数学五年级下人教版3探索图形 同步教案

文档属性

名称 数学五年级下人教版3探索图形 同步教案
格式 zip
文件大小 125.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2019-12-11 08:32:14

图片预览

文档简介

《探索图形》
“探索图形”一课是安排在认识长方体和正方体之后的一节综合与实践活动。目的是让学生运用所学过的正方体的特征等知识,探索由小正方体拼成的大正方体中各种涂色小正方体的数量,发现其中蕴含的数量上的规律,以及每种涂色小正方体的位置特征,培养学生的空间想象能力和推理能力,体会分类计数、以简驭繁、数形结合的思想方法,感受代数思维的优越性。
【知识与技能】借助正方体涂色问题,通过实际操作、演示、想象、联想等形式发现小正方体涂色和位置的规律。
【过程与方法】在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。
【情感态度价值观】在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神,和实事求是的科学态度。
【教学难点】找出小正方体涂色以及它所在的位置的规律。
【教学重点】找出小正方体涂色以及它所在的位置的规律。
多媒体、师生平板。
一、复习导入、
1.正方体的面、棱、顶点各有什么特征?
2.正方体的表面积和体积都需要许多计算才能得到,但是今天我们不去探讨这个,我们今天来进行一个不需要怎么计算,但是需要发挥你们想象力的小探究,好不好?
二、新课讲授:
1.用棱长1cm的小正方体拼成棱长为2cm的大正方体后,把它们的表面分别涂上颜色,需要多少个小正方体?你觉得这些小正方体有什么特点?
2.看来同学们都比较聪明,这个问题难不住大家,那么如果将这个大正方体拼得再大一点呢?课件演示:用棱长1cm的小正方体拼成棱长为3cm的的大正方体后,把它们的表面分别涂上颜色。
(1)需要多少个小正方体?(课件演示需要9个小正方体)
(2)这个时候这些小正方体,都有什么特点呢?
(3)提出问题:其中三面、两面、一面涂色的小正方体各有多少个?
小组讨论交流。教师板书。
3.如果拼成棱长为4cm、5cm、6cm的的大正方体后,需要多少个小正方体?其中三面、两面、一面涂色的小正方体各有多少个?
(1)学生借助直观图独立思考,解决拼成棱长为4cm的大正方体的问题。
(2)分类汇报交流。
①三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体的8个顶点的位置。
②两面涂色:可能有的学生是数出来的,也可能有的学生是用2×12算出来的。
先让用计算方法的学生说一说“为什么用2×12”,从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。
引导比较“数”和“算”哪种更简便。
③一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有4×6=24(个)一面涂色的小正方体。 还要追问4从哪来的——棱长4,减去两个2个,得到一个边长是2的正方形。
(3)学生独立解决棱长平均分成5份的问题。
教师课件演示
4.发现并总结规律。
三面涂色的小正方体都在大正方体的顶点的位置。因为正方体有8个顶点,所以都有8个。
二面涂色的在正方体棱上除去两端的位置,因为正方体有12条棱,所以有(每条棱上小正方体块数-2)×12个。
一面涂色的在正方体的每个面除去一周边一圈的位置,因为正方体有6个面,所以有(每条棱上小正方体块数-2)的平方×6个。
没有涂色的在正方体里面除去表面一层的位置,所以有(每条棱上小正方体块数-2)的立方个,或用总块数-三面涂色的块数-二面涂色的块数-一面涂色的块数。
5、应用规律。学生数或计算,教师个别指导。
三、巩固迁移。
1、课件出示。
如果请你数一数这样的几何体,你打算怎样做?
2、学生尝试用探索规律的方法解决,教师引导点拔。
3、总结得出规律。
四、课堂小结。(略)

教材分析
教学目标
教学重难点
课前准备
教学过程
教学反思