因为不等式两边同加上一个数,不等号不改变方向,(大前提)
mb<ma,(小前提)
所以mb+ab<ma+ab,即b(a+m)<a(b+m).(结论)
因为不等式两边同除以一个正数,不等号不改变方向,(大前提)
b(a+m)<a(b+m),a(a+m)>0,(小前提)
所以<,即<.(结论)
2.2.1 综合法和分析法
预习课本P85~89,思考并完成下列问题
(1)综合法的定义是什么?有什么特点?
 
 
(2)综合法的推证过程是什么?
 
 
(3)分析法的定义是什么?有什么特点?
 
 
(4)分析法与综合法有什么区别和联系?
 
 
[新知初探]
1.综合法
定义
推证过程
特点
利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法
→→→…→(P表示已知条件,已有的定义、公理、定理等,Q表示所要证明的结论).
顺推证法或由因导果法
2.分析法
定义
框图表示
特点
从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法
→
→→…→

逆推
证法
或执
果索
因法
3.综合法、分析法的区别
综合法
分析法
推理方向
顺推,由因导果
倒溯,执果索因
解题思路
探路较难,易生枝节
容易探路,利于思考
表述形式
形式简洁,条理清晰
叙述繁琐,易出错
思考的侧重点
侧重于已知条件提供的信息
侧重于结论提供的信息
[点睛] 一般来说,分析法解题方向明确,利于寻求解题思路;而综合法解题条理清晰,宜于表述.因此在解决问题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)综合法是执果索因的逆推证法.(  )
(2)分析法就是从结论推向已知.(  )
(3)所有证明的题目均可使用分析法证明.(  )
答案:(1)× (2)× (3)×
2.若a>b>0,则下列不等式中不正确的是(  )
A.a2>ab       B.ab>b2
C.> D.a2>b2
答案:C
3.欲证-<-成立,只需证(  )
A.(-)2<(-)2
B.(-)2<(-)2
C.(+)2<(+)2
D.(--)2<(-)2
答案:C
4.如果a>b,则实数a,b应满足的条件是________.
答案:a>b>0
综合法的应用
[典例] 在△ABC中,三边a,b,c成等比数列.求证:acos2 +ccos2 ≥b.
[证明] ∵a,b,c成等比数列,∴b2=ac.
∵左边=+
=(a+c)+(acos C+ccos A)
=(a+c)+
=(a+c)+b≥+=b+=b=右边,
∴acos2+ccos2 ≥b.
当且仅当a=c时等号成立.
综合法的解题步骤
[活学活用]
1.已知a,b,c,d∈R,求证:(ac+bd)2≤(a2+b2)(c2+d2).
证明:∵左边=a2c2+2abcd+b2d2
≤a2c2+(a2d2+b2c2)+b2d2
=(a2+b2)(c2+d2)=右边,
∴(ac+bd)2≤(a2+b2)(c2+d2).
2.设数列{an}满足a1=0,-=1.
(1)求{an}的通项公式;
(2)设bn=,Sn=b1+b2+…+bn,证明:Sn<1.
解:(1)∵-=1,
∴是公差为1的等差数列.
又∵=1,∴=n,an=1-.
(2)证明:由(1)得
bn===-,
∴Sn=b1+b2+…+bn=1-+-+…+-=1-<1.
∴Sn<1.
分析法的应用
[典例] 设a,b为实数,求证: ≥(a+b).
[证明] 当a+b≤0时,∵ ≥0,
∴≥(a+b)成立.
当a+b>0时,
用分析法证明如下:要证 ≥(a+b),
只需证()2≥2.
即证a2+b2≥(a2+b2+2ab),即证a2+b2≥2ab.
∵a2+b2≥2ab对一切实数恒成立,
∴ ≥(a+b)成立.综上所述,不等式得证.
分析法证明不等式的依据、方法与技巧
(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;
(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;
(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;
(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.
[活学活用]
已知a,b,c都为正实数,求证: ≥.
证明:要证 ≥,
只需证≥2,
只需证3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac,
只需证2(a2+b2+c2)≥2ab+2bc+2ac,
只需证(a-b)2+(b-c)2+(c-a)2≥0,而这是显然成立的,所以 ≥成立.
分析法与综合法的综合应用
[典例] 已知a,b,c是不全相等的正数,且0<x<1.
求证:logx+logx+logx<logxa+logxb+logxc.
[证明] 要证明logx+logx+logx
<logxa+logxb+logxc,
只需要证明logx<logx(abc),
由已知0<x<1,只需证明··>abc,
由公式≥>0,≥>0,
≥>0.又∵a,b,c是不全相等的正数,
∴··> =abc.
即··>abc成立.
∴logx+logx+logx<logxa+logxb+logxc成立.
分析综合法的应用
综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.
[活学活用]
已知△ABC的三个内角A,B,C成等差数列,a,b,c为三个内角对应的边长,求证:+=.
证明:要证+=,
即证+=3,即证+=1.
即证c(b+c)+a(a+b)=(a+b)(b+c),
即证c2+a2=ac+b2.
∵△ABC三个内角A,B,C成等差数列.
∴B=60°.
由余弦定理,有b2=c2+a2-2cacos 60°,
即b2=c2+a2-ac.
∴c2+a2=ac+b2成立,命题得证.
层级一 学业水平达标
1.要证明+<+(a≥0)可选择的方法有多种,其中最合理的是(  )
A.综合法       B.类比法
C.分析法 D.归纳法
解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.
2.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ ”,其过程应用了(  )
A.分析法
B.综合法
C.综合法、分析法综合使用
D.间接证法
解析:选B 结合分析法及综合法的定义可知B正确.
3.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足什么条件(  )
A.a2<b2+c2 B.a2=b2+c2
C.a2>b2+c2 D.a2≤b2+c2
解析:选C 由cos A=<0,得b2+c2<a2.
4.若a=,b=,c=,则(  )
A.a<b<c B.c<b<a
C.c<a<b D.b<a<c
解析:选C 利用函数单调性.设f(x)=,则f′(x)=,∴0<x<e时,f′(x)>0,f(x)单调递增;x>e时,f′(x)<0,f(x)单调递减.又a=,∴b>a>c.
5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
解析:选A 由f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
可知f(x)是R上的单调递减函数,
由x1+x2>0,可知x1>-x2,f(x1)6.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x取导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.
解析:该证明过程符合综合法的特点.
答案:综合法
7.如果a+b>a+b,则正数a,b应满足的条件是________.
解析:∵a+b-(a+b)
=a(-)+b(-)=(-)(a-b)
=(-)2(+).
∴只要a≠b,就有a+b>a+b.
答案:a≠b
8.若不等式(-1)na<2+对任意正整数n恒成立,则实数a的取值范围是________.
解析:当n为偶数时,a<2-,而2-≥2-=,所以a<,当n为奇数时,a>-2-,而-2-<-2,所以a≥-2.综上可得,-2≤a<.
答案:
9.求证:2cos(α-β)-=.
证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,①
因为①左边=2cos(α-β)sin α-sin[(α-β)+α]
=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α
=cos(α-β)sin α-sin(α-β)cos α
=sin β.
所以①成立,所以原等式成立.
10.已知数列{an}的首项a1=5,Sn+1=2Sn+n+5,(n∈N*).
(1)证明数列{an+1}是等比数列.
(2)求an.
解:(1)证明:由条件得Sn=2Sn-1+(n-1)+5(n≥2)①
又Sn+1=2Sn+n+5,②
②-①得an+1=2an+1(n≥2),
所以===2.
又n=1时,S2=2S1+1+5,且a1=5,
所以a2=11,
所以==2,
所以数列{an+1}是以2为公比的等比数列.
(2)因为a1+1=6,
所以an+1=6×2n-1=3×2n,
所以an=3×2n-1.
层级二 应试能力达标
1.使不等式<成立的条件是(  )
A.a>b       B.a<b
C.a>b且ab<0 D.a>b且ab>0
解析:选D 要使<,须使-<0,即<0.
若a>b,则b-a<0,ab>0;若a<b,则b-a>0,ab<0.
2.对任意的锐角α,β,下列不等式中正确的是(  )
A.sin(α+β)>sin α+sin β
B.sin(α+β)>cos α+cos β
C.cos(α+β)>sin α+sin β
D.cos(α+β)<cos α+cos β
解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).
3.若两个正实数x,y满足+=1,且不等式x+<m2-3m有解,则实数m的取值范围是(  )
A.(-1,4) B.(-∞,-1)∪(4,+∞)
C.(-4,1) D.(-∞,0)∪(3,+∞)
解析:选B ∵x>0,y>0,+=1,∴x+==2++≥2+2=4,等号在y=4x,即x=2,y=8时成立,∴x+的最小值为4,要使不等式m2-3m>x+有解,应有m2-3m>4,∴m<-1或m>4,故选B.
4.下列不等式不成立的是(  )
A.a2+b2+c2≥ab+bc+ca
B.+>(a>0,b>0)
C.-<-(a≥3)
D.+>2
解析:选D 对A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab+bc+ca;对B,∵(+)2=a+b+2,()2=a+b,∴+>;对C,要证 -<-(a≥3)成立,只需证明+<+,两边平方得2a-3+2<2a-3+2,即<,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(+)2-(2)2=12+4-24=4(-3)<0,∴+<2,故D错误.
5.已知函数f(x)=2x,a,b为正实数,A=f,B=f(),C=f,则A,B,C的大小关系是________.
解析:∵≥(a,b为正实数),≤,且f(x)=2x是增函数,∴f≤f()≤f,即C≤B≤A.
答案:C≤B≤A
6.如图所示,四棱柱ABCD- A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).
解析:要证BD⊥A1C,只需证BD⊥平面AA1C.
因为AA1⊥BD,只要再添加条件AC⊥BD,
即可证明BD⊥平面AA1C,从而有BD⊥A1C.
答案:AC⊥BD(答案不唯一)
7.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+cos C.
证明:在锐角三角形ABC中,∵A+B>,∴A>-B.
∴0<-B<A<,
又∵在内正弦函数y=sin x是单调递增函数,
∴sin A>sin=cos B,
即sin A>cos B.①
同理sin B>cos C,②
sin C>cos A.③
由①+②+③,得:
sin A+sin B+sin C>cos A+cos B+cos C.
8.已知n∈N,且n>1,求证:logn(n+1)>logn+1(n+2).
证明:要证明logn(n+1)>logn+1(n+2),
即证明logn(n+1)-logn+1(n+2)>0.(*)
∵logn(n+1)-logn+1(n+2)=-logn+1(n+2)
=.
又∵当n>1时,logn+1n>0,
且logn+1(n+2)>0,logn+1n≠logn+1(n+2),
∴logn+1n·logn+1(n+2)<[logn+1n+logn+1(n+2)]2=log[n(n+2)]=log(n2+2n)<log(n+1)2=1,
故1-logn+1n·logn+1(n+2)>0,
∴>0.
这说明(*)式成立,∴logn(n+1)>logn+1(n+2).
2.2.2 反证法
预习课本P89~91,思考并完成下列问题
(1)反证法的定义是什么?有什么特点?
 
 
(2)利用反证法证题的关键是什么?步骤是什么?
 
 
    [新知初探]
反证法的定义及证题的关键
[点睛] 对反证法概念的理解
(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.
(2)反证法属“间接解题方法”.
2.“反证法”和“证逆否命题”的区别与联系
(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.
(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)反证法属于间接证明问题的方法.(  )
(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.(  )
(3)反证法的实质是否定结论导出矛盾.(  )
答案:(1)√ (2)× (3)√
2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用(  )
①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论
A.①②         B.①②④
C.①②③ D.②③
答案:C
3.如果两个实数之和为正数,则这两个数(  )
A.一个是正数,一个是负数
B.两个都是正数
C.至少有一个正数
D.两个都是负数
答案:C
4.用反证法证明“如果a>b,那么> ”,假设的内容应是________.
答案:≤
用反证法证明否定性命题
[典例] 已知三个正数a,b,c成等比数列,但不成等差数列.求证:,,不成等差数列.
[证明] 假设,,成等差数列,则+=2,
即a+c+2=4b.
∵a,b,c成等比数列,∴b2=ac,即b=,
∴a+c+2=4,∴(-)2=0,即=.
从而a=b=c,与a,b,c不成等差数列矛盾,
故,,不成等差数列.
1.用反证法证明否定性命题的适用类型
结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.
2.用反证法证明数学命题的步骤
    
[活学活用]
已知f(x)=ax+(a>1),证明方程f(x)=0没有负数根.
证明:假设x0是f(x)=0的负数根,
则x0<0且x0≠-1,且ax0=-,
由0<ax0<1?0<-<1,
解得<x0<2,这与x0<0矛盾,所以假设不成立,
故方程f(x)=0没有负数根.
用反证法证明“至多”“至少”问题
[典例] 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.
[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:
?
这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.
[一题多变]
1.[变条件,变设问]将本题改为:已知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围?
解:若方程没有一个有实根,则
解得
故三个方程至少有一个方程有实根,实数a的取值范围是.
2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围.
解:假设三个方程都有实数根,则

即
解得
即a∈?.
所以实数a的取值范围为实数R.
3.[变条件,变设问]已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
证明:假设a≥0,b≥0,c≥0,d≥0.
∵a+b=c+d=1,
∴(a+b)(c+d)=1,
∴ac+bd+bc+ad=1.
而ac+bd+bc+ad>ac+bd>1,与上式矛盾,
∴假设不成立,
∴a,b,c,d中至少有一个是负数.
用反证法证明“至多”“至少”等问题的两个关注点
(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.
(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.    
用反证法证明唯一性命题
[典例] 求证:两条相交直线有且只有一个交点.
[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.
若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.
若直线a,b不只有一个交点,则至少有两个交点A和B,
这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.
综上所述,两条相交直线有且只有一个交点.
巧用反证法证明唯一性命题
(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.
(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.
(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性. 
[活学活用]
求证:过直线外一点只有一条直线与它平行.
证明:已知:直线b∥a,A?a,A∈b,
求证:直线b唯一.
假设过点A还有一条直线b′∥a.
根据平行公理,∵b∥a,∴b∥b′,
与b∩b′=A矛盾,∴假设不成立,原命题成立.
层级一 学业水平达标
1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.
则正确的序号顺序为(  )
A.①②③         B.③①②
C.①③② D.②③①
解析:选B 根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.
2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为(  )
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不都能被5整除
D.a不能被5整除
解析:选B “至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.
3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是(  )
A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角
解析:选B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.
4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为(  )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.
5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a>b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.
6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.
答案:自然数a,b,c中至少有两个偶数或都是奇数
7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.
解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.
答案:a≠1或b≠1
8.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.
解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB?α,CD?α,这与AB,CD异面相矛盾,故AC与BD异面.
答案:异面
9.求证:1,,2不能为同一等差数列的三项.
证明:假设1,,2是某一等差数列的三项,设这一等差数列的公差为d,
则1=-md,2=+nd,其中m,n为两个正整数,
由上面两式消去d,得n+2m=(n+m).
因为n+2m为有理数,而(n+m)为无理数,
所以n+2m≠(n+m),矛盾,因此假设不成立,
即1,,2不能为同一等差数列的三项.
10.已知函数f(x)在R上是增函数,a,b∈R.
(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.
解:(1)证明:当a+b≥0时,a≥-b且b≥-a.
∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a),
∴f(a)+f(b)≥f(-a)+f(-b).
(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.
用反证法证明如下:
假设a+b<0,则a<-b,∴f(a)<f(-b).
同理可得f(b)<f(-a).
∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,
∴a+b≥0成立,即(1)中命题的逆命题成立.
层级二 应试能力达标
1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x的方程ax=b(a≠0)(  )
A.无解           B.有两解
C.至少有两解 D.无解或至少有两解
解析:选D “唯一”的否定是“至少两解或无解”.
2.下列四个命题中错误的是(  )
A.在△ABC中,若∠A=90°,则∠B一定是锐角
B.,,不可能成等差数列
C.在△ABC中,若a>b>c,则∠C>60°
D.若n为整数且n2为偶数,则n是偶数
解析:选C 显然A、B、D命题均真,C项中若a>b>c,则∠A>∠B>∠C,若∠C>60°,则∠A>60°,∠B>60°,∴∠A+∠B+∠C>180°与∠A+∠B+∠C=180°矛盾,故选C.
3.设a,b,c∈(-∞,0),则a+,b+,c+(  )
A.都不大于-2
B.都不小于-2
C.至少有一个不大于-2
D.至少有一个不小于-2
解析:选C 假设都大于-2,则a++b++c+>-6,但++=++≤-2+(-2)+(-2)=-6,矛盾.
4.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是(  )
A.钝角三角形 B.直角三角形
C.锐角三角形 D.不能确定
解析:选B 分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,若∠ADB为钝角,则∠ADC为锐角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,只有当∠ADB=∠ADC=∠BAC=时,才符合题意.
5.已知数列{an},{bn}的通项公式分别为an=an+2,bn=bn+1(a,b是常数,且a>b),那么这两个数列中序号与数值均对应相同的项有________个.
解析:假设存在序号和数值均相等的项,即存在n使得an=bn,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,所以不存在n使an=bn.
答案:0
6.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有
奇数=________=________=0.
但0≠奇数,这一矛盾说明p为偶数.
解析:据题目要求及解题步骤,
∵a1-1,a2-2,…,a7-7均为奇数,
∴(a1-1)+(a2-2)+…+(a7-7)也为奇数.
即(a1+a2+…+a7)-(1+2+…+7)为奇数.
又∵a1,a2,…,a7是1,2,…,7的一个排列,
∴a1+a2+…+a7=1+2+…+7,故上式为0,
所以奇数=(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=0.
答案:(a1-1)+(a2-2)+…+(a7-7)
(a1+a2+…+a7)-(1+2+…+7)
7.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于.
证明:假设(1-a)b,(1-b)c,(1-c)a都大于.
因为0<a<1,0<b<1,0<c<1,
所以1-a>0.由基本不等式,
得≥>=.
同理,>,>.
将这三个不等式两边分别相加,得
++>++,
即>,这是不成立的,
故(1-a)b,(1-b)c,(1-c)a不能都大于.
8.已知数列{an}满足:a1=,=,anan+1<0(n≥1);数列{bn}满足:bn=a-a(n≥1).
(1)求数列{an},{bn}的通项公式;
(2)证明:数列{bn}中的任意三项不可能成等差数列.
解:(1)由题意可知,1-a=(1-a).
令cn=1-a,则cn+1=cn.
又c1=1-a=,则数列{cn}是首项为c1=,公比为的等比数列,即cn=·n-1,
故1-a=·n-1?a=1-·n-1.
又a1=>0,anan+1<0,
故an=(-1)n-1 .
bn=a-a=-1-·n-1=·n-1.
(2)用反证法证明.
假设数列{bn}存在三项br,bs,bt(r<s<t)按某种顺序成等差数列,由于数列{bn}是首项为,公比为的等比数列,于是有br>bs>bt,则只可能有2bs=br+bt成立.
∴2··s-1=·r-1+·t-1,
两边同乘以3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.
由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{bn}中任意三项不可能成等差数列.
2.3 数学归纳法
预习课本P92~95,思考并完成下列问题
(1)数学归纳法的概念是什么?适用范围是什么?
 
 
 
(2)数学归纳法的证题步骤是什么?
 
 
[新知初探]
1.数学归纳法的定义
一般地,证明一个与正整数n有关的命题,可按下列步骤进行
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.
2.数学归纳法的框图表示
[点睛] 数学归纳法证题的三个关键点
(1)验证是基础
数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点.
(2)递推是关键
数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
(3)利用假设是核心
在第二步证明n=k+1成立时,一定要利用归纳假设,即必须把归纳假设“n=k时命题成立”作为条件来导出“n=k+1”,在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)与正整数n有关的数学命题的证明只能用数学归纳法.(  )
(2)数学归纳法的第一步n0的初始值一定为1.(  )
(3)数学归纳法的两个步骤缺一不可.(  )
答案:(1)× (2)× (3)√
2.如果命题p(n)对所有正偶数n都成立,则用数学归纳法证明时须先证n=________成立.
答案:2
3.已知f(n)=1+++…+(n∈N*),计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,由此推测,当n>2时,有______________.
答案:f(2n)>
用数学归纳法证明等式
[典例] 用数学归纳法证明:
++…+=(n∈N*).
[证明] (1)当n=1时,=成立.
(2)假设当n=k(n∈N*)时等式成立,即有
++…+=,
则当n=k+1时,++…++
=+
=,
即当n=k+1时等式也成立.
由(1)(2)可得对于任意的n∈N*等式都成立.
用数学归纳法证明恒等式应注意的三点
用数学归纳法证明恒等式时,一是弄清n取第一个值n0时等式两端项的情况;二是弄清从n=k到n=k+1等式两端增加了哪些项,减少了哪些项;三是证明n=k+1时结论也成立,要设法将待证式与归纳假设建立联系,并朝n=k+1证明目标的表达式变形. 
[活学活用]
求证:1-+-+…+-=++…+(n∈N*).
证明:(1)当n=1时,左边=1-=,
右边==,左边=右边.
(2)假设n=k(k∈N*)时等式成立,即1-+-+…+-=++…+,
则当n=k+1时,
+
=+
=++…++.
即当n=k+1时,等式也成立.
综合(1),(2)可知,对一切n∈N*,等式成立.
用数学归纳法证明不等式
[典例] 已知n∈N*,n>2,
求证:1+++…+ >.
[证明] (1)当n=3时,左边=1++,右边==2,左边>右边,不等式成立.
(2)假设当n=k(k∈N*,k≥3)时,不等式成立,
即1+++…+>.
当n=k+1时,
1+++…++ >+
== .
因为 >==,
所以1+++…++ >.
所以当n=k+1时,不等式也成立.
由(1),(2)知对一切n∈N*,n>2,不等式恒成立.
[一题多变]
1.[变条件,变设问]将本题中所要证明的不等式改为:
+++…+>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,+++>,不等式成立.
(2)假设当n=k(k≥2,k∈N*)时,命题成立.
即++…+>.
则当n=k+1时,++…++++=++…++++->+++->+3×-=.
所以当n=k+1时,不等式也成立.
由(1),(2)可知,原不等式对一切n≥2,n∈N*都成立.
2.[变条件,变设问]将本题中所要证明的不等式改为:
…>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,左边=1+=,右边=.
左边>右边,所以原不等式成立.
(2)假设当n=k(k≥2,k∈N*)时不等式成立,
即…>.
则当n=k+1时,
左边=…
>·
==>
==.
所以,当n=k+1时不等式也成立.
由(1)和(2)可知,对一切n≥2,n∈N*不等式都成立.
用数学归纳法证明不等式的四个关键
(1)验证第一个n的值时,要注意n0不一定为1,若n>k(k为正整数),则n0=k+1.
(2)证明不等式的第二步中,从n=k到n=k+1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设.
(3)用数学归纳法证明与n有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n取前n个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n值开始都成立的结论,常用数学归纳法证明.
(4)用数学归纳法证明不等式的关键是由n=k时成立得n=k+1时成立,主要方法有比较法、分析法、综合法、放缩法等.
归纳—猜想—证明
[典例] 考察下列各式
2=2×1
3×4=4×1×3
4×5×6=8×1×3×5
5×6×7×8=16×1×3×5×7
你能做出什么一般性的猜想?能证明你的猜想吗?
[解] 由题意得,2=2×1,3×4=4×1×3,4×5×6=8×1×3×5,5×6×7×8=16×1×3×5×7,…
猜想:(n+1)(n+2)(n+3)…2n=2n·1·3·5·…·(2n-1),
下面利用数学归纳法进行证明:
证明:(1)当n=1时,显然成立;
(2)假设当n=k时等式成立,即(k+1)(k+2)(k+3)…2k=2k·1·3·5·…·(2k-1),
那么当n=k+1时,
(k+1+1)(k+1+2)(k+1+3)·…·2(k+1)
=(k+1)(k+2)·…·2k·(2k+1)·2
=2k·1·3·5·…·(2k-1)(2k+1)·2
=2k+1·1·3·5·…·(2k+1)
=2k+1·1·3·5·…·[2(k+1)-1]
所以当n=k+1时等式成立.
根据(1)(2)可知对任意正整数等式均成立.
(1)“归纳—猜想—证明”的一般环节
(2)“归纳—猜想—证明”的主要题型
①已知数列的递推公式,求通项或前n项和.
②由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.
③给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n都成立的一般性命题.      
[活学活用]
数列{an}中,a1=1,a2=,且an+1=(n≥2),求a3,a4,猜想an的表达式,并加以证明.
解:∵a2=,且an+1=(n≥2),
∴a3===,a4===.
猜想:an=(n∈N*).
下面用数学归纳法证明猜想正确.
(1)当n=1,2易知猜想正确.
(2)假设当n=k(k≥2,k∈N*)时猜想正确,
即ak=.
当n=k+1时,
ak+1=
=
=
=
=
=
=
∴n=k+1时猜想也正确.
由(1)(2)可知,猜想对任意n∈N*都正确.
层级一 学业水平达标
1.设Sk=+++…+,则Sk+1为(  )
A.Sk+        B.Sk++
C.Sk+- D.Sk+-
解析:选C 因式子右边各分数的分母是连续正整数,则由Sk=++…+,①
得Sk+1=++…+++.②
由②-①,得Sk+1-Sk=+-
=-.故Sk+1=Sk+-.
2.利用数学归纳法证明不等式1+++…+<n(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了(  )
A.1项 B.k项
C.2k-1项 D.2k项
解析:选D 当n=k时,不等式左边的最后一项为,而当n=k+1时,最后一项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.
3.一个与正整数n有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则(  )
A.该命题对于n>2的自然数n都成立
B.该命题对于所有的正偶数都成立
C.该命题何时成立与k取值无关
D.以上答案都不对
解析:选B 由n=k时命题成立可推出n=k+2时命题也成立,又n=2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.
4.对于不等式 <n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时, <1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即 <k+1,则当n=k+1时,=<==(k+1)+1,
∴n=k+1时,不等式成立,则上述证法(  )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D.
5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为(  )
A.2 B.4
C.8 D.16
解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8.
6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.
解析:∵210=1 024>103,29=512<93,∴n0最小应为10.
答案:10
7.用数学归纳法证明++…+>-,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________________________.
解析:观察不等式中分母的变化便知.
答案:++…++>-
8.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.
解析:当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.
答案:5
9.已知n∈N*,求证1·22-2·32+…+(2n-1)·(2n)2-2n·(2n+1)2=-n(n+1)(4n+3).
证明:(1)当n=1时,左边=4-18=-14=-1×2×7=右边.
(2)假设当n=k(k∈N*,k≥1)时成立,即1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2=-k(k+1)(4k+3).
则当n=k+1时,
1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2+(2k+1)·(2k+2)2-(2k+2)·(2k+3)2
=-k(k+1)(4k+3)+(2k+2)[(2k+1)(2k+2)-(2k+3)2]
=-k(k+1)(4k+3)+2(k+1)·(-6k-7)=-(k+1)(k+2)(4k+7)
=-(k+1)·[(k+1)+1][4(k+1)+3],
即当n=k+1时成立.
由(1)(2)可知,对一切n∈N*结论成立.
10.用数学归纳法证明1+≤1+++…+≤+n(n∈N*).
证明:(1)当n=1时,≤1+≤,命题成立.
(2)假设当n=k(k∈N*)时命题成立,即1+≤1+++…+≤+k,
则当n=k+1时,
1+++…++++…+>1++2k·=1+.
又1+++…++++…+<+k+2k·=+(k+1),
即n=k+1时,命题成立.
由(1)和(2)可知,命题对所有n∈N*都成立.
层级二 应试能力达标1.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为(  )
A.f(n)+n+1     B.f(n)+n
C.f(n)+n-1 D.f(n)+n-2
解析:选C 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.
2.设f(n)=1+++…+(n∈N*),那么f(n+1)-f(n)等于(  )
A. B.+
C.+ D.++
解析:选D f(n+1)-f(n)=++.
3.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k+1)与f(k)的关系是(  )
A.f(k+1)=f(k)+k+1
B.f(k+1)=f(k)+k-1
C.f(k+1)=f(k)+k
D.f(k+1)=f(k)+k+2
解析:选C 当n=k+1时,任取其中1条直线记为l,则除l外的其他k条直线的交点的个数为f(k),因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交(有k个交点);又因为任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的f(k)个交点也两两不相同,从而n=k+1时交点的个数是f(k)+k=f(k+1).
4.若命题A(n)(n∈N*)n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有(  )
A.命题对所有正整数都成立
B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立
C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立
D.以上说法都不正确
解析:选C 由题意知n=n0时命题成立能推出n=n0+1时命题成立,由n=n0+1时命题成立,又推出n=n0+2时命题也成立…,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定.
5.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1成立时,左边所得的项为____________.
解析:当n=1时,n+1=2,所以左边=1+a+a2.
答案:1+a+a2
6.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:
①当n=1时,左边=20=1,右边=21-1=1,等式成立.
②假设n=k(k≥1,且k∈N*)时,等式成立,即
1+2+22+…+2k-1=2k-1.
则当n=k+1时,1+2+22+…+2k-1+2k==2k+1-1,
所以当n=k+1时,等式也成立.
由①②知,对任意n∈N*,等式成立.
上述证明中的错误是________.
解析:由证明过程知,在证从n=k到n=k+1时,直接用的等比数列前n项和公式,没有用上归纳假设,因此证明是错误的.
答案:没有用归纳假设
7.平面内有n(n∈N*)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2-n+2部分.
证明:(1)当n=1时,n2-n+2=2,即一个圆把平面分成两部分,故结论成立.
(2)假设当n=k(k≥1,k∈N*)时命题成立,即k个圆把平面分成k2-k+2部分.
则当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,这2k条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k个部分,故k+1个圆把平面分成k2-k+2+2k=(k+1)2-(k+1)+2部分,
即n=k+1时命题也成立.综上所述,对一切n∈N*,命题都成立.
8.已知某数列的第一项为1,并且对所有的自然数n≥2,数列的前n项之积为n2.
(1)写出这个数列的前5项;
(2)写出这个数列的通项公式并加以证明.
解:(1)已知a1=1,由题意,得a1·a2=22,∴a2=22.
∵a1·a2·a3=32,∴a3=.
同理,可得a4=,a5=.
因此这个数列的前5项分别为1,4,,,.
(2)观察这个数列的前5项,猜测数列的通项公式应为:
an=
下面用数学归纳法证明当n≥2时,an=.
①当n=2时,a2==22,结论成立.
②假设当n=k(k≥2,k∈N*)时,结论成立,
即ak=.
∵a1·a2·…·ak-1=(k-1)2,
a1·a2·…·ak-1·ak·ak+1=(k+1)2,
∴ak+1==·==.
这就是说当n=k+1时,结论也成立.
根据①②可知,当n≥2时,这个数列的通项公式是
an=.
∴这个数列的通项公式为an=
(时间: 120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是(  )
A.归纳推理      B.类比推理
C.演绎推理 D.非以上答案
解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C.
2.自然数是整数,4是自然数,所以4是整数.以上三段论推理(  )
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.“两个整数”概念不一致
解析:选A 三段论中的大前提、小前提及推理形式都是正确的.
3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:
①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.
则说法中正确的个数有(  )
A.0 B.1
C.2 D.3
解析:选B 可用反证法推出①,②不正确,因此③正确.
4.下列推理正确的是(  )
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin y
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)
解析:选D (xy)z=x(yz)是乘法的结合律,正确.
5.已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表达式为(  )
A.f(x)= B.f(x)=
C.f(x)= D.f(x)=
解析:选B f(2)=,f(3)=,f(4)=,猜想f(x)=.
6.求证:+>.
证明:因为+和都是正数,
所以为了证明+>,
只需证明(+)2>()2,展开得5+2>5,
即2>0,此式显然成立,所以不等式+>成立.
上述证明过程应用了(  )
A.综合法
B.分析法
C.综合法、分析法配合使用
D.间接证法
解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.
7.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为(  )
A.a1a2a3…a9=29 B.a1+a2+…+a9=29
C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9
解析:选D 由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.
8.若数列{an}是等比数列,则数列{an+an+1}(  )
A.一定是等比数列
B.一定是等差数列
C.可能是等比数列也可能是等差数列
D.一定不是等比数列
解析:选C 设等比数列{an}的公比为q,则an+an+1=an(1+q).∴当q≠-1时,{an+an+1}一定是等比数列;
当q=-1时,an+an+1=0,此时为等差数列.
9.已知a+b+c=0,则ab+bc+ca的值(  )
A.大于0 B.小于0
C.不小于0 D.不大于0
解析:选D 法一:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-≤0.
法二:令c=0,若b=0,则ab+bc+ac=0,否则a,b异号,∴ab+bc+ac=ab<0,排除A、B、C,选D.
10.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么a,b,c的值为(  )
A.a=,b=c= B.a=b=c=
C.a=0,b=c= D.不存在这样的a,b,c
解析:选A 令n=1,2,3,
得
所以a=,b=c=.
11.已知数列{an}的前n项和Sn,且a1=1,Sn=n2an(n∈N*),可归纳猜想出Sn的表达式为(  )
A.Sn= B.Sn=
C.Sn= D.Sn=
解析:选A 由a1=1,得a1+a2=22a2,∴a2=,S2=;又1++a3=32a3,∴a3=,S3==;
又1+++a4=16a4,得a4=,S4=.
由S1=,S2=,S3=,S4=可以猜想Sn=.
12.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2 016=(  )
x
1
2
3
4
5
f(x)
4
1
3
5
2
A.1 B.2
C.4 D.5
解析:选D x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{xn}是周期为4的数列,所以x2 016=x4=5,故应选D.
二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上)
13.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1,在用反证法证明时,假设应为________.
解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x,y都大于1”.
答案:x,y都大于1
14.已知a>0,b>0,m=lg,n=lg,则m,n的大小关系是________.
解析:ab>0?>0?a+b+2>a+b?
(+)2>()2?+>?
>?lg>lg .
答案:m>n
15.已知 =2, =3, =
4,…, =6,a,b均为正实数,由以上规律可推测出a,b的值,则a+b=________.
解析:由题意归纳推理得 =6,b=62-1
=35,a=6.∴a+b=6+35=41.
答案:41
16.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为.
答案:
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)用综合法或分析法证明:
(1)如果a,b>0,则lg ≥;
(2)6+>2+2.
证明:(1)当a,b>0时,有≥,
∴lg≥lg,
∴lg≥lg ab=.
(2)要证 +>2+2,
只要证(+)2>(2+2)2,
即2>2,这是显然成立的,
所以,原不等式成立.
18.(本小题满分12分)若a1>0,a1≠1,an+1=(n=1,2,…).
(1)求证:an+1≠an;
(2)令a1=,写出a2,a3,a4,a5的值,观察并归纳出这个数列的通项公式an(不要求证明).
解:(1)证明:若an+1=an,即=an,
解得an=0或1.
从而an=an-1=…=a2=a1=0或1,
这与题设a1>0,a1≠1相矛盾,
所以an+1=an不成立.
故an+1≠an成立.
(2)由题意得a1=,a2=,a3=,a4=,a5=,由此猜想:an=.
19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.
(2)已知  和  都是无理数,试证:+也是无理数.
证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以+必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-,而关于x的方程x2+2x+5-m2=0的判别式Δ=4(m2-4),∵-2解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.
(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.
(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.
20.(本小题满分12分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),
求证:数列{bn}中任意不同的三项都不可能成为等比数列.
解:(1)由已知得
∴d=2.
故an=2n-1+,Sn=n(n+).
(2)由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0,
∵p,q,r∈N*,∴
∴2=pr,(p-r)2=0.
∴p=r,与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成等比数列.
21.(本小题满分12分)设f(n)=1+++…+(n∈N*).
求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
证明:当n=2时,左边=f(1)=1,
右边=2=1,左边=右边,等式成立.
假设n=k(k≥2,k∈N*)时,结论成立,即
f(1)+f(2)+…+f(k-1)=k[f(k)-1],
那么,当n=k+1时,
f(1)+f(2)+…+f(k-1)+f(k)
=k[f(k)-1]+f(k)
=(k+1)f(k)-k
=(k+1)-k
=(k+1)f(k+1)-(k+1)
=(k+1)[f(k+1)-1],
∴当n=k+1时结论仍然成立.
∴f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
22.(本小题满分12分)已知f(x)=,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)已知数列{xn}的项满足xn=(1-f(1))(1-f(2))…(1-f(n)),试求x1,x2,x3,x4;
(3)猜想{xn}的通项公式,并用数学归纳法证明.
解:(1)把f(1)=log162=,f(-2)=1,代入函数表达式得
即
解得(舍去a=-),
∴f(x)=(x≠-1).
(2)x1=1-f(1)=1-=,
x2=(1-f(2))=×=,
x3=(1-f(3))=×=,
x4=×=.
(3)由(2)知,x1=,x2==,x3=,x4==,…,由此可以猜想xn=.
证明:①当n=1时,∵x1=,而=,
∴猜想成立.
②假设当n=k(k∈N*)时,xn=成立,
即xk=,
则n=k+1时,
xk+1=(1-f(1))(1-f(2))…(1-f(k))·(1-f(k+1))
=xk·(1-f(k+1))=·
=·=·
=.
∴当n=k+1时,猜想也成立,根据①②可知,对一切n∈N*,猜想xn=都成立.