【人教A版】2017-2018学年高中数学选修2-3教学案全集含答案

文档属性

名称 【人教A版】2017-2018学年高中数学选修2-3教学案全集含答案
格式 zip
文件大小 6.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-03-14 22:29:55

文档简介

第一课时 两个计数原理及其简单应用
预习课本P2~6,思考并完成以下问题
1.什么是分类加法计数原理与分步乘法计数原理?
2.分类加法计数原理与分步乘法计数原理有怎样的区别与联系?
   
1.分类加法计数原理
2.分步乘法计数原理
[点睛]
两个原理的区别
区别一
每类方法都能独立完成这件事.它是独立的、一次的且每次得到的是最后结果,只需一种方法就完成
任何一步都不能独立完成这件事,缺少任何一步也不可,只有各步骤都完成了才能完成这件事
区别二
各类方法之间是互斥的、并列的、独立的
各步之间是相互依存的,并且既不能重复、也不能遗漏
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(  )
(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.(  )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )
(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.(  )
答案:(1)× (2)√ (3)√ (4)√
2.某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有(  )
A.1种          B.2种
C.3种 D.4种
答案:C
3.从10名任课教师,54名同学中,选1人参加元旦文艺演出,共有________种不同的选法.
答案:64
4.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两个袋子里各取一个球,共有_____种不同的取法.
答案:48
分类加法计数原理的应用
[典例] 在所有的两位数中,个位数字大于十位数字的两位数的个数为__________.
[解析] (1)法一:根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).
法二:分析个位数字,可分以下几类:
个位是9,则十位可以是1,2,3,…,8中的一个,故共有8个;
个位是8,则十位可以是1,2,3,…,7中的一个,故共有7个;
同理,个位是7的有6个;
……
个位是2的有1个.
由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).
[答案] 36
[一题多变]
1.[变条件]若本例条件变为个位数字小于十位数字且为偶数,那么这样的两位数有多少个.
解:当个位数字是8时,十位数字取9,只有1个.
当个位数字是6时,十位数字可取7,8,9,共3个.
当个位数字是4时,十位数字可取5,6,7,8,9,共5个.
同理可知,当个位数字是2时,共7个,
当个位数字是0时,共9个.
由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).
2.[变条件,变设问]用1,2,3这3个数字可以写出没有重复数字的整数________个.
解析:分三类:第一类为一位整数,有3个;
第二类为两位整数,有12,21,23,32,13,31,共6个;
第三类为三位整数,有123,132,231,213,321,312,共6个,
∴共写出没有重复数字的整数3+6+6=15个.
答案:15
利用分类加法计数原理计数时的解题流程
分步乘法计数原理的应用
[典例] 从1,2,3,4中选三个数字,组成无重复数字的整数,则分别满足下列条件的数有多少个?
(1)三位数;
(2)三位数的偶数.
[解] (1)三位数有三个数位,
故可分三个步骤完成:
第1步,排个位,从1,2,3,4中选1个数字,有4种方法;
第2步,排十位,从剩下的3个数字中选1个,有3种方法;
第3步,排百位,从剩下的2个数字中选1个,有2种方法.依据分步乘法计数原理, 共有4×3×2=24个满足要求的三位数.
(2)分三个步骤完成:
第1步,排个位,从2,4中选1个,有2种方法;
第2步,排十位,从余下的3个数字中选1个,有3种方法;
第3步,排百位,只能从余下的2个数字中选1个,有2种方法.
故共有2×3×2=12个三位数的偶数.
利用分步乘法计数原理计数时的解题流程
[活学活用]
某商店现有甲种型号电视机10台, 乙种型号电视机8台, 丙种型号电视机12台, 从这三种型号的电视机中各选1台检验, 有多少种不同的选法?
解:从这三种型号的电视机中各选1台检验可分三步完成:
第一步,从甲种型号中选1台,有10种不同的选法;
第二步,从乙种型号中选1台,有8种不同的选法;
第三步,从丙种型号中选1台,有12种不同的选法.
根据分步乘法计数原理,不同的选法共有10×8×12=960种.
两个计数原理的简单综合应用
[典例] 在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现在从7人中选2人分别参加象棋比赛和围棋比赛,共有多少种不同的选法?
[解] 选参加象棋比赛的学生有两种方法:在只会下象棋的3人中选或在既会下象棋又会下围棋的2人中选;选参加围棋比赛的学生也有两种选法:在只会下围棋的2人中选或在既会下象棋又会下围棋的2人中选.互相搭配,可得四类不同的选法.
从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛有3×2=6种选法;
从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛有3×2=6种选法;
从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛有2×2=4种选法;
2名既会下象棋又会下围棋的学生分别参加象棋比赛和围棋比赛有2种选法.
∴共有6+6+4+2=18种选法.所以共有18种不同的选法.
利用两个计数原理解题时的三个注意点
(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.
(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树形图,使问题的分析更直观、清楚,便于探索规律.
(3)综合问题一般是先分类再分步.      
[活学活用]
某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况为多少种?
解:分两类:第一类是甲企业有1人发言,有2种情况,另2个发言人来自其余4家企业,有6种情况,根据分步乘法计数原理可得共有2×6=12(种)情况;
另一类是3人全来自其余4家企业,共有4种情况.根据分类加法计数原理可得共有12+4=16(种)情况.
层级一 学业水平达标
1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为(  )
A.13种         B.16种
C.24种 D.48种
解析:选A 应用分类加法计数原理,不同走法数为8+3+2=13(种).
2.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是(  )
A.1 B.3
C.6 D.9
解析:选D 这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.
3.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有(  )
A.6种 B.12种
C.30种 D.36种
解析:选B ∵甲、乙两人从4门课程中各选修1门,∴由分步乘法计数原理,可得甲、乙所选的课程不相同的选法有4×3=12种.
4.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为(  )
A.40 B.16
C.13 D.10
解析:选C 分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;
第2类,直线b与直线a上5个点可以确定5个不同的平面.
故可以确定8+5=13个不同的平面.
5.给一些书编号,准备用3个字符,其中首字符用A,B,后两个字符用a,b,c(允许重复),则不同编号的书共有(  )
A.8本 B.9本
C.12本 D.18本
解析:选D 需分三步完成,第一步首字符有2种编法,第二步,第二个字符有3种编法,第三步,第三个字符有3种编法,故由分步乘法计数原理知不同编号共有2×3×3=18种.
6.一个礼堂有4个门,若从任一个门进,从任一门出,共有不同走法________种.
解析:从任一门进有4种不同走法,从任一门出也有4种不同走法,故共有不同走法4×4=16种.
答案:16
7.将三封信投入4个邮箱,不同的投法有________种.
解析:第一封信有4种投法,第二封信也有4种投法,第三封信也有4种投法,由分步乘法计数原理知,共有不同投法43=64种.
答案:64
8.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.
解析:按照焊接点脱落的个数进行分类:
第1类,脱落1个,有1,4,共2种;
第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;
第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;
第4类,脱落4个,有(1,2,3,4),共1种.
根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.
答案:13
9.若x,y∈N*,且x+y≤6,试求有序自然数对(x,y)的个数.
解:按x的取值进行分类:
x=1时,y=1,2,…,5,共构成5个有序自然数对;
x=2时,y=1,2,…,4,共构成4个有序自然数对;

x=5时,y=1,共构成1个有序自然数对.
根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.
10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?
解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.
所以共有不同的选法N=7+8+9+10=34(种).
(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.
所以共有不同的选法N=7×8×9×10=5 040(种).
(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.
所以,共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
层级二 应试能力达标
1.(a1+a2)(b1+b2)(c1+c2+c3)完全展开后的项数为(  )
A.9          B.12
C.18 D.24
解析:选B 每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为2×2×3=12.
2.(2016·全国卷Ⅰ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )
A.24 B.18
C.12 D.9
解析:选B 由题意可知E→F有6种走法,F→G有3种走法,由分步乘法计数原理知,共6×3=18种走法,故选B.
3.如图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为(  )
A.26 B.24
C.20 D.19
解析:选D 因信息可以分开沿不同的路线同时传递,由分类计数原理,完成从A向B传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D.
4.4名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(  )
A. B.
C. D.
解析:选D 4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-=.
5.圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为________.
解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,即一个点可形成n-1个直角三角形,而这样的点有2n个,所以一共可形成2n(n-1)个符合条件的直角三角形.
答案:2n(n-1)
6.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种.
解析:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即2143,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应着3种填法,因此共有填法为3×3=9(种).
答案:9
7.某校高二共有三个班,各班人数如下表.
男生人数
女生人数
总人数
高二(1)班
30
20
50
高二(2)班
30
30
60
高二(3)班
35
20
55
(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?
(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?
解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:
第1类,从高二(1)班中选出1名学生,有50种不同的选法;
第2类,从高二(2)班中选出1名学生,有60种不同的选法;
第3类,从高二(3)班中选出1名学生,有55种不同的选法.
根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.
(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:
第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;
第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;
第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.
根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.
8.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4,j=1,2)均为实数.
(1)从集合A到集合B能构成多少个不同的映射?
(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?
解:(1)因为集合A中的每个元素ai(i=1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.
(2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.
所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.
第二课时 两个计数原理的综合应用
选(抽)取与分配问题
[典例] 某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?
[解] 由题意9人中既会英语又会日语的“多面手”有1人.则可分三类:
第一类:“多面手”去参加英语时,选出只会日语的一人即可,有2种选法.
第二类:“多面手”去参加日语时,选出只会英语的一人即可,有6种选法.
第三类:“多面手”既不参加英语又不参加日语,则需从只会日语和只会英语中各选一人,有2×6=12(种)方法.
故共有2+6+12=20(种)选法.
选(抽)取与分配问题的常见类型及其解法
(1)当涉及对象数目不大时,一般选用枚举法、树形图法、框图法或者图表法.
(2)当涉及对象数目很大时,一般有两种方法:
①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若按对象特征抽取的,则按分类进行.
②间接法:去掉限制条件计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.      
[活学活用]
1.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.
解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法;
第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法;
第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法.
综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法.
答案:31
2.图书馆有8本不同的有关励志教育的书,任选3本分给3个同学,每人1本,有________种不同的分法.
解析:分三步进行:第一步,先分给第一个同学,从8本书中选一本,共有8种方法;第二步,再分给第二个同学,从剩下的7本中任选1本,共有7种方法;第三步,分给第三个同学,从剩下的6本中任选1本,共有6种方法.所以不同分法有8×7×6=336种.
答案:336
用计数原理解决组数问题
[典例] 用0,1,2,3,4五个数字,
(1)可以排出多少个三位数字的电话号码?
(2)可以排成多少个三位数?
(3)可以排成多少个能被2整除的无重复数字的三位数?
[解] (1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).
(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).
(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.
组数问题的常见类型及解决原则
(1)常见的组数问题
①组成的数为“奇数”“偶数”“被某数整除的数”;
②在某一定范围内的数的问题;
③各位数字和为某一定值问题;
④各位数字之间满足某种关系问题等.
(2)解决原则
①明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)由谁占领分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.
②要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.     
[活学活用]
1.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为(  )
A.24         B.18
C.12 D.6
解析:选B 由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种.因此总共有12+6=18种情况.故选B.
2.如果一个三位正整数如“a1a2a3”满足a1解:分8类,当中间数为2时,百位只能选1,个位可选1、0,由分步乘法计数原理,有1×2=2个;
当中间数为3时,百位可选1,2,个位可选0,1,2,由分步乘法计数原理,有2×3=6个;同理可得:
当中间数为4时,有3×4=12个;
当中间数为5时,有4×5=20个;
当中间数为6时,有5×6=30个;
当中间数为7时,有6×7=42个;
当中间数为8时,有7×8=56个;
当中间数为9时,有8×9=72个.
故共有2+6+12+20+30+42+56+72=240个.
用计数原理解决涂色(种植)问题
[典例] 如图所示,要给“优”、“化”、“指”、“导”四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步.
第1步,涂“优”区域,有3种选择.
第2步,涂“化”区域,有2种选择.
第3步,涂“指”区域,由于它与“优”、“化”区域颜色不同,有1种选择.
第4步,涂“导”区域,由于它与“化”“指”区域颜色不同,有1种选择.
所以根据分步乘法计数原理,得不同的涂色方法共有3×2×1×1=6(种).
求解涂色(种植)问题一般是直接利用两个计数原理求解,常用方法有:
(1)按区域的不同以区域为主分步计数,用分步乘法计数原理分析;
(2)以颜色(种植作物)为主分类讨论,适用于“区域、点、线段”问题,用分类加法计数原理分析;
(3)对于涂色问题将空间问题平面化,转化为平面区域涂色问题.      
[活学活用]
有4种不同的作物可供选择种植在如图所示的4块试验田中,每块种植一种作物,相邻的试验田(有公共边)不能种植同一种作物,共有多少种不同的种植方法?
解:法一:第一步:种植A试验田有4种方法;
第二步:种植B试验田有3种方法;
第三步:若C试验田种植的作物与B试验田相同,则D试验田有3种方法,此时有1×3=3种种植方法.
若C试验田种植的作物与B试验田不同,则C试验田有2种种植方法,D也有2种种植方法,共有2×2=4种种植方法.
由分类加法计数原理知,有3+4=7种方法.
第四步:由分步乘法计数原理有N=4×3×7=84种不同的种植方法.
法二:(1)若A,D种植同种作物,则A、D有4种不同的种法,B有3种种植方法,C也有3种种植方法,由分步乘法计数原理,共有4×3×3=36种种植方法.
(2)若A,D种植不同作物,则A有4种种植方法,D有3种种植方法,B有2种种植方法,C有2种种植方法,由分步乘法计数原理,共有4×3×2×2=48种种植方法.
综上所述,由分类加法计数原理,共有N=36+48=84种种植方法.
层级一 学业水平达标
1.由数字1,2,3组成的无重复数字的整数中,偶数的个数为(  )
A.15          B.12
C.10 D.5
解析:选D 分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个.由分类加法计数原理知共有偶数5个.
2.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有(  )
A.4种 B.5种
C.6种 D.12种
解析:选C 若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.
3.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b,c,且满足b≤4≤c,则这样的三角形有(  )
A.10个 B.14个
C.15个 D.21个
解析:选A 当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有10个这样的三角形.选A.
4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为(  )
A.18 B.16
C.14 D.10
解析:选C 分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.
5.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A,B,C,D,E,F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有(  )
A.6种 B.36种
C.63种 D.64种
解析:选C 每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.
6.如图所示为一电路图,则从A到B共有________条不同的单支线路可通电.
解析:按上、中、下三条线路可分为三类:从上线路中有3条,中线路中有1条,下线路中有2×2=4(条).根据分类加法计数原理,共有3+1+4=8(条).
答案:8
7.将4种蔬菜种植在如图所示的5块试验田里,每块试验田种植一种蔬菜,相邻试验田不能种植同一种蔬菜,不同的种法有________种.(种植品种可以不全)
解析:分五步,由左到右依次种植,种法分别为4,3,3,3,3.
由分步乘法计数原理共有4×3×3×3×3=324(种) .
答案:324
8.古人用天干、地支来表示年、月、日、时的次序.用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成______组.
解析:分两类:第一类,由天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,则有5×6=30组不同的结果;同理,第二类也有30组不同的结果,共可得到30+30=60组.
答案:60
9.某高中毕业生填报志愿时,了解到甲、乙两所大学有自己感兴趣的专业,具体情况如下:
甲大学
乙大学


生物学
数学
化学
会计学
医学
信息技术学
工商管理学
物理学
如果这名同学只能选择一所大学的一个专业,那么他的专业选择共有多少种?
解:由图表可知,分两类,第一类:甲所大学有5个专业,共有5种专业选择方法;
第二类:乙所大学有3个专业,共有3种专业选择方法.
由分类加法计数原理知,这名同学可能的专业选择有N=5+3=8(种) .
10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?
解:分两类完成.
第1类,当A或B中有一个为0时,表示的直线为x=0或y=0,共2条.
第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.
第1步,确定A的值,有4种不同的方法;
第2步,确定B的值,有3种不同的方法.
由分步乘法计数原理知,共可确定4×3=12条直线.
由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.
层级二 应试能力达标
1.把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有(  )
A.4种         B.5种
C.6种 D.7种
解析:选A 分类考虑,若最少一堆是1个,由至多5个知另两堆分别为4个、5个,只有一种分法;若最少一堆是2个,则由3+5=4+4知有2种分法;若最少一堆是3个,则另两堆为3个、4个共1种分法,故共有分法1+2+1=4种.
2.要把3张不同的电影票分给10个人,每人最多一张,则有不同的分法种数是(  )
A.2 160 B.720
C.240 D.120
解析:选B 可分三步:
第一步,任取一张电影票分给一人,有10种不同分法;
第二步,从剩下的两张中任取一张,由于一人已得电影票,不能再参与,故有9种不同分法.
第三步,前面两人已得电影票,不再参与,因而剩余最后一张有8种不同分法.所以不同的分法种数是10×9×8=720(种) .
3.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有(  )
A.36个 B.18个
C.9个 D.6个
解析:选B 分三步完成,第一步,确定哪一个数字被使用2次,有3种方法;第二步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第三步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.
4.用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有(  )
A.12种 B.24种
C.48种 D.72种
解析:选D 先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72(种)涂法.
5.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成________个不同的对数值.
解析:要确定一个对数值,确定它的底数和真数即可,分两步完成:
第1步,从这8个数中任取1个作为对数的底数,有8种不同取法;
第2步,从剩下的7个数中任取1个作为对数的真数,有7种不同取法.
根据分步乘法计数原理,可以组成8×7=56个对数值.
在上述56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,所以满足条件的对数值共有56-4=52个.
答案:52
6.用6种不同的颜色给图中的“笑脸”涂色,要求“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有________种.
解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第3步涂嘴有6种涂法,所以共有63=216种涂法.
答案:216
7.用6种不同颜色为如图所示的广告牌着色,要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色,求共有多少种不同的着色方法?
解:(1)法一:分类:
第一类,A,D涂同色,有6×5×4=120(种)涂法,
第二类,A,D涂异色,有6×5×4×3=360(种)涂法,
共有120+360=480(种)涂法.
法二:分步:先涂B区,有6(种)涂法,再涂C区,有5(种)涂法,最后涂A,D区域,各有4(种)涂法,
所以共有6×5×4×4=480(种)涂法.
8.用1,2,3,4四个数字(可重复)排成三位数,并把这些三位数由小到大排成一个数列{an}.
(1)写出这个数列的前11项;
(2)这个数列共有多少项?
(3)若an=341,求n.
解:(1)111,112,113,114,121,122,123,124,131,132,133. 
(2)这个数列的项数就是用1,2,3,4排成的三位数的个数,每个位上都有4种排法,则共有4×4×4=64项.
(3)比an=341小的数有两类:
共有2×4×4+1×3×4=44项.
∴n=44+1=45(项) .
第二课时 排列的综合应用
数字排列问题
[典例] 用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复的数字?
(1)六位奇数;
(2)个位数字不是5的六位数;
(3)不大于4 310的四位偶数.
[解] (1)第一步,排个位,有A种排法;
第二步,排十万位,有A种排法;
第三步,排其他位,有A种排法.
故共有AAA=288个六位奇数.
(2)法一:(直接法)十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类.
第一类,当个位排0时,有A个;
第二类,当个位不排0时,有AAA个.
故符合题意的六位数共有A+AAA=504(个).
法二:(排除法)0在十万位和5在个位的排列都不对应符合题意的六位数,这两类排列中都含有0在十万位和5在个位的情况.
故符合题意的六位数共有A-2A+A=504(个).
(3)分三种情况,具体如下:
①当千位上排1,3时,有AAA个.
②当千位上排2时,有AA个.
③当千位上排4时,形如40××,42××的各有A个;
形如41××的有AA个;
形如43××的只有4 310和4 302这两个数.
故共有AAA+AA+2A+AA+2=110(个).
[一题多变]
1.[变设问]本例中条件不变,能组成多少个被5整除的五位数?
解:个位上的数字必须是0或5.若个位上是0,则有A个;若个位上是5,若不含0,则有A个;若含0,但0不作首位,则0的位置有A种排法,其余各位有A种排法,故共有A+A+AA=216(个)能被5整除的五位数.
2.[变设问]本例条件不变,若所有的六位数按从小到大的顺序组成一个数列{an},则240 135是第几项?
解:由于是六位数,首位数字不能为0,首位数字为1有A个数,首位数字为2,万位上为0,1,3中的一个有3A个数,所以240 135的项数是A+3A+1=193,即240 135是数列的第193项.
3.[变条件,变设问]用0,1,3,5,7五个数字,可以组成多少个没有重复数字且5不在十位位置上的五位数.
解:本题可分两类:第一类:0在十位位置上,这时,5不在十位位置上,所以五位数的个数为A=24;
第二类:0不在十位位置上,这时,由于5不能排在十位位置上,所以,十位位置上只能排1,3,7之一,有A=3(种)方法.
又由于0不能排在万位位置上,所以万位位置上只能排5或1,3,7被选作十位上的数字后余下的两个数字之一,有A=3(种).
十位、万位上的数字选定后,其余三个数字全排列即可,
有A=6(种).
根据分步乘法计数原理,第二类中所求五位数的个数为
A·A·A=54.
由分类加法计数原理,符合条件的五位数共有24+54=78(个).
数字排列问题的解题原则、常用方法及注意事项
(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.
(2)常用方法:直接法、间接法.
(3)注意事项:解决数字问题时,应注意题干中的限制条件,恰当地进行分类和分步,尤其注意特殊元素“0”的处理.    
排队问题
[典例] 3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.
(1)全体站成一排,其中甲只能在中间或两端;
(2)全体站成一排,其中甲、乙必须在两端;
(3)全体站成一排,其中甲不在最左端,乙不在最右端;
(4)全体站成两排,前排3人,后排4人,其中女生甲和女生乙排在前排,另有2名男生丙和丁因个子高要排在后排.
[解] (1)先考虑甲有A种方案,再考虑其余六人全排列,故N=AA=2 160(种).
(2)先安排甲、乙有A种方案,再安排其余5人全排列,故N=A·A=240(种).
(3)[法一 特殊元素优先法]
按甲是否在最右端分两类:
第一类,甲在最右端有N1=A(种),
第二类,甲不在最右端时,甲有A个位置可选,而乙也有A个位置,而其余全排列A,有N2=AAA,
故N=N1+N2=A+AAA=3 720(种).
[法二 间接法]
无限制条件的排列数共有A,而甲在左端或乙在右端的排法都有A,且甲在左端且乙在右端的排法有A,故N=A-2A+A=3 720(种).
[法三 特殊位置优先法]
按最左端优先安排分步.
对于左端除甲外有A种排法,余下六个位置全排有A,但减去乙在最右端的排法AA种,故N=AA-AA=3 720(种).
(4)将两排连成一排后原问题转化为女生甲、乙要排在前3个位置,男生丙、丁要排在后4个位置,因此先排女生甲、乙有A种方法,再排男生丙、丁有A种方法,最后把剩余的3名同学全排列有A种方法.
故N=A·A·A=432(种).
排队问题的解题策略
(1)合理归类,要将题目大致归类,常见的类型有特殊元素、特殊位置、相邻问题、不相邻问题等,再针对每一类采用相应的方法解题.
(2)恰当结合,排列问题的解决离不开两个计数原理的应用,解题过程中要恰当结合两个计数原理.
(3)正难则反,这是一个基本的数学思想,巧妙应用排除法可起到事半功倍的效果.
[活学活用]
排一张有5个歌唱节目和4个舞蹈节目的演出节目单.
(1)任何两个舞蹈节目不相邻的排法有多少种?
(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?
解:(1)先排歌唱节目有A种,歌唱节目之间以及两端共有6个空位,从中选4个放入舞蹈节目,共有A种方法,所以任何两个舞蹈节目不相邻的排法有A·A=43 200种方法.
(2)先排舞蹈节目有A种方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有A·A=2 880种方法.
层级一 学业水平达标
1.6名学生排成两排,每排3人,则不同的排法种数为(  )
A.36          B.120
C.720 D.240
解析:选C 由于6人排两排,没有什么特殊要求的元素,故排法种数为A=720.
2.用0到9这十个数字,可以组成没有重复数字的三位数共有(  )
A.900个 B.720个
C.648个 D.504个
解析:选C 由于百位数字不能是0,所以百位数字的取法有A种,其余两位上的数字取法有A种,所以三位数字有A·A=648(个).
3.数列{an}共有6项,其中4项为1,其余两项各不相同,则满足上述条件的数列{an}共有(  )
A.30个 B.31个
C.60个 D.61个
解析:选A 在数列的6项中,只要考虑两个非1的项的位置,即可得不同数列共有A=30个.
4.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有(  )
A.720种 B.360种
C.240种 D.120种
解析:选C (捆绑法)甲、乙看作一个整体,有A种排法,再和其余4人,共5个元素全排列,有A种排法,故共有排法A·A=240种.
5.(辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为(  )
A.144 B.120
C.72 D.24
解析:选D 剩余的3个座位共有4个空隙供3人选择就座, 因此任何两人不相邻的坐法种数为A=4×3×2=24.
6.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)
解析:文娱委员有3种选法,则安排学习委员、体育委员有A=12种方法.由分步乘法计数原理知,共有3×12=36种选法.
答案:36
7.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许空袋且红口袋中不能装入红球,则有________种不同的放法.
解析:(排除法)红球放入红口袋中共有A种放法,则满足条件的放法种数为A-A=96(种).
答案:96
8.用0,1,2,3,4这5个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数有______种.
解析:0夹在1,3之间有AA种排法,0不夹在1,3之间又不在首位有AAAA种排法.所以一共有AA+AAAA=28种排法.
答案:28
9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.
(1)3个舞蹈节目不排在开始和结尾,有多少种排法?
(2)前四个节目要有舞蹈节目,有多少种排法?
解:(1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA=14 400种.
(2)先不考虑排列要求,有A种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节目的排法有(A-AA)=37 440种.
10.从5名短跑运动员中选出4人参加4×100米接力赛,如果A不能跑第一棒,那么有多少种不同的参赛方法?
解:法一:当A被选上时,共有AA种方法,其中A表示A从除去第一棒的其他三棒中任选一棒;A表示再从剩下4人中任选3人安排在其他三棒.
当A没有被选上时,其他四人都被选上且没有限制,此时有A种方法.
故共有AA+A=96(种)参赛方法.
法二:接力的一、二、三、四棒相当于有四个框图,第一个框图不能填A,有4种填法,其他三个框图共有A种填法,故共有4×A=96(种)参赛方法.
法三:先不考虑A是否跑第一棒,共有A=120(种)方法.其中A在第一棒时共有A种方法,故共有A-A=96(种)参赛方法.
层级二 应试能力达标
1.(四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(  )
A.24          B.48
C.60 D.72
解析:选D 第一步,先排个位,有A种选择;
第二步,排前4位,有A种选择.
由分步乘法计数原理,知有A·A=72(个).
2.从4名男生和3名女生中选出3人,分别从事三种不同的工作,若这3人中至少有1名女生,则选派方案共有(  )
A.108种 B.186种
C.216种 D.270种
解析:选B 可选用间接法解决:A-A=186(种),故选B.
3.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有(  )
A.288个 B.240个
C.144个 D.126个
解析:选B 个位上是0时,有AA=96(个);个位上不是0时,有AAA=144(个).
∴由分类加法计数原理得,共有96+144=240(个)符合要求的五位偶数.
4.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有(  )
A.192种 B.216种
C.240种 D.288种
解析:选B 当最左端排甲时,不同的排法共有A种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有4A种.故不同的排法共有A+4A=120+4×24=216种.
5.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________.
解析:(插空法)8名学生的排列方法有A种,隔开了9个空位,在9个空位中排列2位老师,方法数为A,由分步乘法计数原理,总的排法总数为AA=2 903 040.
答案:2 903 040
6.某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有不同排法________种.
解析:法一:若第一节排数学,共有A=6种方法,若第一节不排数学,第一节有2种排法,最后一节有2种排法,中间两节任意排,有2×2×2=8种方法,根据分类加法计数原理,共有6+8=14种,故答案为14.
法二:间接法:4节课全部可能的排法有A=24种,其中体育排第一节的有A=6种,数学排最后一节的有A=6种,体育排第一节且数学排最后一节的有2×1=2种,故符合要求的排法种数为24-6-6+2=14种.
答案:14
7.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?
(1)一个唱歌节目开头,另一个放在最后压台;
(2)2个唱歌节目互不相邻;
(3)2个唱歌节目相邻且3个舞蹈节目不相邻.
解:(1)先排唱歌节目有A种排法,再排其他节目有A种排法,所以共有A·A=1 440(种)排法.
(2)先排3个舞蹈节目,3个曲艺节目有A种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A种插入方法,所以共有A·A=30 240(种)排法.
(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A种排法,再将3个舞蹈节目插入,共有A种插入方法,最后将2个唱歌节目互换位置,有A种排法,故所求排法共有A·A·A=2 880(种)排法.
8.从1到9这9个数字中取出不同的5个数进行排列.问:
(1)奇数的位置上是奇数的有多少种排法?
(2)取出的奇数必须排在奇数位置上有多少种排法?
解:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A种排法;第二步再排偶数位置,4个偶数和余下的2个奇数可以排,排法为A种,由分步乘法计数原理知,排法种数为A·A=1 800.
(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A种,由分步乘法计数原理知,排法种数为A·A=2 520种.
1.2.2 组 合
第一课时 组合与组合数公式
预习课本P21~24,思考并完成以下问题
1.组合的概念是什么?
2.什么是组合数?组合数公式是怎样的?
3.组合数有怎样的性质?
   
1.组合的概念
从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.
2.组合数的概念、公式、性质
组合数
定义
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数
表示法
C
组合数
公式
乘积式
C==
阶乘式
C=
性质
C=C_,C=C+C_
备注
①n,m∈N*且m≤n,②规定:C=1
[点睛] 排列与组合的联系与区别
联系:二者都是从n个不同的元素中取m(n≥m)个元素.
区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C.(  )
(2)从1,3,5,7中任取两个数相乘可得C个积.(  )
(3)1,2,3与3,2,1是同一个组合.(  )
(4)C=5×4×3=60.(  )
答案:(1)× (2)√ (3)√ (4)×
2.C=10,则n的值为(  )
A.10     B.5    C.3    D.4
答案:B
3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有(  )
A.504种 B.729种
C.84种 D.27种
答案:C
4.计算C+C+C=________.
答案:120
组合的概念
[典例] 判断下列问题是组合问题还是排列问题:
(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?
(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?
(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?
(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?
[解] (1)因为本问题与元素顺序无关,故是组合问题.
(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.
(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.
(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.
区分排列与组合的方法
区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.      
[活学活用]
判断下列问题是组合问题还是排列问题:
(1)把5本不同的书分给5个学生,每人一本;
(2)从7本不同的书中取出5本给某个同学;
(3)10个人相互写一封信,共写了几封信;
(4)10个人互相通一次电话,共通了几次电话.
解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.
(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.
(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题.
(4)因为互通电话一次没有顺序之分,故它是组合问题.
有关组合数的计算与证明
[典例] (1)计算C-C·A;
(2)证明:mC=nC.
[解] (1)原式=C-A=-7×6×5
=210-210=0.
(2)证明:mC=m·

=n·=nC.
关于组合数公式的选取技巧
(1)涉及具体数字的可以直接用C=·==C进行计算.
(2)涉及字母的可以用阶乘式C=计算.
(3)计算时应注意利用组合数的性质C=C简化运算.      
[活学活用]
1.计算:C+C的值.
解:∵∴9.5≤n≤10.5.
∵n∈N*,∴n=10.
∴C+C=C+C=C+C=+31=466.
2.求使3C=5A成立的x值.
解:根据排列数和组合数公式,原方程可化为
3·=5·,
即=,即为(x-3)(x-6)=40.
∴x2-9x-22=0,解得x=11或x=-2.
经检验知x=11时原式成立.
3.证明下列各等式.
(1)C=C;
(2)C+C+C…+C=C.
解:(1)右边=·
=·
==C=左边,∴原式成立.
(2)左边=(C+C)+C+C+…+C=(C+C)+C+…+C=(C+C)+…+C=(C3n+4+C)+…+C=…=C+C=C=右边,∴原式成立.
简单的组合问题
[典例] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?
(1)任意选5人;
(2)甲、乙、丙三人必须参加;
(3)甲、乙、丙三人不能参加.
[解] (1)C=792种不同的选法.
(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C=36种不同的选法.
(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C=126种不同的选法.
解答简单的组合问题的思考方法
(1)弄清要做的这件事是什么事;
(2)选出的元素是否与顺序有关,也就是看看是不是组合问题;
(3)结合两计数原理利用组合数公式求出结果.      
[活学活用]
一个口袋内装有大小相同的7个白球和1个黑球.
(1)从口袋内取出3个球,共有多少种取法?
(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?
解:(1)从口袋内的8个球中取出3个球,
取法种数是C==56.
(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C==21.
(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C==35.
层级一 学业水平达标
1.C+C的值为(  )
A.36          B.84
C.88 D.504
解析:选A C+C=C=C==84.
2.以下四个命题,属于组合问题的是(  )
A.从3个不同的小球中,取出2个排成一列
B.老师在排座次时将甲、乙两位同学安排为同桌
C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星
D.从13位司机中任选出两位开两辆车从甲地到乙地
解析:选C 选项A是排列问题,因为2个小球有顺序;选项B是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C是组合问题,因为2位观众无顺序;选项D是排列问题,因为两位司机开哪一辆车是不同的.选C.
3.方程C=C的解集为(  )
A.4 B.14
C.4或6 D.14或2
解析:选C 由题意知或
解得x=4或6.
4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆(  )
A.220个 B.210个
C.200个 D.1 320个
解析:选A C=220,故选A.
5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有(  )
A.60种 B.48种
C.30种 D.10种
解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C种方法,再从剩下的3人中选派2人参加星期日的公益活动有C种方法,由分步乘法计数原理可得不同的选派方法共有C·C=30种.故选C.
6.C+C+C+…+C的值等于________.
解析:原式=C+C+C+…+C
=C+C+…+C
=C+C=C=C=7 315.
答案:7 315
7.若已知集合P={1,2,3,4,5,6},则集合P的子集中含有3个元素的子集数为________.
解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C=20种.
答案:20
8.不等式C-n<5的解集为________.
解析:由C-n<5,得-n<5,∴n2-3n-10<0.
解得-2∴n=2,3,4.故原不等式的解集为{2,3,4}.
答案:{2,3,4}
9.(1)解方程:A=6C;
(2)解不等式:C>3C.
解:(1)原方程等价于
m(m-1)(m-2)=6×,
∴4=m-3,m=7.
(2)由已知得:∴x≤8,且x∈N*,
∵C>3C,∴>.
即>,∴x>3(9-x),解得x>,
∴x=7,8.
∴原不等式的解集为{7,8}.
10.某区有7条南北向街道,5条东西向街道.(如图)
(1)图中有多少个矩形?
(2)从A点走向B点最短的走法有多少种?
解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C·C=210(个).
(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C=C=210(种)走法.
层级二 应试能力达标
1.若C>C,则n的集合是(  )
A.{6,7,8,9}       B.{0,1,2,3}
C.{n|n≥6} D.{7,8,9}
解析:选A ∵C>C,∴
?
??
∵n∈N*,∴n=6,7,8,9.
∴n的集合为{6,7,8,9}.
2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有(  )
A.12种 B.18种
C.36种 D.54种
解析:选B 由题意,不同的放法共有CC=3×=18种.
3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有(  )
A.60种 B.63种
C.65种 D.66种
解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C=1种,取2奇数2偶数的取法有C·C=60种,取4个数均为奇数的取法有C=5种,故不同的取法共有1+60+5=66种.
4.过三棱柱任意两个顶点的直线共15条,其中异面直线有(  )
A.18对 B.24对
C.30对 D.36对
解析:选D 三棱柱共6个顶点,由此6个顶点可组成C-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.
5.方程C-C=C的解集是________.
解析:因为C=C+C,所以C=C,由组合数公式的性质,得x-1=2x+2或x-1+2x+2=16,得x1=-3(舍去),x2=5.
答案:{5}
6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张买杂志用去10元钱,则不同买法的种数为________(用数字作答).
解析:由已知分两类情况:
(1)买5本2元的买法种数为C.
(2)买4本2元的、2本1元的买法种数为C·C.
故不同买法种数为C+C·C=266.
答案:266
7.已知C,C,C成等差数列,求C的值.
解:由已知得2C=C+C,
所以2·=+,
整理得n2-21n+98=0,
解得n=7或n=14,
要求C的值,故n≥12,所以n=14,
于是C=C==91.
8.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,则不同的映射f有多少个?
(2)若B中的元素0无原象,则不同的映射f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,则不同的映射f又有多少个?
解:(1)显然映射f是一一对应的,故不同的映射f共有A=24个.
(2)∵0无原象,而1,2,3是否有原象,不受限制,故A中每一个元素的象都有3种可能,只有把A中每一个元素都找出象,这件工作才算完成,∴不同的映射f有34=81个.
(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,
∴不同的映射有:1+CA+CA+C=31个.
第二课时 组合的综合应用
有限制条件的组合问题
[典例] 课外活动小组共13人, 其中男生8人, 女生5人, 并且男、女各指定一名队长, 现从中选5人主持某种活动, 依下列条件各有多少种选法?
(1)只有一名女生;
(2)两队长当选;
(3)至少有一名队长当选;
(4)至多有两名女生当选.
[解] (1)一名女生,四名男生,故共有C·C=350(种)选法.
(2)将两队长作为一类,其他11人作为一类,
故共有C·C=165(种)选法.
(3)至少有一名队长当选含有两类:有一名队长当选和两名队长都当选.故共有C·C+C·C=825(种)选法.
或采用间接法:C-C=825(种).
(4)至多有两名女生含有三类:有两名女生,只有一名女生,没有女生.故共有C·C+C·C+C=966(种)选法.
有限制条件的组合问题分类及解题策略
有限制条件的抽(选)取问题, 主要有两类:
一是“含”与“不含”问题, 其解法常用直接分步法, 即“含”的先取出,“不含”的可把所指元素去掉再取, 分步计数;
二是“至多”“至少”问题, 其解法常有两种解决思路:一是直接分类法, 但要注意分类要不重不漏;二是间接法, 注意找准对立面, 确保不重不漏.      
[活学活用]
有4个不同的球, 4个不同的盒子, 把球全部放入盒内.
(1)恰有1个空盒,有几种放法?
(2)恰有2个盒子不放球,有几种放法?
解:(1)先从4个小球中取2个放在一起,有C种不同的取法,再把取出的2个小球与另外2个小球看成三堆,并分别放入4个盒子中的3个盒子里,有A种放法,根据分步乘法计数原理,共有CA=144(种)不同的放法.
(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中.有两类放法:
第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C种,再放到2个盒子中有A种放法,共有CA种放法;
第二类,2个盒子中各放2个小球有CC种放法.
故恰有2个盒子不放球的方法有CA+CC=84(种).
几何中的组合问题
[典例] 平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?
[解] 法一:以从共线的4个点中取点的多少作为分类的标准.
第一类:共线的4个点中有2个点为三角形的顶点,共有CC=48个不同的三角形;
第二类:共线的4个点中有1个点为三角形的顶点,共有CC=112个不同的三角形;
第三类:共线的4个点中没有点为三角形的顶点,共有C=56个不同的三角形.
由分类加法计数原理知,不同的三角形共有48+112+56=216个.
法二:(间接法):从12个点中任意取3个点,有C=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C=4种.
故这12个点构成三角形的个数为C-C=216个.
解答几何组合问题的策略
(1)几何组合问题,主要考查组合的知识和空间想象能力,题目多以立体几何中的点、线、面的位置关系为背景的排列、组合.这类问题情境新颖,多个知识点交汇在一起,综合性强.
(2)解答几何组合问题的思考方法与一般的组合问题基本一样,只要把图形的限制条件视为组合问题的限制条件即可.
(3)计算时可用直接法,也可用间接法,要注意在限制条件较多的情况下,需要分类计算符合题意的组合数.      
[活学活用]
正六边形的顶点和中心共7个点,可组成________个三角形.
解析:不共线的三个点可组成一个三角形,7个点中共线的是过中心的3条对角线,即共有3种情况,故组成三角形的个数为C-3=32.
答案:32
排列与组合的综合问题
[典例] 用0到9这10个数字组成没有重复数字的五位数,其中含3个奇数与2个偶数的五位数有多少个?
[解] [法一 直接法]
把从5个偶数中任取2个分为两类:
(1)不含0的:由3个奇数和2个偶数组成的五位数,可分两步进行:第1步,选出3奇2偶的数字,方法有CC种;第2步,对选出的5个数字全排列有A种方法.
故所有适合条件的五位数有CCA个.
(2)含有0的:这时0只能排在除首位(万位)以外的四个位置中的一个,有A种排法;再从2,4,6,8中任取一个,有C种取法,从5个奇数数字中任取3个,有C种取法,再把取出的4个数全排列有A种方法,故有ACCA种排法.
根据分类加法计数原理,共有CCA+ACCA=11 040个符合要求的数.
[法二 间接法]
如果对0不限制,共有CCA种,其中0居首位的有CCA种.故共有CCA-CCA=11 040个符合条件的数.
解答排列、组合综合问题的思路及注意点
(1)解排列、组合综合问题的一般思路是“先选后排”,也就是先把符合题意的元素都选出来,再对元素或位置进行排列.
(2)解排列、组合综合问题时要注意以下几点:
①元素是否有序是区分排列与组合的基本方法,无序的问题是组合问题,有序的问题是排列问题.
②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.      
[活学活用]
有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生;
(2)某女生一定担任语文科代表;
(3)某男生必须包括在内,但不担任数学科代表;
(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.
解:(1)先选后排,先选可以是2女3男,也可以是1女4男,先选有CC+CC种,后排有A种,
共(CC+CC)·A=5 400种.
(2)除去该女生后,先选后排有C·A=840种.
(3)先选后排,但先安排该男生有
C·C·A=3 360种.
(4)先从除去该男生该女生的6人中选3人有C种,再安排该男生有C种,其余3人全排有A种,共C·C·A=360种.
层级一 学业水平达标
1.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有(  )
A.C·C        B.CC+CC
C.C-C D.C-CC
解析:选B 至少2件次品包含两类:(1)2件次品,3件正品,共CC种,(2)3件次品,2件正品,共CC种,由分类加法计数原理得抽法共有CC+CC,故选B.
2.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为(  )
A.2 B.3
C.4 D.5
解析:选A 设男生人数为x,则女生有(6-x)人.依题意:C-C=16.即x(x-1)(x-2)=6×5×4-16×6=4×3×2.∴x=4,即女生有2人.
3.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有(  )
A.CC种 B.CA种
C.CACA种 D.AA种
解析:选B 分两步进行:第一步:选出两名男选手,有C种方法;第2步,从6名女生中选出2名且与已选好的男生配对,有A种.故有CA种.
4.将5本不同的书分给4人,每人至少1本,不同的分法种数有(  )
A.120 B.5
C.240 D.180
解析:选C 先从5本中选出2本,有C种选法,再与其他三本一起分给4人,有A种分法,故共有C·A=240种不同的分法.
5.(四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有(  )
A.144个 B.120个
C.96个 D.72个
解析:选B 当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数.故符合条件的偶数共有2A+CA=120(个).
6.2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有________种.
解析:先分医生有A种,再分护士有C种(因为只要一个学校选2人,剩下的2人一定去另一学校),故共有AC=2×=12种.
答案:12
7.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有________种不同送法.
解析:每校先各得一台,再将剩余6台分成3份,用插板法解,共有C=10种.
答案:10
8.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有________个.
解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有C·C种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有C·C种方法.∴满足条件的三角形共有C·C+C·C=70个.
答案:70
9.(1)以正方体的顶点为顶点,可以确定多少个四面体?
(2)以正方体的顶点为顶点,可以确定多少个四棱锥?
解:(1)正方体8个顶点可构成C个四点组,其中共面的四点组有正方体的6个表面及正方体6组相对棱分别所在的6个平面的四个顶点.故可以确定四面体C-12=58个.
(2)由(1)知,正方体共面的四点组有12个,以这每一个四点组构成的四边形为底面,以其余的四个点中任意一点为顶点都可以确定一个四棱锥,故可以确定四棱锥12C=48个.
10.7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.
解:(1)第一步,将最高的安排在中间只有1种方法;第二步,从剩下的6人中选取3人安排在一侧有C种选法,对于每一种选法只有一种安排方法,第三步,将剩下3人安排在另一侧,只有一种安排方法,∴共有不同安排方案C=20种.
(2)第一步从7人中选取6人,有C种选法;第二步从6人中选2人排一列有C种排法,第三步,从剩下的4人中选2人排第二列有C种排法,最后将剩下2人排在第三列,只有一种排法,故共有不同排法C·C·C=630种.
层级二 应试能力达标
1.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是(  )
A.CA        B.CA
C.CA D.CA
解析:选C 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是CA,故选C.
2.以圆x2+y2-2x-2y-1=0内横坐标与纵坐标均为整数的点为顶点的三角形个数为(  )
A.76 B.78
C.81 D.84
解析:选A 如图,首先求出圆内的整数点个数,然后求组合数,圆的方程为(x-1)2+(y-1)2=3,圆内共有9个整数点,组成的三角形的个数为C-8=76.故选A.
3.某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有(  )
A.140种 B.120种
C.35种 D.34种
解析:选D 若选1男3女有CC=4种;若选2男2女有CC=18种;若选3男1女有CC=12种,所以共有4+18+12=34种不同的选法.
4.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为(  )
A.120 B.119
C.110 D.109
解析:选D 5个人坐在5个座位上,共有不同坐法A种,其中3个号码一致的坐法有C种,有4个号码一致时必定5个号码全一致,只有1种,故所求种数为A-C-1=109.
5.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有________种放法(用数字作答).
解析:设有A,B两个笔筒,放入A笔筒有四种情况,分别为2支,3支,4支,5支,一旦A笔筒的放法确定,B笔筒的放法随之确定,且对同一笔筒内的笔没有顺序要求,故为组合问题,总的放法为C+C+C+C=112.
答案:112
6.已知集合A={4},B={1,2},C={1,3,5},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数为________.
解析:不考虑限定条件确定的不同点的个数为CCCA=36,但集合B,C中有相同元素1,由4,1,1三个数确定的不同点只有3个,故所求的个数为36-3=33.
答案:33
7.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种不同的分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本.
解:(1)甲得4本,乙得3本,丙得2本,这件事分三步完成.
第一步:从9本不同的书中,任取4本分给甲,有C种方法;
第二步:从余下的5本书中,任取3本分给乙,有C种方法;
第三步:把剩下的2本书给丙,有C种方法.
根据分步乘法计数原理知,共有不同的分法
C·C·C=1 260(种).
所以甲得4本,乙得3本,丙得2本的分法共有1 260种.
(2)一人得4本,一人得3本,一人得2本,这件事分两步完成.
第一步:按4本、3本、2本分成三组,有CCC种方法;
第二步:将分成的三组书分给甲、乙、丙三个人,有A种方法.
根据分步乘法计数原理知,共有不同的分法
CCCA=7 560(种).
所以一人得4本,一人得3本,一人得2本的分法共有7 560种.
8.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?
解:法一:(直接法)从0与1两个特殊值着眼,可分三类:
(1)取0不取1,可先从另四张卡片中选一张作百位,有C种方法;0可在后两位,有C种方法;最后需从剩下的三张中任取一张,有C种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有CCC·22个.
(2)取1不取0,同上分析可得不同的三位数C·22·A个.
(3)0和1都不取,有不同的三位数C·23·A个.
综上所述,共有不同的三位数:
C·C·C·22+C·22·A+C·23·A=432(个).
法二:(间接法)任取三张卡片可以组成不同的三位数C·23·A个,其中0在百位的有C·22·A个,这是不合题意的,故共有不同的三位数:C·23·A-C·22·A=432(个).
1.3.1 二项式定理
预习课本P29~31,思考并完成以下问题
1.二项式定理是什么?
2.通项公式又是什么?
3.二项式定理有何结构特征,二项展开式中某项的二项式系数与某项的系数有区别吗?
   
二项式定理
二项式定理
(a+b)n=Can+Can-1b+…+Can-kbk+…+Cbn
二项展开式
公式右边的式子
二项式系数
C(k=0,1,2,…,n)
二项展开
式的通项
Tk+1=Can-kbk
[点睛] 应用通项公式要注意四点
(1)Tk+1是展开式中的第k+1项,而不是第k项;
(2)公式中a,b的指数和为n,且a,b不能随便颠倒位置;
(3)要将通项中的系数和字母分离开,以便于解决问题;
(4)对二项式(a-b)n展开式的通项公式要特别注意符号问题.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)(a+b)n展开式中共有n项.(  )
(2)二项式(a+b)n与(b+a)n展开式中第r+1项相同.(  )
(3)Can-kbk是(a+b)n展开式中的第k项.(  )
答案:(1)× (2)× (3)×
2.5的展开式中含x3项的二项式系数为(  )
A.-10         B.10
C.-5 D.5
答案:D
3.5展开式中的常数项为(  )
A.80 B.-80
C.40 D.-40
答案:C
4.(1+2x)5的展开式的第3项的系数为________,第三项的二项式系数为________.
答案:40 10
二项式定理的应用
[典例] (1)求4的展开式;
(2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
[解] (1)法一:4
=C(3)4+C(3)3·+C(3)2·2+C·3·3+C·4
=81x2+108x+54++.
法二:4=
=(81x4+108x3+54x2+12x+1)
=81x2+108x+54++.
(2)原式=C(x-1)5+C(x-1)4+C(x-1)3+C(x-1)2+C(x-1)+C(x-1)0-1
=[(x-1)+1]5-1=x5-1.
运用二项式定理的解题策略
(1)正用:求形式简单的二项展开式时可直接由二项式定理展开,展开时注意二项展开式的特点:前一个字母是降幂,后一个字母是升幂.形如(a-b)n的展开式中会出现正负间隔的情况.对较繁杂的式子,先化简再用二项式定理展开.
(2)逆用:逆用二项式定理可将多项式化简,对于这类问题的求解,要熟悉公式的特点、项数、各项幂指数的规律以及各项的系数.      
[活学活用]
1.化简(x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1的结果为(  )
A.x4          B.(x-1)4
C.(x+1)4 D.x4-1
解析:选A (x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1=C(x+1)4+C(x+1)3(-1)1+C(x+1)2(-1)2+C(x+1)(-1)3+C(x+1)0(-1)4=[(x+1)-1]4=x4,故选A.
2.设n为自然数,化简C·2n-C·2n-1+…+(-1)k·C·2n-k+…+(-1)n·C=________.
解:原式=C·2n·(-1)0+C2n-1·(-1)1+…+(-1)k·C2n-k+…+(-1)n·C·20=(2-1)n=1.
答案:1
二项式系数与项的系数问题
[典例] (1)求二项式6的展开式中第6项的二项式系数和第6项的系数;
(2)求9的展开式中x3的系数.
[解] (1)由已知得二项展开式的通项为
Tr+1=C(2)6-r·r=26-rC·(-1)r·x3-, 
∴T6=-12·x-.
∴第6项的二项式系数为C=6,
第6项的系数为C·(-1)5·2=-12.
(2)设展开式中的第r+1项为含x3的项,则
Tr+1=Cx9-r·r=(-1)r·C·x9-2r,
令9-2r=3,得r=3,
即展开式中第四项含x3,其系数为(-1)3·C=-84.
[一题多变]
1.[变设问]本例问题(1)条件不变,问题改为“求第四项的二项式系数和第四项的系数”.
解:由通项Tr+1=(-1)r·C·26-r·x3-r,
知第四项的二项式系数为C=20,
第四项的系数为C·(-1)3·23=-160.
2.[变设问]本例问题(2)条件不变,问题改为“求展开式中x5的系数”,该如何求解.
解:设展开式中第r+1项为含x5的项,则
Tr+1=(-1)r·C·x9-2r,
令9-2r=5,得r=2.
即展开式中的第3项含x5,且系数为C=36.
求某项的二项式系数或展开式中含xr的项的系数,主要是利用通项公式求出相应的项,特别要注意某项二项式系数与系数两者的区别.    
与展开式中的特定项有关的问题
题点一:求展开式中的特定项
1.(四川高考)设i为虚数单位,则(x+i)6的展开式中含x4的项为(  )
A.-15x4 B.15x4
C.-20ix4 D.20ix4
解析:选A 二项式的通项为Tr+1=Cx6-rir,由6-r=4得r=2.
故T3=Cx4i2=-15x4.故选A.
2.(1+2)3(1-)5的展开式中x的系数是________.
解析:(1+2)3(1-)5的展开式的通项为2rC(-1)sCx(其中r=0,1,2,3;s=0,1,2,3,4,5),令=1,得3r+2s=6,所以或所以x的系数是-C+4C=2.
答案:2
题点二:由二项展开式某项的系数求参数问题
3.(山东高考)若5的展开式中x5的系数是-80,则实数a=________.
解析:Tr+1=C·(ax2)5-rr=C·a5-rx10-r.令10-r=5,解得r=2.又展开式中x5的系数为-80,则有C·a3=-80,解得a=-2.
答案:-2
求展开式中特定项的方法
求展开式特定项的关键是抓住其通项公式, 求解时先准确写出通项, 再把系数和字母分离, 根据题目中所指定的字母的指数所具有的特征, 列出方程或不等式即可求解.有理项问题的解法,要保证字母的指数一定为整数.    
层级一 学业水平达标
1.(x+2)n的展开式共有12项,则n等于(  )
A.9           B.10
C.11 D.8
解析:选C ∵(a+b)n的展开式共有n+1项,而(x+2)n的展开式共有12项,∴n=11.故选C.
2.(1-i)10(i为虚数单位)的二项展开式中第七项为(  )
A.-210 B.210
C.-120i D.-210i
解析:选A 由通项公式得T7=C·(-i)6=-C=-210.
3.已知7的展开式的第4项等于5,则x等于(  )
A. B.-
C.7 D.-7
解析:选B T4=Cx43=5,∴x=-.
4.若二项式n的展开式中第5项是常数项,则自然数n的值可能为(  )
A.6 B.10
C.12 D.15
解析:选C ∵T5=C()n-4·4=24·Cx是常数项,∴=0,∴n=12.
5.(湖南高考)5的展开式中x2y3的系数是(  )
A.-20 B.-5
C.5 D.20
解析:选A 由二项展开式的通项可得,第四项T4=C2(-2y)3=-20x2y3,故x2y3的系数为-20,选A.
6.(全国卷Ⅰ)(2x+)5的展开式中,x3的系数是______.(用数字填写答案)
解析:(2x+)5展开式的通项为Tr+1=C(2x)5-r()r=25-r·C·x5-.
令5-=3,得r=4.
故x3的系数为25-4·C=2C=10.
答案:10
7.若(1+2x)6的展开式中的第2项大于它的相邻两项,则x的取值范围是________.
解析:由得解得<x<.
答案:
8.若(x+a)10的展开式中,x7的系数为15,则a=______.(用数字填写答案)
解析:二项展开式的通项公式为Tr+1=Cx10-rar,当10-r=7时,r=3,T4=Ca3x7,则Ca3=15,故a=.
答案:
9.若二项式6(a>0)的展开式中x3的系数为A,常数项为B,且B=4A,求a的值.
解:∵Tr+1=Cx6-rr=(-a)rCx6-,
令6-=3,则r=2,得A=C·a2=15a2;
令6-=0,则r=4,得B=C·a4=15a4.
由B=4A可得a2=4,又a>0,
所以a=2.
10.已知m,n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.
解:由题设m+n=19,∵m,n∈N*.
∴…,
x2的系数C+C=(m2-m)+(n2-n)=m2-19m+171=2+.
∴当m=9或10时,x2的系数取最小值81,
此时x7的系数为C+C=156.
层级二 应试能力达标
1.在(1-x3)(1+x)10的展开式中x5的系数是(  )
A.-297        B.-252
C.297 D.207
解析:选D x5应是(1+x)10中含x5项与含x2项.
∴其系数为C+C(-1)=207.
2.使n(n∈N*)的展开式中含有常数项的最小的n为(  )
A.4 B.5
C.6 D.7
解析:选B 由二项式定理得,Tr+1=C(3x)n-rr=C3n-rxn-r,令n-r=0,当r=2时,n=5,此时n最小.
3.(1+3x)n(其中n∈N且n≥6)的展开式中,若x5与x6的系数相等,则n=(  )
A.6 B.7
C.8 D.9
解析:选B 二项式(1+3x)n的展开式的通项是
Tr+1=C1n-r·(3x)r=C·3r·xr.依题意得
C·35=C·36,即
=3×(n≥6),得n=7.
4.在n的展开式中,常数项为15,则n的一个值可以是(  )
A.3 B.4
C.5 D.6
解析:选D 通项Tr+1=C(x2)n-rr=(-1)rCx2n-3r,常数项是15,则2n=3r,且C=15,验证n=6时,r=4合题意,故选D.
5.x7的展开式中,x4的系数是________.(用数字作答)
解析:x4的系数,即7展开式中x3的系数,
Tr+1=C·x7-r·r=(-2)r·C·x7-2r,
令7-2r=3得,r=2,∴所求系数为(-2)2C=84.
答案:84
6.在20的展开式中,系数是有理数的项数为________.
解析:Tr+1=C(x)20-rr=r·()20-rC·x20-r.∵系数为有理数,∴()r与2均为有理数,
∴r能被2整除,且20-k能被3整除.
故r为偶数,20-r是3的倍数,0≤r≤20,
∴r=2,8,14,20.
答案:4
7.记n的展开式中第m项的系数为bm.
(1)求bm的表达式;
(2)若n=6,求展开式中的常数项;
(3)若b3=2b4,求n.
解:(1)n的展开式中第m项为
C·(2x)n-m+1·m-1=2n+1-m·C·xn+2-2m,所以bm=2n+1-m·C.
(2)当n=6时,n的展开式的通项为
Tr+1=C·(2x)6-r·r=26-r·C·x6-2r.
依题意,6-2r=0,得r=3,
故展开式中的常数项为T4=23·C=160.
(3)由(1)及已知b3=2b4,得2n-2·C=2·2n-3·C,
从而C=C,即n=5.
8.求证:1+2+22+…+25n-1(n∈N*)能被31整除.
证明:∵1+2+22+…+25n-1=
=25n-1=32n-1=(31+1)n-1
=C·31n+C·31n-1+…+C·31+C-1
=31(C·31n-1+C·31n-2+…+C),显然C·31n-1+C·31n-2+…+C为整数,∴原式能被31整除.
1.3.2 “杨辉三角”与二项式系数的性质
预习课本P32~36,思考并完成以下问题
1.杨辉三角具有哪些特点?
2.二项式系数的性质有哪些?
  
1.杨辉三角的特点
(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.
(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C=C+C.
2.二项式系数的性质
(1)对称性:与首末两端“等距离”的两个二项式系数相等(即C=C).
(2)增减性与最大值:当k<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;
当n是偶数时,中间一项Cn取得最大值;
当n是奇数时,中间两项Cn,Cn相等,同时取得最大值.
(3)各二项式系数的和:
①C+C+C+…+C=2n,
②C+C+C+…=C+C+C+…=2n-1.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)杨辉三角的每一斜行数字的差成一个等差数列.(  )
(2)二项式展开式的二项式系数和为C+C+…+C.(  )
(3)二项式展开式中系数最大项与二项式系数最大项相同.(  )
答案:(1)√ (2)× (3)×
2.已知(ax+1)n的展开式中,二项式系数和为32,则n等于(  )
A.5          B.6
C.7 D.8
答案:A
3.(1+x)2n(n∈N*)的展开式中,系数最大的项是(  )
A.第+1项 B.第n项
C.第n+1项 D.第n项与第n+1项
答案:C
4.在(a+b)n的展开式中,第2项与第6项的二项式系数相等,则n=(  )
A.6 B.7
C.8 D.9
答案:A
与杨辉三角有关的问题
[典例] (1)杨辉三角如图所示,杨辉三角中的第5行除去两端数字1以外,均能被5整除,则具有类似性质的行是(  )
A.第6行       B.第7行
C.第8行 D.第9行
(2)如图,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)等于(  )
A.144 B.146
C.164 D.461
[解析](1)由题意,第6行为1 6 15 20 15 6 1,第7行为1 7 21 35 35 21 7 1,故第7行除去两端数字1以外,均能被7整除.
(2)由题干图知,数列中的首项是C,第2项是C,第3项是C,第4项是C,…,第15项是C,第16项是C.所以S(16)=C+C+C+C+…+C+C
=(C+C+…+C)+(C+C+…+C)
=(C+C+C+…+C-C)+(C+C+…+C)
=C+C-1=164.
[答案] (1)B (2)C
解决与杨辉三角有关的问题的一般思路
(1)观察:对题目进行多角度观察,找出每一行的数与数之间,行与行之间的数的规律.
(2)表达:将发现的规律用数学式子表达.
(3)结论:由数学表达式得出结论.      
[活学活用]
如图, 在由二项式系数所构成的杨辉三角中,第_____行中从左到右第14与第15个数的比为2∶3.
解析:由杨辉三角知,第一行中的数是C,C;第2行中的数是C,C,C;第3行中的数是C,C,C,C,…,第n行中的数是C,C,C,…,C.设第n行中从左到右第14与第15个数的比为2∶3,则C∶C=2∶3,解之得n=34.
答案:34
求展开式的系数和
[典例] 设(1-2x)2 016=a0+a1x+a2x2+…+a2 016·x2 016(x∈R).
(1)求a0+a1+a2+…+a2 016的值.
(2)求a1+a3+a5+…+a2 015的值.
(3)求|a0|+|a1|+|a2|+…+|a2 016|的值.
[解] (1)令x=1,得
a0+a1+a2+…+a2 016=(-1)2 016=1.①
(2)令x=-1,得a0-a1+a2-…+a2 016=32 016.②
①-②得
2(a1+a3+…+a2 015)=1-32 016,
∴a1+a3+a5+…+a2 015=.
(3)∵Tr+1=C(-2x)r=(-1)r·C·(2x)r,
∴a2k-1<0(k∈N*),a2k>0(k∈N*).
∴|a0|+|a1|+|a2|+|a3|+…+|a2 016|
=a0-a1+a2-a3+…+a2 016=32 016.
二项展开式中系数和的求法
(1)对形如(ax+b)n, (ax2+bx+c)m(a,b,c∈R,m,n∈N*)的式子求其展开式的各项系数之和,常用赋值法,只需令x=1即可;对(ax+by)n(a,b∈R,n∈N*)的式子求其展开式各项系数之和,只需令x=y=1即可.
(2)一般地,若f(x)=a0+a1x+a2x2+…+anxn,则f(x)展开式中各项系数之和为f(1),
奇数项系数之和为a0+a2+a4+…=,
偶数项系数之和为a1+a3+a5+…=.      
[活学活用]
已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:
(1)a1+a2+…+a7;
(2)a1+a3+a5+a7,a0+a2+a4+a6.
解:(1)∵(1-2x)7=a0+a1x+a2x2+…+a7x7,
令x=1,得a0+a1+a2+…+a7=-1,①
令x=0,得a0=1,
∴a1+a2+…+a7=-2.
(2)令x=-1,得
a0-a1+a2-a3+…+a6-a7=37=2 187,②
由①,②得
a1+a3+a5+a7=-1 094,
a0+a2+a4+a6=1 093.
求展开式中系数或二项式系数的最大项
[典例] 在8的展开式中,
(1)求二项式系数最大的项;
(2)系数的绝对值最大的项是第几项?
[解] Tr+1=C·()8-r·r=(-1)r·C·2r·x4-.
(1)二项式系数最大的项为中间项,即为第5项,
故T5=C·24·x4-=1 120x-6.
(2)设第r+1项系数的绝对值最大,
则即
整理得于是r=5或6.
故系数绝对值最大的项是第6项和第7项.
[一题多变]
1.[变设问]在本例条件下求系数最大的项与系数最小的项.
解:由本例(1)知, 展开式中的第6项和第7项系数的绝对值最大, 第6项的系数为负, 第7项的系数为正.
故系数最大的项为T7=C·26·x-11=1 792x-11.
系数最小的项为T6=(-1)5C·25x-=-1 792x-.
2.[变条件,变设问]在n的展开式中,只有第5项的二项式系数最大,求展开式中常数项.
解:由题意知n=8,通项为Tk+1=(-1)k·C·8-k·x8-k,令8-k=0,得k=6,故常数项为第7项,且T7=(-1)6·2·C=7.
二项式系数的最大项的求法
求二项式系数的最大项,根据二项式系数的性质对(a+b)n中的n进行讨论.
(1)当n为奇数时,中间两项的二项式系数最大.
(2)当n为偶数时,中间一项的二项式系数最大.    
层级一 学业水平达标
1.关于(a-b)10的说法,错误的是(  )
A.展开式中的二项式系数之和为1 024
B.展开式中第6项的二项式系数最大
C.展开式中第5项或第7项的二项式系数最大
D.展开式中第6项的系数最小
解析:选C 根据二项式系数的性质进行判断,由二项式系数的性质知:二项式系数之和为2n,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数,所以是系数中最小的.
2.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于(  )
A.11          B.10
C.9 D.8
解析:选D ∵只有第5项的二项式系数最大,
∴+1=5.∴n=8.
3.设(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,当a0+a1+a2+…+an=254时,n等于(  )
A.5 B.6
C.7 D.8
解析:选C 令x=1,则a0+a1+…+an=2+22+23+…+2n,∴=254,∴n=7.
4.若对于任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为(  )
A.3      B.6 C.9    D.12
解析:选B x3=[2+(x-2)]3,a2=C·2=6.
5.已知C+2C+22C+…+2nC=729,则C+C+C的值等于(  )
A.64 B.32
C.63 D.31
解析:选B C+2C+22C+…+2nC=(1+2)n=729.
∴n=6,∴C+C+C=32.
6.若(x+3y)n的展开式中各项系数的和等于(7a+b)10的展开式中二项式系数的和,则n的值为________.
解析:(7a+b)10的展开式中二项式系数的和为C+C+…+C=210,令(x+3y)n中x=y=1,则由题设知,4n=210,即22n=210,解得n=5.
答案:5
7.(2x-1)10展开式中x的奇次幂项的系数之和为________.
解析:设(2x-1)10=a0+a1x+a2x2+…+a10x10,
令x=1,得a0+a1+a2+…+a10=1,再令x=-1,得
310=a0-a1+a2-a3+…+a10,
两式相减,可得a1+a3+…+a9=.
答案:
8.(1+)n展开式中的各项系数的和大于8而小于32,则系数最大的项是________.
解析:因为8所以n=4.所以展开式共有5项,系数最大的项为T3=C()2=6x.
答案:6x
9.若(x2-3x+2)5=a0+a1x+a2x2+…+a10x10.
(1)求a1+a2+…+a10;
(2)求(a0+a2+a4+a6+a8+a10)2-(a1+a3+a5+a7+a9)2.
解:(1)令f(x)=(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,
a0=f(0)=25=32,a0+a1+a2+…+a10=f(1)=0,
故a1+a2+…+a10=-32.
(2)(a0+a2+a4+a6+a8+a10)2-(a1+a3+a5+a7+a9)2
=(a0+a1+a2+…+a10)(a0-a1+a2-…+a10)=f(1)·f(-1)=0.
10.已知n,若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数.
解:∵C+C=2C,
整理得n2-21n+98=0,
∴n=7或n=14,
当n=7时,展开式中二项式系数最大的项是T4和T5,
T4的系数为C423=;T5的系数为C324=70;当n=14时,展开式中二项式系数最大项是T8,T8的系数为C727=3 432.
层级二 应试能力达标
1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为(  )
A.2n-1        B.2n-1
C.2n+1-1 D.2n
解析:选C 法一:令x=1得,1+2+22+…+2n==2n+1-1.
法二:令n=1,知各项系数和为3,排除A、B、D选项.
2.在(1+x)n(n为正整数)的二项展开式中奇数项的和为A,偶数项的和为B,则(1-x2)n的值为(  )
A.0 B.AB
C.A2-B2 D.A2+B2
解析:选C (1+x)n=A+B,(1-x)n=A-B,所以(1-x2)n=A2-B2.
3.若(1-2x)2 016=a0+a1x+…+a2 016x2 016(x∈R),则++…+的值为(  )
A.2 B.0
C.-1 D.-2
解析:选C (1-2x)2 016=a0+a1x+…+a2 016x2 016,令x=,则2 016=a0+++…+=0,其中a0=1,所以++…+=-1.
4.若(x+y)9按x的降幂排列的展开式中,第二项不大于第三项,且x+y=1,xy<0,则x的取值范围是(  )
A. B.
C. D.(1,+∞)
解析:选D 二项式(x+y)9的展开式的通项是Tr+1=C·x9-r·yr.
依题意有由此得
由此解得x>1,
即x的取值范围是(1,+∞).
5.若n展开式的二项式系数之和为64,则展开式的常数项为________.
解析:∵n展开式的二项式系数之和为2n,
∴2n=64,∴n=6.
∴Tr+1=Cx6-rr=Cx6-2r.
由6-2r=0得r=3,
∴其常数项为T3+1=C=20.
答案:20
6.若n的展开式中含有x的项为第6项,若(1-3x)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an的值为________.
解析:二项式n展开式的通项为Tr+1
=C(x2)n-r·r=C(-1)rx2n-3r.
因为含x的项为第6项,
所以r=5,2n-3r=1,解得n=8.
令x=1,得a0+a1+…+a8=(1-3)8=28,令x=0,得a0=1,
∴a1+a2+…+a8=28-1=255.
答案:255
7.已知n的展开式中偶数项的二项式系数和比(a+b)2n的展开式中奇数项的二项式系数和小于120,求第一个展开式中的第3项.
解:因为n的展开式中的偶数项的二项式系数和为2n-1,而(a+b)2n的展开式中奇数项的二项式系数的和为22n-1,所以有2n-1=22n-1-120,解得n=4,故第一个展开式中第3项为T3=C()22=6.
8.在二项式(axm+bxn)12(a>0,b>0,m,n≠0)中有2m+n=0,如果它的展开式中系数最大的项恰是常数项.
(1)求系数最大的项是第几项?
(2)求的范围.
解:(1)设Tr+1=C(axm)12-r·(bxn)r=
Ca12-rbrxm(12-r)+nr为常数项,
则有m(12-r)+nr=0,即m(12-r)-2mr=0,
∴r=4,它是第5项.
(2)∵第5项是系数最大的项,

由①得a8b4≥a9b3,
∵a>0,b>0,
∴b≥a,即≤.
由②得≥,∴≤≤.
故的取值范围为.
(时间120分钟 满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为(  )
A.7          B.64
C.12 D.81
解析:选C 根据分步乘法计数原理,共有4×3=12种.
2.若(1+)4=a+b(a,b为有理数),则a+b=(  )
A.33 B.29
C.23 D.19
解析:选B ∵(1+)4=C()0+C()1+C()2+C()3+C()4
=1+4+12+8+4
=17+12,
由已知,得17+12=a+b,
∴a+b=17+12=29.
3.(1-x)10展开式中x3项的系数为(  )
A.-720 B.720
C.120 D.-120
解析:选D 由Tr+1=C(-x)r=(-1)rCxr,因为r=3,所以系数为(-1)3C=-120.
4.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有(  )
A.8种 B.10种
C.12种 D.32种
解析:选B 此人从A到B,路程最短的走法应走两纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C=10种.
5.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,则自然数n等于(  )
A.6 B.5
C.4 D.3
解析:选C 令x=1,得2n=16,则n=4.故选C.
6.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为(  )
A.300 B.216
C.180 D.162
解析:选C 由题意知可分为两类,(1)选“0”,共有CCCA=108,(2)不选“0”,共有CA=72,∴由分类加法计数原理得72+108=180,故选C.
7.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有(  )
A.12 B.24
C.36 D.48
解析:选B 第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A种排法,故总的排法有2×2×A=24种.
8.(2-)8展开式中不含x4项的系数的和为(  )
A.-1 B.0
C.1 D.2
解析:选B (2-)8展开式的通项为Tr+1=C·28-r·(-)r=C·28-r·(-1)r·x.由=4得r=8.∴展开式中x4项的系数为C=1. 又(2-)8展开式中各项系数和为(2-1)8=1,∴展开式中不含x4项的系数的和为0.
9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有(  )
A.18个 B.15个
C.12个 D.9个
解析:选B 依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.
10.已知8展开式中常数项为1 120,其中实数a是常数,则展开式中各项系数的和是(  )
A.28 B.38
C.1或38 D.1或28
解析:选C Tr+1=(-a)rCx8-2r,令8-2r=0?r=4.
∴T5=C(-a)4=1 120,∴a=±2.当a=2时,各项系数的和为(1-2)8=1;当a=-2时,各项系数的和为(1+2)8=38.
11.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有(  )
A.66条 B.72条
C.74条 D.78条
解析:选B 先考虑x≥0,y≥0时,圆上横、纵坐标均为整数的点有(1,7)(5,5)(7,1),依圆的对称性知,圆上共有3×4=12个点的横、纵坐标均为整数,经过其中任意两点的割线有C=66(条),过每一点的切线共有12条,又考虑到直线ax+by-1=0不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有66+12-6=72(条).
12.将二项式8的展开式中所有项重新排成一列,有理式不相邻的排法种数为(  )
A.A B.AA
C.AA D.AA
解析:选C 8展开式的通项公式Tr+1=C·()8-r·r=·x,r=0,1,2,…,8.当为整数时,r=0,4,8. ∴展开式共有9项,其中有有理项3项,先排其余6项有A种排法,再将有理项插入形成的7个空档中,有A种方法.∴共有AA种排法.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)
13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.
解析:设女生有x人,则C·C=30,即·x=30,解得x=2或3.
答案:2或3
14.若n的展开式中含有常数项,则最小的正整数n等于________.
解析:二项式的通项为Tr+1=C(2x3)n-r·r=C2n-r·x3n-,令3n-r=0,即r=n,而r∈N*.∴n为7的整数倍,即最小的正数n等于7.
答案:7
15.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)
解析:因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以适合题意的四位数有24-2=14个.
答案:14
16.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有________种.(用数字作答)
解析:先分组,再把三组分配乘以A得:·A=90种.
答案:90
三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知A={x|1从集合A和B中各取一个元素作为直角坐标系中点的坐标,共可得到多少个不同的点?
解:A={3,4,5,6,7},B={4,5,6,7,8}.从A中取一个数作为横坐标,从B中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标且8不是横坐标的情况有4种,故共有5×5+5+4=34个不同的点.
18.(本小题满分12分)已知(1+2)n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的,试求展开式中二项式系数最大的项.
解:二项式的通项为Tk+1=C(2k)x由题意知展开式中第k+1项系数是第k项系数的2倍,是第k+2项系数的,
∴解得n=7.
∴展开式中二项式系数最大两项是:
T4=C(2)3=280x与T5=C(2)4=560x2.
19.(本小题满分12分)10件不同厂生产的同类产品:
(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?
(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?
解:(1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A=1 680(或C·A)(种).
(2)分步完成.先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A种方法,共有A·A=50 400(或C·A)(种).
20.(本小题满分12分)已知n的展开式中,前三项系数成等差数列.
(1)求n;
(2)求第三项的二项式系数及项的系数;
(3)求含x项的系数.
解:(1)∵前三项系数1,C,C成等差数列.
∴2·C=1+C,即n2-9n+8=0.
∴n=8或n=1(舍).
(2)由n=8知其通项公式Tr+1=C·()8-r·r=r·C·x4-r,r=0,1,…,8.
∴第三项的二项式系数为C=28.
第三项的系数为2·C=7.
(3)令4-r=1,得r=4,
∴含x项的系数为4·C=.
21.(本小题满分12分)如图有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?
解:分为两类:
第一类:若1,3同色,则1有5种涂法,2有4种涂法,
3有1种涂法(与1相同),4有4种涂法.
故N1=5×4×1×4=80.
第二类:若1,3不同色,则1有5种涂法,2有4种涂法,3有3种涂法,4有3种涂法.
故N2=5×4×3×3=180种.
综上可知不同的涂法共有N=N1+N2=80+180=260种.
22.(本小题满分12分)7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?
(1)两名女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从高到低的顺序站;
(4)老师不站中间,女生不站两端.
解:(1)两名女生站在一起有站法A种,视为一种元素与其余5人全排,有A种排法.故有不同站法有A·A=1 440种.
(2)先站老师和女生,有站法A种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,有插入方法A种.故共有不同站法A·A=144种.
(3)7人全排列中,4名男生不考虑身高顺序的站法有A种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2×=420种.
(4)中间和两端是特殊位置,可如下分类求解:①老师站两端之一,另一端由男生站,有A·A·A种站法,②两端全由男生站,老师站除两端和正中间的另外4个位置之一,有A·A·A种站法.故共有不同站法共有A·A·A+A·A·A=2 112种. 
2.1.1 离散型随机变量
预习课本P44~45,思考并完成以下问题
1.随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?
2.随机变量与函数的关系?
    
1.随机变量
(1)定义:在一个对应关系下,随着试验结果变化而变化的变量称为随机变量.
(2)表示:随机变量常用字母X,Y,ξ,η等表示.
2.离散型随机变量
如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.
3.随机变量和函数的关系
随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数,函数把实数映射为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)随机变量的取值可以是有限个,也可以是无限个.(  )
(2)手机电池的使用寿命X是离数型随机变量.(  )
答案:(1)√ (2)×
2.下列变量中,是离散型随机变量的是(  )
A.到2016年5月1日止,我国被确诊的爱滋病人数
B.一只刚出生的大熊猫,一年以后的身高
C.某人在车站等出租车的时间
D.某人投篮10次,可能投中的次数
答案:D
3.袋中有大小相同的红球6个,白球5个,从袋中无放回的条件下每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为(  )
A.1,2,…,6        B.1,2,…,7
C.1,2,…,11        D.1,2,3,…
答案:B
4.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.
答案:300, 100, -100, -300
随机变量的概念
[典例] (1)抛掷一枚均匀硬币一次,随机变量为(  )
A.抛掷硬币的次数
B.出现正面的次数
C.出现正面或反面的次数
D.出现正面和反面的次数之和
(2)6件产品中有2件次品,4件正品,从中任取1件,则可以作为随机变量的是(  )
A.取到的产品个数    B.取到的正品个数
C.取到正品的概率 D.取到次品的概率
[解] (1)抛掷一枚硬币一次,可能出现的结果是正面向上或反面向上.以某一个为标准,如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选B.而A项中抛掷次数就是1,不是随机变量;C项中标准不明;D项中,出现正面和反面的次数之和为必然事件,试验前便知是必然出现的结果,也不是随机变量.
(2)由随机变量的定义知,随机变量是随机试验的结果,排除C、D项,又取到的产品个数是一个确定值,排除A项.故选B项.
[答案] (1)B (2)B
判断一个试验是否是随机试验,依据是这个试验是否满足随机试验的三个条件,即
(1)试验在相同条件下是否可重复进行;
(2)试验的所有可能的结果是否是明确的,并且试验的结果不止一个;
(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果. 
[活学活用]
指出下列哪些是随机变量,哪些不是随机变量,并说明理由:
(1)某人射击一次命中的环数;
(2)掷一枚质地均匀的骰子,出现的点数;
(3)某个人的属相随年龄的变化.
解:(1)某人射击一次,可能命中的所有环数是0,1,…,10,而且出现哪一个结果是随机的,因此命中的环数是随机变量.
(2)掷一枚骰子,出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪一个结果是随机的,因此出现的点数是随机变量.
(3)一个人的属相在他出生时就确定了,不随年龄的变化而变化,因此属相不是随机变量.
离散型随机变量的判定
[典例] 指出下列随机变量是否是离散型随机变量,并说明理由.
(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;
(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;
(3)丁俊晖在2016年世锦赛中每局所得的分数.
[解] (1)桥面上的路灯是可数的,编号X可以一一列出, 是离散型随机变量.
(2)小明获奖等次X可以一一列出,是离散型随机变量.
(3)每局所得的分数X可以一一列举出来,是离散型随机变量.
判断离散型随机变量的方法
(1)明确随机试验的所有可能结果.
(2)将随机试验的结果数量化.
(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.      
[活学活用]
下列随机变量中不是离散型随机变量的是________(填序号).
①广州白云机场候机室中一天的旅客数量X;
②广州某水文站观察到一天中珠江的水位X;
③某工厂加工的某种钢管,外径与规定的外径尺寸之差X;
④虎门大桥一天经过的车辆数X.
解析:①④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量,②中的随机变量X可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.③中X的取值为某一范围内的实数,无法全部列出,不是离散型随机变量,故不是离散型随机变量.
答案:②③
用随机变量表示试验的结果
[典例] 写出下列随机变量可能取的值, 并说明这些值所表示的随机试验的结果.
(1)袋中有大小相同的红球10个, 白球5个, 从袋中每次任取1个球, 取后不放回, 直到取出的球是白球为止, 所需要的取球次数.
(2)从标有数字1,2,3,4,5,6的6张卡片中任取2张, 所取卡片上的数字之和.
[解] (1)设所需的取球次数为X, 则X=1,2,3,4,…,10,11,X=i表示前(i-1)次取到的均是红球, 第i次取到白球, 这里i=1,2,3,4,…,11.
(2)设所取卡片上的数字之和为X, 则X=3,4,5,…,11.
X=3, 表示“取出标有1,2的两张卡片”;
X=4, 表示“取出标有1,3的两张卡片”;
X=5, 表示“取出标有2,3或1,4的两张卡片”;
X=6, 表示“取出标有2,4或1,5的两张卡片”;
X=7, 表示“取出标有3,4或2,5或1,6的两张卡片”;
X=8, 表示“取出标有2,6或3,5的两张卡片”;
X=9, 表示“取出标有3,6或4,5的两张卡片”;
X=10, 表示“取出标有4,6的两张卡片”;
X=11, 表示“取出标有5,6的两张卡片”.
[一题多变]
1.[变条件]若本例(2)中条件不变, 所取卡片上的数字之差的绝对值为随机变量ξ, 请问ξ有哪些取值? 其中ξ=4表示什么含义?
解:ξ的所有可能取值有:1,2,3,4,5.
ξ=4表示“取出标有1,5或2,6的两张卡片”.
2.[变条件, 变问法]甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”,用X表示需要比赛的局数,写出X所有可能的取值,并写出表示的试验结果.
解:根据题意可知X的可能取值为4,5,6,7.
X=4表示共打了4局,甲、乙两人有1人连胜4局.
X=5表示在前4局中有1人输了一局,最后一局此人胜出.
X=6表示在前5局中有1人输了2局,最后一局此人胜出.
X=7表示在前6局中,两人打平,后一局有1人胜出.
解答用随机变量表示随机试验的结果问题的关键点和注意点
(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.
(2)注意点:解答过程中不要漏掉某些试验结果.    
层级一 学业水平达标
1.给出下列四个命题:
①15秒内,通过某十字路口的汽车的数量是随机变量;
②解答高考数学乙卷的时间是随机变量;
③一条河流每年的最大流量是随机变量;
④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.
其中正确的个数是(  )
A.1           B.2
C.3 D.4
解析:选D 由随机变量的概念可以直接判断①②③④都是正确的.
2.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是(  )
A.X和ξ B.只有Y
C.Y和ξ D.只有ξ
解析:选B 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B.
3.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是(  )
A.两颗都是2点
B.一颗是3点,另一颗是1点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点
解析:选D ξ=4表示两颗骰子的点数和为4.
4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是(  )
A.25 B.10
C.9 D.5
解析:选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.故选C.
5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为(  )
A.第k-1次检测到正品,而第k次检测到次品
B.第k次检测到正品,而第k+1次检测到次品
C.前k-1次检测到正品,而第k次检测到次品
D.前k次检测到正品,而第k+1次检测到次品
解析:选D ξ就是检测到次品前正品的个数,ξ=k表明前k次检测到的都是正品,第k+1次检测到的是次品.
6.甲进行3次射击,甲击中目标的概率为,记甲击中目标的次数为X,则X的可能取值为________.
解析:甲可能在3次射击中,一次未中,也可能中1次,2次,3次.
答案:0,1,2,3
7.在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为ξ,则{ξ<2}表示的试验结果是________.
解析:应分ξ=0和ξ=1两类.ξ=0表示取到3件正品;ξ=1表示取到1件次品、2件正品.故{ξ<2}表示的试验结果为取到1件次品、2件正品或取到3件正品.
答案:取到1件次品、2件正品或取到3件正品
8.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的球的最大号码,用(x,y,z)表示取出的三个球编号为x,y,z(x解析:从6个球中选出3个球,其中有一个是5号球,其余的2个球是1,2,3,4号球中的任意2个.
∴试验结果构成的集合是{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}.
答案:{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}
9.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为ξ,写出ξ的可能取值.
解:ξ的可能取值为0,1,2.
ξ=0表示在两天检查中均发现了次品.
ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.
ξ=2表示在两天检查中没有发现次品.
10.已知在10件产品中有2件不合格品,现从这10件产品中任取3件,这是一个随机现象.
(1)写出该随机现象所有可能出现的结果.
(2)试用随机变量来描述上述结果.
解:(1)从10件产品中任取3件,所有可能出现的结果是:“不含不合格品”“恰有1件不合格品”“恰有2件不合格品”.
(2)令X表示取出的3件产品中的不合格品数.则X所有可能的取值为0,1,2,对应着任取3件产品所有可能出现的结果.即“X=0”表示“不含不合格品”;
“X=1”表示“恰有1件不合格品”;
“X=2”表示“恰有2件不合格品”.
层级二 应试能力达标
1.①某电话亭内的一部电话1小时内使用的次数记为X;
②某人射击2次,击中目标的环数之和记为X;
③测量一批电阻,阻值在950 Ω~1 200 Ω之间;
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是(  )
A.①②         B.①③
C.①④ D.①②④
解析:选A ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量.
2.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是(  )
A.第一枚6点,第二枚2点
B.第一枚5点,第二枚1点
C.第一枚2点,第二枚6点
D.第一枚6点,第二枚1点
解析:选D 只有D中的点数差为6-1=5>4,其余均不是,应选D.
3.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为(  )
A.X=4 B.X=5
C.X=6 D.X≤4
解析:选C 第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.
4.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是(  )
A.25 B.10
C.7 D.6
解析:选C ∵y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故y的所有可能取值为3,4,5,6,7,8,9,共7个.
5.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.
解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.
答案:4
6.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为ξ,则随机变量ξ的所有可能取值的种数为________.
解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A=24种.
答案:24
7.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.
(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;
(2)抛掷甲、乙两枚骰子,所得点数之和Y.
解:(1)ξ可取0,1,2.
ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.
(2)Y的可能取值为2,3,4,…,12.若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).
8.写出下列随机变量可能的取值,并说明随机变量所表示的随机试验的结果.
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.
解:因为x,y可能取的值为1,2,3,
所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,
所以ξ可能的取值为0,1,2,3,
用(x,y)表示第一次抽到卡片号码为x,
第二次抽到卡片号码为y,
则随机变量ξ取各值的意义为:
ξ=0表示两次抽到卡片编号都是2,即(2,2).
ξ=1表示(1,1),(2,1),(2,3),(3,3).
ξ=2表示(1,2),(3,2).
ξ=3表示(1,3),(3,1).
2.1.2 离散型随机变量的分布列
预习课本P46~48,思考并完成以下问题
1.离散型随机变量的分布列的定义是什么?
2.离散型随机变量分布列的性质是什么?
3.两点分布和超几何分布的定义是什么?
    
1.离散型随机变量的分布列
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn, X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则称表:
X
x1
x2

xi

xn
P
p1
p2

pi

pn
为离散型随机变量X的概率分布列, 简称为X的分布列.
用等式可表示为P(X=xi)=pi,i=1,2,…,n, 也可以用图象来表示X的分布列.
(2)离散型随机变量的分布列的性质
①pi≥0,i=1,2,…,n;
②i=1.
[点睛] 对离散型随机变量分布列的三点说明
(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值, 而且也能看出取每一个值的概率的大小, 从而反映出随机变量在随机试验中取值的分布情况.
(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.
(3)离散型随机变量可以用分布列、解析式、图象表示.
2.两个特殊分布
(1)两点分布
随机变量X的分布列是:
X
0
1
P
1-p
p
则称离散型随机变量X服从两点分布,称p=P(X=1)为成功概率.
(2)超几何分布
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,
称分布列
X
0
1

m
P

为超几何分布列.如果随机变量X的分布列为超几何分布列,则称离散型随机变量X服从超几何分布.
[点睛] (1)超几何分布的模型是不放回抽样.
(2)超几何分布中的参数是M,N,n.
(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数.(  )
(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.(  )
(3)超几何分布的总体里只有两类物品.(  )
答案:(1)× (2)× (3)√
2.设离散型随机变量ξ的概率分布如下表:
ξ
1
2
3
4
P
p
则p的值为(  )
A.          B.
C. D.
答案:C
3.若随机变量X服从两点分布, 且P(X=0)=0.8,P(X=1)=0.2,令Y=3X-2,则P(Y=-2)=________.
答案:0.8
4.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)=_______.
答案:
求离散型随机变量的分布列
[典例] 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的分布列.
[解] 随机变量ξ的可能取值为3,4,5.
当ξ=3时,即取出的三只球中最大号码为3,则其他两只球的编号只能是1,2,故有P(ξ=3)==;
当ξ=4时,即取出的三只球中最大号码为4,则其他两只球只能在编号为1,2,3的3只球中取2只,
故有P(ξ=4)==;
当ξ=5时,即取出的三只球中最大号码为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)===.
因此,ξ的分布列为
ξ
3
4
5
P
求离散型随机变量分布列的步骤
(1)首先确定随机变量X的取值;
(2)求出每个取值对应的概率;
(3)列表对应,即为分布列.      
[活学活用]
某班有学生45人,其中O型血的有10人,A型血的有12人,B型血的有8人,AB型血的有15人.现从中抽1人,其血型为随机变量X,求X的分布列.
解:将O,A,B,AB四种血型分别编号为1,2,3,4,则X的可能取值为1,2,3,4.
P(X=1)==, P(X=2)==,
P(X=3)==, P(X=4)==.
故其分布列为
X
1
2
3
4
P
离散型随机变量分布列的性质
[典例] 设随机变量ξ的分布列为P(ξ=k)=ak.(k=1,2,…,n),求实数a的值.
[解] 依题意,有P(ξ=1)=a,
P(ξ=2)=2a,…,P(ξ=n)=na,
由P(ξ=1)+P(ξ=2)+…+P(ξ=n)=1,
知a=1.
则a·=1.
∴a=.
离散型随机变量的分布列的性质的应用
(1)通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.
(2)求对立事件的概率或判断某概率是否成立.      
[活学活用]
1.设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P(ξ解析:由条件知P(ξ=k)=,k=5,6,…,16,P(ξ答案:(5,6]
2.设随机变量X的分布列P(X=i)=(i=1,2,3),则P(X≥2)=________.
解析:由已知得随机变量X的分布列为
X
1
2
3
P
∴++=1,∴k=.
∴P(X≥2)=P(X=2)+P(X=3)=+=+=.
答案:
两点分布
[典例] 袋中有5个白球,6个红球,从中摸出两球,记X=求随机变量X的分布列.
[解] 由题意知,X服从两点分布,P(X=0)==,所以P(X=1)=1-=.
所以随机变量X的分布列为
X
0
1
P
两点分布的4个特点
(1)两点分布中只有两个对应结果,且两结果是对立的;
(2)两点分布中的两结果一个对应1,另一个对应0;
(3)由互斥事件的概率求法可知,已知P(X=0)(或P(X=1)),便可求出P(X=1)(或P(X=0)).
(4)在有多个结果的随机试验中,如果我们只关心一个随机事件是否发生,就可以利用两点分布来研究它.      
[活学活用]
已知一批200件的待出厂产品中,有1件不合格品,现从中任意抽取2件进行检查,若用随机变量X表示抽取的2件产品中的次品数,求X的分布列.
解:由题意知,X服从两点分布,P(X=0)==,
所以P(X=1)=1-=.
所以随机变量X的分布列为
X
0
1
P
超几何分布
[典例] 从一批含有13件正品、2件次品的产品中,不放回地任取3件,求取得次品数ξ的分布列.
[解] 设随机变量ξ表示取出次品的件数,则ξ服从超几何分布,其中N=15,M=2,n=3,ξ的可能的取值为0,1,2,它相应的概率依次为
P(ξ=0)==;P(ξ=1)==;
P(ξ=2)==.
所以ξ的分布列为
ξ
0
1
2
P
求解超几何分布问题的注意事项
(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布.
(2)在超几何分布公式中P(X=k)=,k=0,1,2,…,m,其中m=min{M,n}.这里N是产品总数,M是产品中次品数,n是抽样的样品数.
(3)如果随机变量X服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X的所有取值.
(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.      
[活学活用]
袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得0分,从袋中任取4个球.
(1)求得分X的分布列.
(2)求得分不小于6分的概率.
解:(1)从袋中随机摸4个球的情况为:
1红3黑,2红2黑,3红1黑,4红共四种情况,分别得分为2分,4分,6分,8分,故X的可能取值为2,4,6,8.
P(X=2)==;P(X=4)==;
P(X=6)==;P(X=8)==.
所以X的分布列为
X
2
4
6
8
P
(2)由(1)中分布列得P(X≥6)=P(X=6)+P(X=8)=.
层级一 学业水平达标
1.下列问题中的随机变量不服从两点分布的是(  )
A.抛掷一枚骰子,所得点数为随机变量X
B.某射手射击一次,击中目标的次数为随机变量X
C.从装有5个红球,3个白球的袋中取1个球,令随机变量X=
D.某医生做一次手术,手术成功的次数为随机变量X
解析:选A A中随机变量X的取值有6个,不服从两点分布,故选A.
2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P(ξ=0)=(  )
A.0    B.    C.    D.
解析:选C 由题意,“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p,则成功率为2p,则ξ的分布列为
ξ
0
1
P
p
2p
∵p+2p=1,∴p=,即P(ξ=0)=.
3.某射手射击所得环数X的分布列为
X
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
则此射手“射击一次命中环数大于7”的概率为(  )
A.0.28        B.0.88
C.0.79 D.0.51
解析:选C P(ξ>7)=P(ξ=8)+P(ξ=9)+P(ξ=10)=0.28+0.29+0.22=0.79.
4.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10. 现从中任取4个球,有如下几种变量:
①X表示取出的球的最大号码;②Y表示取出的球的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数.
这四种变量中服从超几何分布的是(  )
A.①② B.③④
C.①②④ D.①②③④
解析:选B 依据超几何分布的数学模型及计算公式知③④属超几何分布.
5.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是(  )
A. B.
C. D.
解析:选B 取出的红球服从超几何分布,故P==.
6.随机变量η的分布列如下:
η
1
2
3
4
5
6
P
0.2
x
0.35
0.1
0.15
0.2
则x=________,P(η≤3)=________.
解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.
答案:0 0.55
7.从装有3个红球、2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布列为________.
解析:P(ξ=0)==0.1,P(ξ=1)==0.6,P(ξ=2)==0.3.
答案:
ξ
0
1
2
P
0.1
0.6
0.3
8.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量ξ,则P(ξ>1)=________.
解析:依题意,P(ξ=1)=2P(ξ=2),P(ξ=3)=P(ξ=2),P(ξ=3)=P(ξ=4),由分布列性质得
P(ξ=1)+P(ξ=2)+P(ξ=3)+P(ξ=4)=1,
则4P(ξ=2)=1,即P(ξ=2)=,P(ξ=3)=P(ξ=4)=.
∴P(ξ>1)=P(ξ=2)+P(ξ=3)+P(ξ=4)=.
答案:
9.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列;
(2)求“所选3人中女生人数ξ≤1”的概率.
解:由题意知,ξ服从超几何分布,则P(ξ=k)=,k=0,1,2.
(1)ξ可能取的值为0,1,2.
所以ξ的分布列为
ξ
0
1
2
P
(2)由(1)知,“所选3人中女生人数ξ≤1”的概率为P(ξ≤1)=P(ξ=0)+P(ξ=1)=.
10.为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别
北京
上海
天津
八一
人数
4
6
3
5
(1)从这18名队员中随机选出两名,求两人来自同一队的概率;
(2)中国女排奋力拼搏,战胜了韩国队获得冠军,若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列.
解:(1)“从这18名队员中选出两名,两人来自于同一队”记作事件A,
则P(A)==.
(2)ξ的所有可能取值为0,1,2.
∵P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,
∴ξ的分布列为
ξ
0
1
2
P
层级二 应试能力达标1.设随机变量ξ等可能取值1,2,3,…,n,如果P(ξ<4)=0.3,那么(  )
A.n=3        B.n=4
C.n=10 D.n=9
解析:选C 由ξ<4知ξ=1,2,3,所以P(ξ=1)+P(ξ=2)+P(ξ=3)=0.3=,解得n=10.
2.随机变量ξ的分布列为
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差数列,则P(|ξ|=1)等于(  )
A. B.
C. D.
解析:选D ∵a,b,c成等差数列,∴2b=a+c.又a+b+c=1,∴b=.∴P(|ξ|=1)=a+c=.
3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为(  )
A. B.
C. D.
解析:选D 从袋中任取10个球,其中红球的个数X服从参数为N=100,M=80,n=10的超几何分布,故恰有6个红球的概率为P(X=6)=.
4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=,且该产品的次品率不超过40%,则这10件产品的次品率为(  )
A.10% B.20%
C.30% D.40%
解析:选B 设10件产品中有x件次品,则P(ξ=1)===,∴x=2或8.∵次品率不超过40%,∴x=2,∴次品率为=20%.
5.设随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,…,n),则常数a=________.
解析:由分布列的性质可得,a(1+2+…+n)=1,
所以a=.
答案:
6.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________.
解析:由题意取出的3个球必为2个旧球1个新球,
故P(X=4)==.
答案:
7.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的概率分布列.
解:(1)P=1-=1-=,
即该顾客中奖的概率为.
(2)X的所有可能值为:0,10,20,50,60.
且P(X=0)==,P(X=10)==,
P(X=20)==,P(X=50)==,
P(X=60)==.
故X的概率分布列为:
X
0
10
20
50
60
P
8.为了掌握高二年级学生参加《普通高中信息技术学业水平测试》的备考情况,学校信息技术老师准备对报名参加考试的所有学生进行一次模拟测试,模拟测试时学生需要在10道备选试题中随机抽取5道试题作答,答对5道题时测试成绩为A等(即优秀),答对4道题时测试成绩为B等(即良好),答对3道题时测试成绩为C等(即及格),答对3道题以下(不包括答对3道题)时测试成绩为D等(即不及格),成绩为D等的同学必须参加辅导并补考.如果考生张小明只会答这10道备选试题中的6道题,设张小明同学从10道备选试题中随机抽取5道作答时,不会答的题数为随机变量X,求:
(1)随机变量X的分布列;
(2)求张小明同学需要参加补考的概率.
解:(1)在10道备选试题中随机抽取5道试题作答时,其中不会答的题数可能是0,1,2,3,4道,即随机变量X的所有取值是0,1,2,3,4,其中N=10,M=4,n=5,根据超几何分布概率公式,得
P(X=0)==,
P(X=1)==,P(X=2)==,
P(X=3)==,P(X=4)==.
∴随机变量X的分布列为:
X
0
1
2
3
4
P
(2)需要参加补考,说明张小明同学从10道备选试题中随机抽取5道试题作答时,有3道试题或者4道试题答不出来,所以张小明同学在这次测试中需要参加补考的概率是P(X≥3)=P(X=3)+P(X=4)=+=.
 
2.2.1 条件概率
预习课本P51~53,思考并完成以下问题
1.条件概率的定义是什么?它的计算公式有哪些?
2.条件概率的特点是什么?它具有哪些性质?
    
1.条件概率
(1)概念
设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.
(2)计算公式
①缩小样本空间法:P(B|A)=;
②公式法:P(B|A)=.
[点睛]
(1)P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率.
(2)P(B|A)与P(B):在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等.
2.条件概率的性质
(1)有界性:0≤P(B|A)≤1.
(2)可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
[点睛] 对条件概率性质的两点说明
(1)前提条件:P(A)>0.
(2)P(B∪C|A)=P(B|A)+P(C|A),必须B与C互斥,并且都是在同一个条件A下.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)若事件A,B互斥,则P(B|A)=1.(  )
(2)事件A发生的条件下, 事件B发生,相当于A, B同时发生.(  )
答案:(1)× (2)√
2.已知P(AB)=,P(A)=,则P(B|A)为(  )
A.            B.
C. D.
答案:B
3.下列式子成立的是(  )
A.P(A|B)=P(B|A) B.0C.P(AB)=P(B|A)·P(A) D.P(A∩B|A)=P(B)
答案:C
4.把一枚硬币任意掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(B|A)=________.
答案:
条件概率的计算
[典例] 抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”,求:(1)事件A发生的条件下,事件B发生的概率.
(2)事件B发生的条件下,事件A发生的概率.
[解] [法一 定义法]
抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A的基本事件数为6×2=12,所以P(A)==.
由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8,所以事件B的基本事件数为4+3+2+1=10,所以P(B)==.在事件A发生的条件下,事件B发生,即事件AB的基本事件数为6.
故P(AB)==.由条件概率公式,得
(1)P(B|A)===,
(2)P(A|B)===.
[法二 缩减基本事件总数法]
n(A)=6×2=12.
由3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8知,n(B)=10,其中n(AB)=6.
所以(1)P(B|A)===,
(2)P(A|B)===.
计算条件概率的两种方法
提醒:(1)对定义法,要注意P(AB)的求法.
(2)对第二种方法,要注意n(AB)与n(A)的求法.      
[活学活用]
1.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为(  )
A.75%         B.96%
C.72% D.78.125%
解析:选C 记“任选一件产品是合格品”为事件A,则P(A)=1-P()=1-4%=96%. 记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%; 故P(B)=P(AB)=P(A)·P(B|A)=96%×75%=72%.
2.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的概率.
解:令A={第1只是好的},B={第2只是好的},
法一:n(A)=CC,n(AB)=CC,
故P(B|A)===.
法二:因事件A已发生(已知),故我们只研究事件B发生便可,在A发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P(B|A)==.
条件概率的应用
[典例] 在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.
[解] 法一:设“摸出第一个球为红球”为事件A,“摸出第二个球为黄球”为事件B,“摸出第二个球为黑球”为事件C,则
P(A)=,P(AB)==,P(AC)==.
∴P(B|A)====,P(C|A)===.
∴P(B∪C|A)=P(B|A)+P(C|A)=+=.
∴所求的条件概率为.
法二:∵n(A)=1×C=9,n(B∪C|A)=C+C=5,
∴P(B∪C|A)=.∴所求的条件概率为.
利用条件概率性质的解题策略
(1)分析条件,选择公式:首先看事件B,C是否互斥,若互斥,则选择公式P(B∪C|A)=P(B|A)+P(C|A).
(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.      
[活学活用]
在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.
解:记事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题,另一道答错”,事件C为“该考生答对了其中4道题,另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)
=++=,P(AD)=P(A),P(BD)=P(B),
P(E|D)=P(A|D)+P(B|D)
=+=+=.
故所求的概率为.
层级一 学业水平达标
1.已知P(B|A)=,P(A)=,则P(AB)等于(  )
A.         B.
C. D.
解析:选C P(AB)=P(B|A)·P(A)=×=.
2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是(  )
A. B.
C. D.1
解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是.
3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于(  )
A. B.
C. D.
解析:选C 由题意可知,n(B)=C22=12,n(AB)=A=6.
∴P(A|B)===.
4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)和P(B|A)分别等于(  )
A., B. ,
C., D. ,
解析:选C P(A|B)===,P(B|A)===.
5.用“0”“1”“2”组成的三位数码组中,若用A表示“第二位数字为0”的事件,用B表示“第一位数字为0”的事件,则P(A|B)=(  )
A. B.
C. D.
解析:选B 法一:∵P(B)==,P(AB)==,∴P(A|B)==,故选B.
法二:在B发生的条件下,问题转化为:用“0”“1”“2”组成三位数码,其中第二位数字为0,则P(A|B)为在上述条件下,第一位数字为0的概率,∴P(A|B)==.
6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________.
解析:设A=“投掷两颗骰子,其点数不同”,B=“ξ≤6”,则P(A)==,P(AB)=,∴P(B|A)==.
答案:
7.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.
解析:设A=“其中一个是女孩”,B=“其中一个是男孩”,则P(A)=,P(AB)=,∴P(B|A)==.
答案:
8.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.
解析:令第二次取得一等品为事件A,第一次取得二等品为事件B,则P(AB)==,P(A)==.
所以P(B|A)==×=.
答案:
9.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求:
(1)第一次取到新球的概率;
(2)第二次取到新球的概率;
(3)在第一次取到新球的条件下,第二次取到新球的概率.
解:设第一次取到新球为事件A,第二次取到新球为事件B.
(1)P(A)==.
(2)P(B)===.
(3)法一:P(AB)==,
P(B|A)===.
法二:n(A)=3×4=12,n(AB)=3×2=6,
P(B|A)===.
10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率.
解:设事件A表示“选到第一组学生”,
事件B表示“选到共青团员”.
(1)由题意,P(A)==.
(2)法一:要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=.
法二:P(B)==,P(AB)==,
∴P(A|B)==.
层级二 应试能力达标
1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是(  )
A.          B.
C. D.
解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P==.
2.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(  )
A. B.
C. D.
解析:选B ∵P(A)==,P(AB)==,
∴P(B|A)==.
3.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在吹东风的条件下下雨的概率为(  )
A. B.
C. D.
解析:选D 设事件A表示“该地区四月份下雨”,B表示“四月份吹东风”,则P(A)=,P(B)=,P(AB)=,从而在吹东风的条件下下雨的概率为P(A|B)===.
4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为(  )
A. B.
C. D.
解析:选D 设事件A表示“抽到2张都是假钞”,事件B为“2张中至少有一张假钞”,所以为P(A|B). 而P(AB)==,P(B)==.∴P(A|B)==.
5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.
解析:设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)==,P(AB)==,
所以P(B|A)==.
答案:
6.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.
解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为.
法二:设A=“取出的球不大于50”,B=“取出的数是2或3的倍数”,则P(A)==,P(AB)=,
∴P(B|A)==.
答案:
7.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:
(1)第1次抽到舞蹈节目的概率;
(2)第1次和第2次都抽到舞蹈节目的概率;
(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.
解:设“第1次抽到舞蹈节目”为事件A,“第2次抽到舞蹈节目”为事件B,则“第1次和第2次都抽到舞蹈节目”为事件AB.
(1)从6个节目中不放回地依次抽取2次的事件数为n(Ω)=A=30,
根据分步计数原理n(A)=AA=20,
于是P(A)===.
(2)因为n(AB)=A=12,于是
P(AB)===.
(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)===.
法二:因为n(AB)=12,n(A)=20,
所以P(B|A)===.
8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.
解:设A={从第一个盒子中取得标有字母A的球},
B={从第一个盒子中取得标有字母B的球},
R={第二次取出的球是红球},
则容易求得P(A)=,P(B)=,
P(R|A)=,P(R|B)=.
事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,
故由概率的加法公式,得
P(RA∪RB)=P(RA)+P(RB)
=P(R|A)P(A)+P(R|B)P(B)
=×+×=0.59.
2.2.2 事件的相互独立性
预习课本P54~55,思考并完成以下问题
1.事件的相互独立性的定义是什么?性质是什么?
2.相互独立事件与互斥事件的区别?
   
事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.
(2)性质:A与B是相互独立事件,则也相互独立.
[点睛] 相互独立事件与互斥事件的区别
相互独立事件
互斥事件
条件
事件A(或B)是否发生对事件B(或A)发生的概率没有影响
不可能同时发生的两个事件
符号
相互独立事件A,B同时发生,记作:AB
互斥事件A,B中有一个发生,记作:A∪B(或A+B)
计算公式
P(AB)=P(A)P(B)
P(A∪B)=P(A)+P(B)
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)不可能事件与任何一个事件相互独立.(  )
(2)必然事件与任何一个事件相互独立.(  )
(3)如果事件A与事件B相互独立,则P(B|A)=P(B).(  )
(4)“P(AB)=P(A)·P(B)”是“事件A,B相互独立”的充要条件.(  )
答案:(1)√ (2)√ (3)√ (4)√
2.甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.
答案:0.56
3.一件产品要经过两道独立的工序, 第一道工序的次品率为a, 第二道工序的次品率为b, 则该产品的正品率为________.
答案:(1-a)(1-b)
4.已知A,B是相互独立事件,且P(A)=,P(B)=,则P(A)=________,P(AB)=________.
答案: 
事件独立性的判断
[典例] 判断下列事件是否为相互独立事件.
(1)甲组3名男生, 2名女生; 乙组2名男生, 3名女生,现从甲、乙两组中各选1名同学参加演讲比赛, “从甲组中选出1名男生”与“从乙组中选出1名女生”.
(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.
[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件是否发生没有影响,所以它们是相互独立事件.
(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.
两个事件是否相互独立的判断
(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.
(2)定义法:如果事件A,B同时发生的概率等于事件A发生的概率与事件B发生的概率的积,则事件A,B为相互独立事件.
(3)条件概率法:当P(A)>0时,可用P(B|A)=P(B)判断.      
[活学活用]
把一颗质地均匀的骰子任意地掷一次,判断下列各组事件是否是独立事件?
(1)A={掷出偶数点},B={掷出奇数点};
(2)A={掷出偶数点},B={掷出3的倍数点};
(3)A={掷出偶数点},B={掷出的点数小于4}.
解:(1)∵P(A)=,P(B)=,P(AB)=0,
∴A与B不是相互独立事件.
(2)∵P(A)=,P(B)=,P(AB)=,
∴P(AB)=P(A)·P(B),
∴A与B是相互独立事件.
(3)∵P(A)=,P(B)=,P(AB)=,
∴P(AB)≠P(A)·P(B),
∴A与B不是相互独立事件.
相互独立事件概率的计算
[典例] 根据资料统计, 某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.6, 购买甲、乙保险相互独立, 各车主间相互独立.
(1)求一位车主同时购买甲、乙两种保险的概率;
(2)求一位车主购买乙种保险但不购买甲种保险的概率.
[解] 记A表示事件“购买甲种保险”,B表示事件“购买乙种保险”,则由题意得A与B,A与,与B,与都是相互独立事件,且P(A)=0.5,P(B)=0.6.
(1)记C表示事件“同时购买甲、乙两种保险”,
则C=AB,所以P(C)=P(AB)=P(A)·P(B)=0.5×0.6=0.3.
(2)记D表示事件“购买乙种保险但不购买甲种保险”,
则D=B,所以P(D)=P(B)=P()·P(B)=(1-0.5)×0.6=0.3.
[一题多变]
1.[变设问]本例中车主至少购买甲、乙两种保险中的一种的概率是多少?
解:法一:记E表示事件“至少购买甲、乙两种保险中的一种”,则事件E包括B,A,AB,且它们彼此为互斥事件.
所以P(E)=P(B+A+AB)=P(B)+P(A)+P(AB) 
=0.5×0.6+0.5×0.4+0.5×0.6=0.8.
法二:事件“至少购买甲、乙两种保险中的一种”与事件“甲、乙两种保险都不购买”为对立事件.
所以P(E)=1-P(AB)=1-(1-0.5)×(1-0.6)=0.8.
2.[变条件,变设问]某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.
(1)求这名同学得300分的概率;
(2)求这名同学至少得300分的概率.
解:记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
(1)这名同学得300分的概率
P1=P(A12A3)+P(1A2A3)
=P(A1)P(2)P(A3)+P(1)P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6=0.228.
(2)这名同学至少得300分的概率P2=P1+P(A1A2A3)=0.228+0.8×0.7×0.6=0.564.
(1)求相互独立事件同时发生的概率的步骤是:
①首先确定各事件之间是相互独立的;
②确定这些事件可以同时发生;
③求出每个事件的概率,再求积.
(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.    
相互独立事件概率的实际应用
[典例] 三个元件T1,T2,T3正常工作的概率分别为,,,将它们中的某两个元件并联后再和第三个元件串联接入电路,如图所示,求电路不发生故障的概率.
[解] 记“三个元件T1,T2,T3正常工作”分别为事件A1,A2,A3,则P(A1)=,P(A2)=,P(A3)=.
不发生故障的事件为(A2∪A3)A1,
∴不发生故障的概率为
P=P[(A2∪A3)A1]
=P(A2∪A3)·P(A1)
=[1-P(2)·P(3)]·P(A1)
=×=.
求较为复杂事件的概率的方法
(1)列出题中涉及的各事件,并且用适当的符号表示;
(2)理清事件之间的关系(两事件是互斥还是对立.或者是相互独立),列出关系式;
(3)根据事件之间的关系准确选取概率公式进行计算;
(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.      
[活学活用]
某校田径队有三名短跑运动员,根据平时的训练情况统计,甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内
(称为合格)的概率分别是,,,如果对这三名短跑运动员的100 m跑成绩进行一次检测.
(1)三人都合格的概率与三人都不合格的概率分别是多少?
(2)出现恰有几人合格的概率最大?
解:设“甲、乙、丙三人100 m跑合格”分别为事件A,B,C,
显然A,B,C相互独立,P(A)=,P(B)=,P(C)=,所以P()=1-=,P()=1-=,P()=1-=.
设恰有k人合格的概率为Pk(k=0,1,2,3).
(1)三人都合格的概率为
P3=P(ABC)=P(A)P(B)P(C)=××=.
三人都不合格的概率为P0=P()=P()P()P()=××=.
所以三人都合格的概率与三人都不合格的概率都是.
(2)因为AB,AC,BC两两互斥,所以恰有两人合格的概率为:P2=P(AB+AC+BC)
=P(AB)+P(AC)+P(BC)
=P(A)P(B)P()+P(A)P()P(C)+P()P(B)P(C)
=××+××+××=.
恰有一人合格的概率为P1=1-P0-P2-P3=1---==.
由(1)(2)知P0,P1,P2,P3中P1最大,所以出现恰有一人合格的概率最大.
层级一 学业水平达标
1.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是(  )
A.互斥事件       B.相互独立事件
C.对立事件 D.不相互独立事件
解析:选D 根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.故选D.
2.若P(AB)=,P()=,P(B)=,则事件A与B的关系是(  )
A.事件A与B互斥 B.事件A与B对立
C.事件A与B相互独立 D.事件A与B既互斥又独立
解析:选C 因为P()=,所以P(A)=,又P(B)=,P(AB)=,所以有P(AB)=P(A)P(B),所以事件A与B相互独立但不一定互斥.
3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是(  )
A. B.
C. D.
解析:选A 由题意知P甲==,P乙=,所以P=P甲·P乙=.
4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是(  )
A.0.56    B.0.92   C.0.94   D.0.96
解析:选C 设事件A表示:“甲击中”,事件B表示:“乙击中”.由题意知A,B互相独立.故目标被击中的概率为P=1-P(·)=1-P()P()=1-0.2×0.3=0.94.
5.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于(  )
A.2个球不都是红球的概率
B.2个球都是红球的概率
C.至少有1个红球的概率
D.2个球中恰好有1个红球的概率
解析:选C 至少有1个红球的概率是×+×+×=.
6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.
解析:所求概率P=0.8×0.1+0.2×0.9=0.26.
答案:0.26
7.已知P(A)=0.3,P(B)=0.5,当事件A,B相互独立时,P(A∪B)=________,P(A|B)=________.
解析:∵A,B相互独立,∴P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65. P(A|B)=P(A)=0.3.
答案:0.65 0.3
8.设两个相互独立的事件A,B都不发生的概率为,A发生B不发生的概率等于B发生A不发生的概率,则事件A发生的概率P(A)=________.
解析:由已知可得
解得P(A)=P(B)=.
答案:
9.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为和.求:
(1)甲、乙两个气象台同时预报天气准确的概率.
(2)至少有一个气象台预报准确的概率.
解:记“甲气象台预报天气准确”为事件A,“乙气象台预报天气准确”为事件B.显然事件A,B相互独立且P(A)=,P(B)=.
(1)P(AB)=P(A)P(B)=×=.
(2)至少有一个气象台预报准确的概率为
P=1-P(AB)=1-P()P()=1-×=.
10.已知A,B,C为三个独立事件,若事件A发生的概率是,事件B发生的概率是,事件C发生的概率是,求下列事件的概率:
(1)事件A,B,C只发生两个;
(2)事件A,B,C至多发生两个.
解:(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,A·B·;A··C;·B·C,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(A·B·)+P(A··C)+P(·B·C)=++=,∴事件A,B,C只发生两个的概率为.
(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,
故P(A2)=P(A3)+P(A4)+P(A5)=++=.
∴事件A,B,C至多发生两个的概率为.
层级二 应试能力达标
1.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为(  )
A.0.12         B.0.88
C.0.28 D.0.42
解析:选D P=(1-0.3)(1-0.4)=0.42.
2.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是(  )
A.    B.    C.    D.
解析:选A 设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.
3.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  )
A. B.
C. D.
解析:选A 按A→B→C→A的顺序的概率为××=,按A→C→B→A的顺序的概率为××=,故跳三次之后停在A叶上的概率为P=+=.
4.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为(  )
A. B.
C. D.
解析:选C 记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P()P()[1-P(AB)]=××=.∴灯亮的概率为1-=.
5.加工某零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________.
解析:加工出来的零件的正品率为××=,所以次品率为1-=.
答案:
6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.
答案:0.128
7.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6,0.4,0.5,0.2.已知各轮问题能否正确回答互不影响.
(1)求该选手被淘汰的概率;
(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率.
解:记“该选手能正确回答第i轮的问题”为事件Ai(i=1,2,3,4),
则P(A1)=0.6,P(A2)=0.4,P(A3)=0.5,P(A4)=0.2.
(1)法一:该选手被淘汰的概率:
P=P(1∪A12∪A1A23∪A1A2A34)
=P(1)+P(A1)P(2)+P(A1)P(A2)P(3)+
P(A1)P(A2)P(A3)P(4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.
法二:P=1-P(A1A2A3A4)=1-P(A1)P(A2)·P(A3)·P(A4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.
(2)法一:P=P(A12∪A1A23∪A1A2A34)=P(A1)P(2)+P(A1)P(A2)P(3)+P(A1)P(A2)P(A3)P(4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.
法二:P=1-P(1)-P(A1A2A3A4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.
8.(全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区: 73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分
低于70分
70分到89分
不低于90分
满意度等级
不满意
满意
非常满意
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
解:(1)两地区用户满意度评分的茎叶图如下:
通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.
(2)记CA1表示事件:“A地区用户的满意度等级为满意或非常满意”;
CA2表示事件:“A地区用户的满意度等级为非常满意”;
CB1表示事件:“B地区用户的满意度等级为不满意”;
CB2表示事件:“B地区用户的满意度等级为满意”,
则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,C=CB1CA1∪CB2CA2.
P(C)=P(CB1CA1∪CB2CA2)
=P(CB1CA1)+P(CB2CA2)
=P(CB1)P(CA1)+P(CB2)P(CA2).
由所给数据得CA1,CA2,CB1,CB2发生的频率分别为,,,,故P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=,P(C)=×+×=0.48.
2.2.3 独立重复试验与二项分布
预习课本P56~57,思考并完成以下问题
1.独立重复试验及二项分布的定义分别是什么?
2.两点分布与二项分布之间有怎样的关系?
    
1.独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验.
2.二项分布
在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.
[点睛] 两点分布与二项分布的区别
两点分布
二项分布


只要两个结果,这两个结果是对立的,即要么发生,要么不发生
在每次试验中只有两个结果,这两个结果是对立的,即要么发生,要么不发生.但在n次独立重复试验中共有n+1个结果
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)独立重复试验每次试验之间是相互独立的.(  )
(2)独立重复试验每次试验只有发生与不发生两种结果.(  )
(3)独立重复试验各次试验发生的事件是互斥的.(  )
答案:(1)√ (2)√ (3)×
2.已知X~B,则P(X=4)=________.
答案:
3.连续掷一枚硬币5次, 恰好有3次出现正面向上的概率是________.
答案:
4.某人射击一次击中目标的概率为0.6, 经过3次射击, 此人至少有两次击中目标的概率为________.
答案:0.648
独立重复试验概率的求法
[典例] 某人射击5次,每次中靶的概率均为0.9,求他至少有2次中靶的概率.
[解] [法一 直接法]
在5次射击中恰好有2次中靶的概率为C×0.92×0.13;
在5次射击中恰好有3次中靶的概率为C×0.93×0.12;
在5次射击中恰好有4次中靶的概率为C×0.94×0.1;
在5次射击中5次均中靶的概率为C×0.95.
所以至少有2次中靶的概率为
C×0.92×0.13+C×0.93×0.12+C×0.94×0.1+C×0.95
=0.008 1+0.072 9+0.328 05+0.590 49=0.999 54.
[法二 间接法]
至少有2次中靶的对立事件是至多有1次中靶,它包括恰好有1次中靶与全没有中靶两种情况,显然这是两个互斥事件.
在5次射击中恰好有1次中靶的概率为C×0.9×0.14;
在5次射击中全没有中靶的概率为0.15,
所以至少有2次中靶的概率为
1-C×0.9×0.14-0.15=1-0.000 45-0.000 01=0.999 54.
独立重复试验概率求解的关注点
(1)解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.
(2)运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率.      
[活学活用]
某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率;
(3)其中恰有3次连续击中目标,而其他两次没有击中目标的概率.
解:(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也就是在第二、四次没有击中目标,所以只有一种情况,又因为各次射击的结果互不影响,故所求概率为
P=××××=.
(2)该射手射击了5次,其中恰有3次击中目标.根据排列组合知识,5次当中选3次,共有C种情况,因为各次射击的结果互不影响,所以符合n次独立重复试验概率模型.故所求概率为
P=C×3×2=.
(3)该射手射击了5次,其中恰有3次连续击中目标,而其他两次没有击中目标,应用排列组合知识,把3次连续击中目标看成一个整体可得共有C种情况.
故所求概率为P=C·3·2=.
二项分布问题
[典例] 已知某种从太空飞船中带回来的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,如果某次没有发芽,则称该次试验是失败的.
(1)第一小组做了3次试验,记该小组试验成功的次数为X,求X的概率分布列.
(2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败的概率.
[解] (1)由题意,随机变量X可能取值为0,1,2,3,
则X~B.
即P(X=0)=C03=,
P(X=1)=C12=,
P(X=2)=C21=,
P(X=3)=C3=.
所以X的概率分布列为
X
0
1
2
3
P
(2)第二小组第7次试验成功,前面6次试验中有3次失败,3次成功,每次试验又是相互独立的,
因此所求概率为P=C3×3×=.
判断一个随机变量是否服从二项分布的关键
(1)对立性, 即一次试验中,事件发生与否二者必居其一.
(2)重复性, 即试验独立重复地进行了n次.
(3)随机变量是事件发生的次数.      
[活学活用]
1.已知X~B,则P(X=2)=________.
解析:P(X=2)=C28=.
答案:
2.某一中学生心理咨询中心服务电话接通率为,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数X的分布列.
解:由题意可知:X~B,
所以P(X=k)=Ck·3-k,k=0,1,2,3.
即P(X=0)=C×0×3=;
P(X=1)=C××2=;
P(X=2)=C×2×=;
P(X=3)=C×3=.
分布列为
X
0
1
2
3
P
层级一 学业水平达标
1.任意抛掷三枚硬币,恰有两枚正面朝上的概率为(  )
A.          B.
C. D.
解析:选B 每枚硬币正面朝上的概率为,正面朝上的次数X~B,故所求概率为C2×=.
2.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是(  )
A.[0.4,1] B.(0,0.4]
C.(0,0.6] D.[0.6,1)
解析:选A 由题意,C·p(1-p)3≤Cp2(1-p)2,∴4(1-p)≤6p,∴0.4≤p≤1.
3.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是(  )
A. B.
C. D.
解析:选B 每种颜色的球被抽取的概率为,从而抽取三次,球的颜色全相同的概率为C3=3×=.
4.某电子管正品率为,次品率为,现对该批电子管进行测试,设第ξ次首次测到正品,则P(ξ=3)=(  )
A.C2× B.C2×
C.2× D.2×
解析:选C ξ=3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是2×,故选C.
5.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在一次试验中发生的概率为(  )
A. B.
C. D.
解析:选A 设事件A在一次试验中发生的概率为p,由题意得1-Cp0(1-p)4=,所以1-p=,故p=.
6.下列事件中随机变量ξ服从二项分布的有________(填序号).
①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;
②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;
③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n次抽取中出现次品的件数(M④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n次抽取中出现次品的件数(M解析:对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)=.而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,……,n)的概率P(ξ=k)=C×k×n-k,符合二项分布的定义,即有ξ~B.
对于②,ξ的取值是1,2,3,……,P(ξ=k)=0.9×0.1k-1(k=1,2,3,……n),显然不符合二项分布的定义,因此ξ不服从二项分布.
③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.
答案:①③
7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).
解析:至少3人被治愈的概率为C×(0.9)3×0.1+(0.9)4=0.947 7.
答案:0.947 7
8.设X~B(4,p),且P(X=2)=,那么一次试验成功的概率p等于________.
解析:P(X=2)=Cp2(1-p)2=,即p2(1-p)2=2·2,
解得p=或p=.
答案:或
9.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),求一天内至少3人同时上网的概率.
解:记Ar(r=0,1,2,…,6)为“r个人同时上网”这个事件,则其概率为P(Ar)=C0.5r(1-0.5)6-r=C0.56=C,“一天内至少有3人同时上网”即为事件A3∪A4∪A5∪A6,因为A3,A4,A5,A6为彼此互斥事件,所以可应用概率加法公式,得“一天内至少有3人同时上网”的概率为P=P(A3∪A4∪A5∪A6)=P(A3)+P(A4)+P(A5)+P(A6)=(C+C+C+C)=×(20+15+6+1)=.
10.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2分钟.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列.
解:(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为
P(A)=××=.
(2)由题意,可得ξ可以取的值为0,2,4,6,8(单位:分钟),
事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),
∴P(ξ=2k)=Ck4-k(k=0,1,2,3,4),
即P(ξ=0)=C×0×4=;
P(ξ=2)=C××3=;
P(ξ=4)=C×2×2=;
P(ξ=6)=C×3×=;
P(ξ=8)=C×4×0=.
∴ξ的分布列是
ξ
0
2
4
6
8
P
层级二 应试能力达标
1.在某次试验中,事件A出现的概率为p,则在n次独立重复试验中出现k次的概率为(  )
A.1-pk        B.(1-p)kpn-k
C.1-(1-p)k D.C(1-p)kpn-k
解析:选D 出现1次的概率为1-p,由二项分布概率公式可得出现k次的概率为C(1-p)kpn-k.
2.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值等于(  )
A.0 B.1
C.2 D.3
解析:选C 事件A=“正面向上”发生的次数ξ~B,由题设C5=C·5,∴k+k+1=5,∴k=2.
3.若随机变量ξ~B,则P(ξ=k)最大时,k的值为(  )
A.1或2 B.2或3
C.3或4 D.5
解析:选A 依题意P(ξ=k)=C×k×5-k,k=0,1,2,3,4,5.
可以求得P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=.故当k=2或1时P(ξ=k)最大.
4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是.则质点P移动5次后位于点(2,3)的概率为(  )
A.5 B.C5
C.C3 D.CC5
解析:选B 质点每次只能向上或向右移动,且概率均为,所以移动5次可看成做了5次独立重复试验.质点P移动5次后位于点(2,3)(即质点在移动过程中向右移动2次,向上移动3次)的概率为C23=C5.
5.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=,则P(Y≥2)的值为________.
解析:由条件知,P(X=0)=1-P(X≥1)==Cp0(1-p)2,∴p=,∴P(Y≥2)=1-P(Y=0)-P(Y=1)=1-Cp0(1-p)4-Cp(1-p)3=1--=.
答案:
6.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{an}:an=如果Sn为数列{an}的前n项和,那么S5=3的概率为________.
解析:由题意知有放回地摸球为独立重复试验,且试验次数为5,这5次中有1次摸得红球.每次摸取红球的概率为,所以S5=3时,概率为C·1·4=.
答案:
7.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7,0.6,0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的2倍.
(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;
(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X,求X的分布列.
解:(1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A,B,C,
则P(A)=0.7,P(B)=0.6,P(C)=0.8.
所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为
P=1-P()P()P()=1-0.3×0.4×0.2=0.976.
(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为
P==0.7.
(3)依题意抽取的4件样品中一等品的个数X的可能取值为0,1,2,3,4,则
P(X=0)=C×0.34=0.008 1.
P(X=1)=C×0.7×0.33=0.075 6,
P(X=2)=C×0.72×0.32=0.264 6,
P(X=3)=C×0.73×0.3=0.411 6,
P(X=4)=C×0.74=0.240 1,
∴X的分布列为
X
0
1
2
3
4
P
0.008 1
0.075 6
0.264 6
0.411 6
0.240 1
8.某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰,若有500人参加测试,学生成绩的频率分布直方图如图.
(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他前两次连续答错的概率为,求甲在初赛中答题个数ξ的分布列.
解:(1)由频率分布直方图得,获得参赛资格的人数为
500×(0.005 0+0.004 3+0.003 2)×20=125人.
(2)设500名学生的平均成绩为,则=(40×0.006 5+60×0.014 0+80×0.017 0+100×0.005 0+120×0.004 3+140×0.003 2)×20=78.48(分).
(3)设学生甲答对每道题的概率为P(A),
则(1-P(A))2=,
∴P(A)=.
学生甲答题个数ξ的可能值为3,4,5,
则P(ξ=3)=3+3=,
P(ξ=4)=C××3+C××3=,
P(ξ=5)=C×2×2=.
所以ξ的分布列为
ξ
3
4
5
P
2.3.1 离散型随机变量的均值
预习课本P60~63,思考并完成以下问题
1.什么是离散型随机变量的均值?怎么利用离散型随机变量的分布列求出均值?
2.离散型随机变量的均值有什么性质?
3.两点分布、二项分布的均值是什么?
    
1.离散型随机变量的均值或数学期望
若离散型随机变量X的分布列为
X
x1
x2

xi

xn
P
p1
p2

pi

pn
则称E(X)=x1p1+x2p2+…+xipi+…+xnpn_为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.
2.离散型随机变量的均值的性质
若Y=aX+b,其中a,b为常数,则Y也是随机变量且P(Y=axi+b)=P(X=xi),i=1,2,…,n,E(Y)=E(aX+b)=aE(X)+b.
3.两点分布与二项分布的均值
(1)若X服从两点分布,则E(X)=p;
(2)若X服从二项分布,即X~B(n,p),则E(X)=np.
[点睛] 两点分布与二项分布的关系
(1)相同点:一次试验中要么发生要么不发生.
(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1, 二项分布中随机变量的取值X=0,1,2,…,n. ②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)随机变量X的数学期望E(X)是个变量,其随X的变化而变化.(  )
(2)随机变量的均值与样本的平均值相同.(  )
(3)若随机变量ξ的数学期望E(ξ)=3,则E(4ξ-5)=7.(  )
答案:(1)× (2)× (3)√
2.已知离散型随机变量X的分布列为
X
1
2
3
P
则X的数学期望E(X)=(  )
A.          B.2
C. D.3
答案:A
3.设随机变量X~B(16,p), 且E(X)=4, 则p=________.
答案:
4.一名射手每次射击中靶的概率均为0.8, 则他独立射击3次中靶次数X的均值为________.
答案:2.4
求离散型随机变量的均值
[典例] 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.
(1)求甲中奖且乙、丙都没有中奖的概率;
(2)求中奖人数ξ的分布列及均值E(ξ).
[解] (1)设甲、乙、丙中奖的事件分别为A,B,C,那么
P(A)=P(B)=P(C)=.
P(A··)=P(A)P()P()=××=.
故甲中奖且乙、丙都没有中奖的概率是.
(2)ξ的可能取值为0,1,2,3.
P(ξ=k)=Ck3-k,k=0,1,2,3.
P(ξ=0)=C×0×3=;
P(ξ=1)=C××2=;
P(ξ=2)=C×2×=,
P(ξ=3)=C×3×0=.
所以中奖人数ξ的分布列为
ξ
0
1
2
3
P
E(ξ)=0×+1×+2×+3×=.
求离散型随机变量的均值的步骤
(1)确定取值:根据随机变量X的意义,写出X可能取得的全部值;
(2)求概率:求X取每个值的概率;
(3)写分布列:写出X的分布列;
(4)求均值:由均值的定义求出E(X).
其中写出随机变量的分布列是求解此类问题的关键所在.      
[活学活用]
1.甲、乙两人各进行3次射击, 甲每次击中目标的概率为, 乙每次击中目标的概率为, 记甲击中目标的次数为X, 乙击中目标的次数为Y,
(1)求X的概率分布列;
(2)求X和Y的数学期望.
解:(1)已知X的所有可能取值为0,1,2,3.
P(X=k)=Ck3-k.
则P(X=0)=C×3=;
P(X=1)=C××2=;
P(X=2)=C×2×=;
P(X=3)=C×3=.
所以X的概率分布列如下表:
X
0
1
2
3
P
(2)由(1)知E(X)=0×+1×+2×+3×=1.5,或由题意X~B,Y~B,
∴E(X)=3×=1.5,E(Y)=3×=2.
2.某运动员投篮投中的概率P=0.6.
(1)求一次投篮时投中次数ξ的数学期望.
(2)求重复5次投篮时投中次数η的数学期望.
解:(1)ξ的分布列为:
ξ
0
1
P
0.4
0.6
则E(ξ)=0×0.4+1×0.6=0.6,
即一次投篮时投中次数ξ的数学期望为0.6.
(2)η服从二项分布,即η~B(5,0.6).
∴E(η)=np=5×0.6=3,
即重复5次投篮时投中次数η的数学期望为3.
离散型随机变量均值的性质
[典例] 已知随机变量X的分布列为:
X
-2
-1
0
1
2
P
m
若Y=-2X,则E(Y)=________.
[解析] 由随机变量分布列的性质, 得
+++m+=1, 解得m=,
∴E(X)=(-2)×+(-1)×+0×+1×+2×=-.
由Y=-2X,得E(Y)=-2E(X),
即E(Y)=-2×=.
[答案] 
[一题多变]
1.[变设问]本例条件不变,若Y=2X-3, 求E(Y).
解:由公式E(aX+b)=aE(X)+b及E(X)=-得,
E(Y)=E(2X-3)=2E(X)-3=2×-3=-.
2.[变条件,变设问]本例条件不变, 若ξ=aX+3, 且E(ξ)=-, 求a的值.
解:∵E(ξ)=E(aX+3)=aE(X)+3=-a+3=-,
∴a=15.
与离散型随机变量性质有关问题的解题思路
若给出的随机变量ξ与X的关系为ξ=aX+b,a,b为常数.一般思路是先求出E(X),再利用公式E(aX+b)=aE(X)+b求E(ξ).也可以利用ξ的分布列得到η的分布列,关键由ξ的取值计算η的取值,对应的概率相等,再由定义法求得E(η).    
均值的实际应用
[典例] 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为
ξ
1
2
3
4
5
P
0.4
0.2
0.2
0.1
0.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.
(1)求事件A“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);
(2)求η的分布列及均值E(η).
[解] (1)由A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知,表示事件“购买该商品的3位顾客中无人采用1期付款”.
P()=(1-0.4)3=0.216,
P(A)=1-P()=1-0.216=0.784.
(2)η的可能取值为200元,250元,300元.
P(η=200)=P(ξ=1)=0.4,
P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,
P(η=300)=P(ξ=4)+P(ξ=5)=0.1+0.1=0.2,
因此η的分布列为
η
200
250
300
P
0.4
0.4
0.2
E(η)=200×0.4+250×0.4+300×0.2=240(元).
1.实际问题中的均值问题
均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.
2.概率模型的解答步骤
(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.
(2)确定随机变量的分布列,计算随机变量的均值.
(3)对照实际意义,回答概率、均值等所表示的结论.      
[活学活用]
甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.求投篮结束时甲的投球次数ξ的分布列与数学期望.
解:设Ak,Bk分别表示甲、乙在第k次投篮投中,
则P(Ak)=,P(Bk)=,(k=1,2,3).
ξ的所有可能值为1,2,3.
由独立性知
P(ξ=1)=P(A1)+P(1B1)=+×=,
P(ξ=2)=P(11A2)+P(112B2)=××+2×2=,
P(ξ=3)=P(1122)=2×2=.
综上知,ξ的分布列为
ξ
1
2
3
P
数学期望为E(ξ)=1×+2×+3×=.
层级一 学业水平达标
1.若X是一个随机变量,则E(X-E(X))的值为(  )
A.无法求        B.0
C.E(X) D.2E(X)
解析:选B ∵E(aX+b)=aE(X)+b,而E(X)为常数,∴E(X-E(X))=E(X)-E(X)=0.
2.若随机变量ξ的分布列如下表所示,则E(ξ)的值为(  )
ξ
0
1
2
3
4
5
P
2x
3x
7x
2x
3x
x
A. B.
C. D.
解析:选C 根据概率和为1,可得x=,E(ξ)=0×2x+1×3x+2×7x+3×2x+4×3x+5×x=40x=.
3.某射击运动员在比赛中每次击中10环得1分,击不中10环得0分.已知他击中10环的概率为0.8,则射击一次得分X的期望是(  )
A.0.2 B.0.8
C.1 D.0
解析:选B 因为P(X=1)=0.8,P(X=0)=0.2,所以E(X)=1×0.8+0×0.2=0.8.
4.某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ~B,则E(-ξ)的值为(  )
A. B.-
C. D.-
解析:选D ∵E(ξ)=5×=,∴E(-ξ)=-E(ξ)=-,故选D.
5.有10件产品,其中3件是次品,从中任取2件,用X表示取到次品的个数,则E(X)等于(  )
A. B.
C. D.1
解析:选A X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==.所以E(X)=1×+2×=.
6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为________.
解析:X的可能取值为3,2,1,0,
P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;
P(X=1)=0.42×0.6=0.096;
P(X=0)=0.43=0.064.
所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064
=2.376.
答案:2.376
7.设离散型随机变量X可能的取值为1,2,3,P(X=k)=ak+b(k=1,2,3).又X的均值E(X)=3,则a+b=________.
解析:∵P(X=1)=a+b,P(X=2)=2a+b,P(X=3)=3a+b,
∴E(X)=1×(a+b)+2×(2a+b)+3×(3a+b)=3,
∴14a+6b=3.①
又∵(a+b)+(2a+b)+(3a+b)=1,
∴6a+3b=1.②
∴由①②可知a=,b=-,∴a+b=-.
答案:-
8.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.
解析:设小王选对的个数为X,得分为Y=5X,
则X~B(12,0.8),E(X)=np=12×0.8=9.6,
E(Y)=E(5X)=5E(X)=5×9.6=48.
答案:48
9.盒中装有5节同品牌的五号电池,其中混有2节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止.
求:(1)抽取次数X的分布列;
(2)平均抽取多少次可取到好电池.
解:(1)由题意知,X取值为1,2,3.
P(X=1)=;
P(X=2)=×=;
P(X=3)=×=.
所以X的分布列为
X
1
2
3
P
(2)E(X)=1×+2×+3×=1.5,
即平均抽取1.5次可取到好电池.
10.如图所示是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.
(1)求直方图中x的值;
(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.
解:(1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.
(2)由题意知,X~B(3,0.1).
因此P(X=0)=C×0.93=0.729;
P(X=1)=C×0.1×0.92=0.243;
P(X=2)=C×0.12×0.9=0.027;
P(X=3)=C×0.13=0.001.
故随机变量X的分布列为
X
0
1
2
3
P
0.729
0.243
0.027
0.001
故X的数学期望为E(X)=3×0.1=0.3.
层级二 应试能力达标1.已知随机变量ξ的分布列为
ξ
-1
0
1
P
m
若η=aξ+3,E(η)=,则a=(  )
A.1          B.2
C.3 D.4
解析:选B 由分布列的性质得++m=1,
∴m=.
∴E(ξ)=-1×+0×+1×=-.
∴E(η)=E(aξ+3)=aE(ξ)+3=-a+3=,∴a=2.
2.已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a,b,c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=|a-b|的取值,则ξ的数学期望E(ξ)为(  )
A. B.
C. D.
解析:选A ∵抛物线的对称轴在y轴的左侧,∴-<0,即>0,∴a与b同号.∴ξ的分布列为
ξ
0
1
2
P
∴E(ξ)=0×+1×+2×=.
3.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为,则口袋中白球的个数为(  )
A.3 B.4
C.5 D.2
解析:选A 设白球x个,则黑球7-x个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2,
P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==,
∴0×+1×+2×=,解得x=3.
4.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1 000件产品中的次品数,η表示乙车床生产1 000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:
ξ
0
1
2
3
P
0.7
0.1
0.1
0.1
η
0
1
2
3
P
0.5
0.3
0.2
0
据此判定(  )
A.甲比乙质量好 B.乙比甲质量好
C.甲与乙质量相同 D.无法判定
解析:选A E(ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,
E(η)=0×0.5+1×0.3+2×0.2+3×0=0.7.
∵E(η)>E(ξ),故甲比乙质量好.
5.设p为非负实数,随机变量X的概率分布为:
X
0
1
2
P
-p
p
则E(X)的最大值为________.
解析:由表可得从而得P∈,期望值E(X)=0×+1×p+2×=p+1,当且仅当p=时,E(X)最大值=.
答案:
6.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.
ξ
200
300
400
500
P
0.20
0.35
0.30
0.15
解析:节日期间这种鲜花需求量的均值为E(ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).
设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5=3.4ξ-450,
所以E(η)=3.4E(ξ)-450=3.4×340-450=706(元).
答案:706
7.(重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.
解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.
(2)X的所有可能值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==.
综上知,X的分布列为
X
0
1
2
P
故E(X)=0×+1×+2×=(个).
8.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.
(1)求一投保人在一年度内出险的概率p;
(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).
解:各投保人是否出险相互独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).
(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当ξ=0,P(A)=1-P()=1-P(ξ=0)=1-(1-p)104,
又P(A)=1-0.999104,故p=0.001.
(2)该险种总收入为104a元,支出是赔偿金总额与成本的和.
支出:104ξ+5×104,
盈利:η=104a-(104ξ+5×104),
由ξ~B(104,10-3)知,E(ξ)=10,
E(η)=104a-104E(ξ)-5×104
=104a-105-5×104.
由E(η)≥0?104a-105-5×104≥0?a-10-5≥0?a≥15(元).
故每位投保人应交纳的最低保费为15元.
2.3.2 离散型随机变量的方差
预习课本P64~67,思考并完成以下问题
1.离散型随机变量的方差及标准差的定义是什么?
2.方差具有哪些性质?
3.两点分布与二项分布的方差分别是什么?
1.离散型随机变量的方差
(1)设离散型随机变量X的分布列为
X
x1
x2

xi

xn
P
p1
p2

pi

pn
则称D(X)=(xi-E(X))2pi为随机变量X的方差,其算术平方根为随机变量X的标准差.
(2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
2.几个常见的结论
(1)D(aX+b)=a2D(X).
(2)若X服从两点分布,则D(X)=p(1-p).
(3)若X~B(n,p),则D(X)=np(1-p).
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)离散型随机变量的方差越大, 随机变量越稳定.(  )
(2)若a是常数, 则D(a)=0.(  )
(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.(  )
答案:(1)× (2)√ (3)√
2.若随机变量X服从两点分布, 且成功的概率p=0.5, 则E(X)和D(X)分别为(  )
A.0.5和0.25      B.0.5和0.75
C.1和0.25 D.1和0.75
答案:A
3.D(ξ-D(ξ))的值为(  )
A.无法求 B.0
C.D(ξ) D.2D(ξ)
答案:C
4.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于________.
答案:0.196
求离散型随机变量的方差
题点一:用定义求离散型随机变量的方差
1.已知随机变量X的分布列为:
X
0
1
2
3
4
5
P
0.1
0.15
0.25
0.25
0.15
0.1
则D(X)=________.
解析:因为E(X)=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,
所以D(X)=(0-2.5)2×0.1+(1-2.5)2×0.15+(2-2.5)2×0.25+(3-2.5)2×0.25+(4-2.5)2×0.15+(5-2.5)2×0.1=2.05.
答案:2.05
题点二:两点分布的方差
2.某运动员投篮命中率p=0.8,则该运动员在一次投篮中命中次数ξ的方差为________.
解析:依题意知:ξ 服从两点分布,
所以D(ξ)=0.8×(1-0.8)=0.16.
答案:0.16
题点三:二项分布的方差
3.一出租车司机从某饭店到火车站途中有6个交通岗, 假设他在各交通岗遇到红灯这一事件是相互独立的, 并且概率是.
(1)求这位司机遇到红灯数ξ的期望与方差;
(2)若遇上红灯, 则需等待30秒, 求司机总共等待时间η的期望与方差.
解:(1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B,
∴E(ξ)=6×=2,D(ξ)=6××=.
(2)由已知η=30ξ,
∴E(η)=30E(ξ)=60,D(η)=900D(ξ)=1 200.
求离散型随机变量X的方差的步骤
(1)理解X的意义,写出X可能取的全部值;
(2)求X取各个值的概率,写出分布列;
(3)根据分布列,由期望的定义求出E(X);
(4)根据公式计算方差.    
离散型随机变量方差的性质
[典例] 已知随机变量X的分布列是
X
0
1
2
3
4
P
0.2
0.2
0.3
0.2
0.1
试求D(X)和D(2X-1).
[解] E(X)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.
∴D(X)=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.
利用方差的性质D(aX+b)=a2D(X).
∵D(X)=1.56, ∴D(2X-1)=4D(X)=4×1.56=6.24.
求随机变量函数Y=aX+b方差的方法
求随机变量函数Y=aX+b的方差,一是先求Y的分布列,再求其均值,最后求方差;二是应用公式D(aX+b)=a2D(X)求解.      
[活学活用]
已知随机变量ξ的分布列为:
ξ
0
1
x
P
p
若E(ξ)=.
(1)求D(ξ)的值;
(2)若η=3ξ-2,求的值.
解:由分布列的性质,得++p=1,解得p=,
∵E(ξ)=0×+1×+x=, ∴x=2.
(1)D(ξ)=2×+2×+2×==.
(2)∵η=3ξ-2,
∴D(η)=D(3ξ-2)=9D(ξ)=5,∴=.
方差的实际问题
[典例] 为选拔奥运会射击选手,对甲、乙两名射手进行选拔测试.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ,η,甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中的10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术并从中选拔一人.
[解] (1)依题意,0.5+3a+a+0.1=1,解得a=0.1.
∵乙射中10,9,8环的概率分别为0.3,0.3,0.2,
∴乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.
∴ξ,η的分布列分别为
ξ
10
9
8
7
P
0.5
0.3
0.1
0.1
η
10
9
8
7
P
0.3
0.3
0.2
0.2
(2)由(1)可得
E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2(环);
E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7(环);
D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;
D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.
由于E(ξ)>E(η),说明甲平均射中的环数比乙高;
又因为D(ξ)所以,甲比乙的技术好,故应选拔甲射手参加奥运会.
利用均值和方差的意义解决实际问题的步骤
(1)比较均值:离散型随机变量的均值反映了离散型随机变量取值的平均水平, 因此, 在实际决策问题中, 需先计算均值,看一下谁的平均水平高.
(2)在均值相等的情况下计算方差:方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度. 通过计算方差,分析一下谁的水平发挥相对稳定.
(3)下结论:依据均值和方差的几何意义做出结论.      
[活学活用]
甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
X
0
1
2
3
P
0.3
0.3
0.2
0.2
乙保护区:
Y
0
1
2
P
0.1
0.5
0.4
试评定这两个保护区的管理水平.
解:甲保护区违规次数X的数学期望和方差为
E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3,
D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.
乙保护区的违规次数Y的数学期望和方差为:
E(Y)=0×0.1+1×0.5+2×0.4=1.3,
D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.
因为E(X)=E(Y),D(X)>D(Y),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定.
层级一 学业水平达标
1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计(  )
A.甲种水稻比乙种水稻分蘖整齐
B.乙种水稻比甲种水稻分蘖整齐
C.甲、乙两种水稻分蘖整齐程度相同
D.甲、乙两种水稻分蘖整齐程度不能比较
解析:选B ∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻分蘖整齐.
2.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为(  )
A.3·2-2       B.2-4
C.3·2-10 D.2-8
解析:选C E(X)=np=6,D(X)=np(1-p)=3,
∴p=,n=12,则P(X=1)=C××11=3·2-10.
3.设随机变量X的概率分布列为P(X=k)=pk·(1-p)1-k(k=0,1),则E(X),D(X)的值分别是(  )
A.0和1 B.p和p2
C.p和1-p D.p和(1-p)p
解析:选D 由X的分布列知,P(X=0)=1-p,P(X=1)=p,故E(X)=0×(1-p)+1×p=p,易知X服从两点分布,∴D(X)=p(1-p).
4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是(  )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
解析:选B ∵X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)=2.4,
∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.
5.设10≤x1A.D(ξ1)>D(ξ2)
B.D(ξ1)=D(ξ2)
C.D(ξ1)D.D(ξ1)与D(ξ2)的大小关系与x1,x2,x3,x4的取值有关
解析:选A 由题意可知E(ξ1)=E(ξ2),又由题意可知,ξ1的波动性较大,从而有D(ξ1)>D(ξ2).
6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.
解析:事件在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p=0.5.
答案:0.5
7已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=________.
解析:由E(X)=30,D(X)=20,可得
解得p=.
答案:
8.已知离散型随机变量X的分布列如下表:
X
-1
0
1
2
P
a
b
c
若E(X)=0,D(X)=1,则a=________,b=________.
解析:由题意
解得a=,b=c=.
答案: 
9.A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为
X1
5%
10%
P
0.8
0.2
X2
2%
8%
12%
P
0.2
0.5
0.3
在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2).
解:由题设可知Y1和Y2的分布列分别为
Y1
5
10
P
0.8
0.2
Y2
2
8
12
P
0.2
0.5
0.3
E(Y1)=5×0.8+10×0.2=6,
D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;
E(Y2)=2×0.2+8×0.5+12×0.3=8,
D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.
10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值和方差.
解:设事件A表示“该地的1位车主购买甲种保险”,事件B表示“该地的1位车主购买乙种保险但不购买甲种保险”,事件C表示“该地的1位车主至少购买甲、乙两种保险中的1种”,事件D表示“该地的1位车主甲、乙两种保险都不购买”,则A,B相互独立.
(1)由题意知P(A)=0.5,P(B)=0.3,C=A∪B,
则P(C)=P(A∪B)=P(A)+P(B)=0.8.
(2)D=,P(D)=1-P(C)=1-0.8=0.2.
由题意知X~B(100,0.2),
所以均值E(X)=100×0.2=20,方差D(X)=100×0.2×0.8=16.
层级二 应试能力达标
1.设二项分布X~B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为(  )
A.n=4,p=0.6      B.n=6,p=0.4
C.n=8,p=0.3 D.n=24,p=0.1
解析:选B 由题意得,np=2.4,np(1-p)=1.44,
∴1-p=0.6,∴p=0.4,n=6.
2.若ξ是离散型随机变量,P(ξ=x1)=,P(ξ=x2)=,且x1A. B.
C.3 D.
解析:选C 
x1,x2满足
解得或∵x13.某种种子每粒发芽的概率是90%,现播种该种子1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望与方差分别是(  )
A.100,90 B.100,180
C.200,180 D.200,360
解析:选D 由题意可知播种了1 000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1 000,0.1).而每粒需再补种2粒,补种的种子数记为X,故X=2ξ,则E(X)=2E(ξ)=2×1 000×0.1=200,故方差为D(X)=D(2ξ)=22·D(ξ)=4×1 000×0.1×0.9=360.
4.若随机变量ξ的分布列为P(ξ=m)=,P(ξ=n)=a,若E(ξ)=2,则D(ξ)的最小值等于(  )
A.0 B.1
C.4 D.2
解析:选A 由分布列的性质,得a+=1,a=.
∵E(ξ)=2,∴+=2.∴m=6-2n.
∴D(ξ)=×(m-2)2+×(n-2)2=×(n-2)2+×(6-2n-2)2=2n2-8n+8=2(n-2)2.
∴n=2时,D(ξ)取最小值0.
5.随机变量ξ的取值为0,1,2.若P(ξ=0)=,E(ξ)=1,则D(ξ)=________.
解析:由题意设P(ξ=1)=p,
则ξ的分布列如下:
ξ
0
1
2
P
p
-p
由E(ξ)=1,可得p=,
所以D(ξ)=12×+02×+12×=.
答案:
6.已知离散型随机变量X的可能取值为x1=-1,x2=0,x3=1,且E(X)=0.1,D(X)=0.89,则对应x1,x2,x3的概率p1,p2,p3分别为________,________,________.
解析:由题意知,-p1+p3=0.1,
1.21p1+0.01p2+0.81p3=0.89.
又p1+p2+p3=1,解得p1=0.4,p2=0.1,p3=0.5.
答案:0.4 0.1 0.5
7.有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样验查,他们从中各取等量的样本检查它们的抗拉强度指数如下:
ξ
110
120
125
130
135
P
0.1
0.2
0.4
0.1
0.2
η
100
115
125
130
145
P
0.1
0.2
0.4
0.1
0.2
其中ξ和η分别表示甲、乙两厂材料的抗拉强度,比较甲、乙两厂材料哪一种稳定性好.
解:E(ξ)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
E(η)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,
D(ξ)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,
D(η)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,
由于E(ξ)=E(η),D(ξ)8.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以X和Y分别表示取出次品和正品的个数.
(1)求X的分布列、均值及方差;
(2)求Y的分布列、均值及方差.
解:(1)X的可能值为0,1,2.
若X=0,表示没有取出次品,
其概率为P(X=0)==,
同理,有P(X=1)==,
P(X=2)==.
∴X的分布列为
X
0
1
2
P
∴E(X)=0×+1×+2×=.
D(X)=2×+2×+2×=.
(2)Y的可能值为1,2,3,显然X+Y=3.
P(Y=1)=P(X=2)=,
P(Y=2)=P(X=1)=,
P(Y=3)=P(X=0)=.
∴Y的分布列为
Y
1
2
3
P
∴Y=-X+3,
∴E(Y)=E(3-X)=3-E(X)=3-=,
D(Y)=(-1)2D(X)=.
 
预习课本P70~74,思考并完成以下问题
1.什么是正态曲线和正态分布?
2.正态曲线有什么特点?
 
3.正态曲线φμ,σ(x)中参数μ,σ的意义是什么?
 
 
    
1.正态曲线及其性质
(1)正态曲线:
函数φμ,σ(x)=e-,x∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.
(2)正态曲线的特点:
①曲线位于x轴上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
③曲线在x=μ处达到峰值;
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;
⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图所示.
[点睛] 正态曲线φμ,σ(x)中,参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值E(X)去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.
2.正态分布
(1)如果对于任何实数a,b(a(2)正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2).
3.正态变量在三个特殊区间内取值的概率
(1)P(μ-σ(2)P(μ-2σ(3)P(μ-3σ1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)函数φμ,σ(x)中参数μ,σ的意义分别是样本的均值与方差.(  )
(2)正态曲线是单峰的,其与x轴围成的面积是随参数μ,σ的变化而变化的.(  )
(3)正态曲线可以关于y轴对称.(  )
答案:(1)× (2)× (3)√
2.若ξ~N,η=6ξ,则E(η)等于(  )
A.1     B.     C.6     D.36
答案:C
3.设随机变量ξ~N(μ,σ2), 且P(ξ≤c)=P(ξ>c), 则c等于(  )
A.0 B.σ C.-μ D.μ
答案:D
正态曲线及其性质
[典例] 某次我市高三教学质量检测中, 甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多, 成绩分布的直方图可视为正态分布), 则由如图曲线可得下列说法中正确的一项是(  )
A.甲科总体的标准差最小
B.丙科总体的平均数最小
C.乙科总体的标准差及平均数都居中
D.甲、乙、丙的总体的平均数不相同
[解析] 由题中图象可知三科总体的平均数(均值)相等, 由正态密度曲线的性质,可知σ越大, 正态曲线越扁平;σ越小, 正态曲线越尖陡, 故三科总体的标准差从小到大依次为甲、乙、丙. 故选A.
[答案] A
利用正态曲线的性质可以求参数μ,σ
(1)正态曲线是单峰的,它关于直线x=μ对称,由此性质结合图象求μ.
(2)正态曲线在x=μ处达到峰值,由此性质结合图象可求σ.
(3)由σ的大小区分曲线的胖瘦.      
[活学活用]
若一个正态分布密度函数是一个偶函数,且该函数的最大值为,求该正态分布的概率密度函数的解析式.
解:由于该正态分布的概率密度函数是一个偶函数,
所以正态曲线关于y轴对称,即μ=0,而正态分布的概率密度函数的最大值是,所以=,
解得σ=4.
故函数的解析式为φμ,σ(x)=·e-,x∈(-∞,+∞).
利用正态分布的对称性求概率
[典例] 设X~N(1,22),试求:
(1)P(-1<X≤3);(2)P(3<X≤5).
[解] 因为X~N(1,22),所以μ=1,σ=2.
(1)P(-1<X≤3)=P(1-2<X≤1+2)
=P(μ-σ<X≤μ+σ)=0.682 6.
(2)因为P(3<X≤5)=P(-3所以P(3<X≤5)=[P(-3<X≤5)-P(-1<X≤3)]
=[P(1-4<X≤1+4)-P(1-2<X≤1+2)]
=[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]
=(0.954 4-0.682 6)=0.135 9.
正态变量在某个区间内取值概率的求解策略
(1)充分利用正态曲线的对称性和曲线与x轴之间面积为1.
(2)熟记P(μ-σ(3)注意概率值的求解转化:
①P(X②P(X<μ-a)=P(X≥μ+a);
③若b<μ,则P(X[活学活用]
1.已知随机变量X~N(2,σ2),若P(X解析:由正态分布图象的对称性可得:
P(a≤X<4-a)=1-2P(X答案:0.36
2.设随机变量X~N(2,9),若P(X>c+1)=P(X(1)求c的值;
(2)求P(-4解:(1)由X~N(2,9)可知,密度函数关于直线x=2对称(如图所示).
∵P(X>c+1)=P(X(2)P(-4正态分布的实际应用
[典例] 在某次数学考试中,考生的成绩X服从一个正态分布,即X~N(90,100).
(1)试求考试成绩X位于区间(70,110)上的概率是多少?
(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?
[解] ∵X~N(90,100),∴μ=90,σ==10.
(1)由于X在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,
于是考试成绩X位于区间(70,110)内的概率就是0.954 4.
(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.
由于变量X在区间(μ-σ,μ+σ)内取值的概率是0.682 6,
所以考试成绩X位于区间(80,100)内的概率是0.682 6,一共有2 000名考生,
所以考试成绩在(80,100)间的考生大约有
2 000×0.682 6≈1 365(人).
正态曲线的应用及求解策略
解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ), (μ-2σ,μ+2σ), (μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.      
[活学活用]
1.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分)服从X~N(50,102),则他在时间段(30,70)内赶到火车站的概率为________.
解析:∵X~N(50,102),∴μ=50,σ=10.
∴P(30答案:0.954 4
2.某厂生产的圆柱形零件的外直径X服从正态分布N(4,0.052),质量检查人员从该厂生产的1 000个零件中随机抽查一个,测得它的外直径为3.7 cm,该厂生产的这批零件是否合格?
解:由于X服从正态分布N(4,0.052),
由正态分布的性质,可知
正态分布N(4,0.052)在(4-3×0.05,4+3×0.05)之外的取值的概率只有0.003,
3.7?(3.85,4,15),
这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此可以认为该批零件是不合格的.
层级一 学业水平达标
1.关于正态分布N(μ,σ2),下列说法正确的是(  )
A.随机变量落在区间长度为3σ的区间之外是一个小概率事件
B.随机变量落在区间长度为6σ的区间之外是一个小概率事件
C.随机变量落在(-3σ,3σ)之外是一个小概率事件
D.随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件
解析:选D ∵P(μ-3σμ+3σ或X<μ-3σ)=1-P(μ-3σ∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.
2.设两个正态分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函数图象如图所示,则有(  )
A.μ1<μ2,σ1<σ2     B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2 D.μ1>μ2,σ1>σ2
解析:选A μ反映的是正态分布的平均水平,x=μ是正态密度曲线的对称轴,由图可知μ1<μ2; σ反映的正态分布的离散程度,σ越大, 越分散, 曲线越“矮胖”,σ越小,越集中,曲线越“瘦高”, 由图可知σ1<σ2.
3.设随机变量X~N(1,22),则D=(  )
A.4 B.2
C. D.1
解析:选D 因为X~N(1,22),所以D(X)=4,所以D=D(X)=1.
4.若随机变量X的密度函数为f(x)=·e-,X在区间(-2,-1)和(1,2)内取值的概率分别为p1,p2,则p1,p2的关系为(  )
A.p1>p2 B.p1C.p1=p2 D.不确定
解析:选C 由正态曲线的对称性及题意知:μ=0,σ=1,所以曲线关于直线x=0对称,所以p1=p2.
5.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内(  )
A.(90,110] B.(95,125]
C.(100,120] D.(105,115]
解析:选C 由于X~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6≈41人,60×0.954 4≈57人,60×0.997 4≈60人.
6.已知随机变量X服从正态分布N(2,σ2),则P(X<2)=________.
解析:由题意知曲线关于x=2对称,因此P(X<2)=.
答案:
7.设随机变量X~N(3,1),若P(X>4)=p,则P(2解析:由X~N(3,1),得μ=3,所以P(3答案:1-2p
8.设随机变量X~N(μ,σ2),且P(X<1)=,P(X>2)=p,则P(0解析:∵随机变量X~N(μ,σ2),∴随机变量服从正态分布,x=μ是图象的对称轴,∵P(X<1)=,∴μ=1.
∵P(X>2)=p,∴P(X<0)=p,则P(0答案:-p
9.设X~N(3,42),试求:
(1)P(-1解:∵X~N(3,42),∴μ=3,σ=4.
(1)P(-1=0.682 6.
(2)∵P(7∴P(7=[P(3-8=[P(μ-2σ=(0.954 4-0.682 6)=0.135 9.
(3)∵P(X≥11)=P(X≤-5),
∴P(X≥11)=[1-P(-5=[1-P(μ-2σ10.生产工艺过程中产品的尺寸偏差X(mm)~N(0,22),如果产品的尺寸与现实的尺寸偏差的绝对值不超过4 mm的为合格品,求生产5件产品的合格率不小于80%的概率.(精确到0.001)
解:由题意X~N(0,22),
求得P(|X|≤4)=P(-4≤X≤4)=0.954 4.
设Y表示5件产品中合格品个数,
则Y~B(5,0.954 4),
所以P(Y≥5×0.8)=P(Y≥4)
=C·(0.954 4)4×0.045 6+C·(0.954 4)5
≈0.189 2+0.791 9≈0.981.
故生产的5件产品的合格率不小于80%的概率约为0.981.
层级二 应试能力达标
1.某厂生产的零件外径ξ~N(10,0.04),今从该厂上午、下午生产的零件中各取一件,测得其外径分别为9.9 cm,9.3 cm,则可认为(  )
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上午、下午生产情况均正常
D.上午、下午生产情况均异常
解析:选A 因测量值ξ为随机变量,又ξ~N(10,0.04),所以μ=10,σ=0.2,记I=(μ-3σ,μ+3σ)=(9.4,10.6),9.9∈I,9.3?I,故选A.
2.已知某批材料的个体强度X服从正态分布N(200,182),现从中任取一件,则取得的这件材料的强度高于182但不高于218的概率为(  )
A.0.997 3        B.0.682 6
C.0.841 3 D.0.815 9
解析:选B 由题意知μ=200,σ=18,μ-σ=182,μ+σ=218,由P(μ-σ3.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σA.0.135 8 B.0.135 9
C.0.271 6 D.0.271 8
解析:选B 由题意可知P(54.设X~N(μ1,σ),Y~N(μ2,σ),这两个正态分布密度曲线如图所示,下列结论中正确的是(  )
A.P(Y≥μ2)≥P(Y≥μ1)
B.P(X≤σ2)≤P(X≤σ1)
C.对任意正数t,P(X≥t)≥P(Y≥t)
D.对任意正数t,P(X≤t)≥P(Y≤t)
解析:选D 由图象知,μ1<μ2,σ1<σ2,P(Y≥μ2)=,P(Y≥μ1)>,故P(Y≥μ2)<P(Y≥μ1),故A错;
因为σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故B错;
对任意正数t,P(X≥t)<P(Y≥t),故C错;
对任意正数t,P(X≤t)≥P(Y≤t)是正确的,故选D.
5.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.
解析:由正态分布的特征易得P(ξ>2)=×[1-2P(0<ξ<1)]=×(1-0.8)=0.1.
答案:0.1
6.设某城市居民私家车平均每辆车每月汽油费用为随机变量X(单位为:元),经统计得X~N(520,14 400),从该城市私家车中随机选取容量为10 000的样本,其中每月汽油费用在(400,640)之间的私家车估计有________辆.
解析:由已知得:μ=520,σ=120,∴P(400答案:6 826
7.某个工厂的工人月收入服从正态分布N(2 500,202),该工厂共有1 200名工人,试估计月收入在2 440元以下和2 560元以上的工人大约有多少人?
解:设该工厂工人的月收入为ξ,则ξ~N(2 500,202),
所以μ=2 500,σ=20,
所以月收入在区间(2 500-3×20,2 500+3×20)内取值的概率是0.997 4,该区间即(2 440,2 560).
因此月收入在2 440元以下和2 560元以上的工人大约有1 200×(1-0.997 4)=1 200×0.002 6≈3(人).
8.已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在[80,+∞)上是减函数,且f(80)= .
(1)求概率密度函数;
(2)估计尺寸在72 ~88 mm间的零件大约占总数的百分之几?
解:(1)由于正态曲线在(0,80)上是增函数,在[80,+∞)上是减函数,所以正态曲线关于直线x=80对称,且在x=80处取得最大值,因此得μ=80,
因为=,所以σ=8.
故概率密度函数解析式是φμ,σ(x)=e-.
(2)由μ=80,σ=8,得μ-σ=80-8=72,
μ+σ=80+8=88,
∴零件尺寸X位于区间(72,88)内的概率是0.682 6,因此尺寸在72~88 mm间的零件大约占总数的68.26%.
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.袋中有2个黑球6个红球, 从中任取两个, 可以作为随机变量的是(  )
A.取到球的个数     B.取到红球的个数
C.至少取到一个红球 D.至少取得一个红球的概率
解析:选B 随机变量是随着实验结果变化而变化的变量 ,只有B满足.
2.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次.若每一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为(  )
A. B.
C. D.
解析:选B 法一:记事件A={第一次取到的是合格高尔夫球},事件B={第二次取到的是合格高尔夫球}.
由题意可得P(A∩B)==,P(A)==,
所以P(B|A)===.
法二:记事件A={第一次取到的是合格高尔夫球},
事件B={第二次取到的是合格高尔夫球}.
由题意可得事件B发生所包含的基本事件数n(A∩B)=3×2=6,事件A发生所包含的基本事件数n(A)=3×3=9,
所以P(B|A)===.
3.若随机变量η~B(n,0.6),且E(η)=3,则P(η=1)的值是(  )
A.2×0.44 B.3×0.44
C.2×0.45 D.3×0.64
解析:选B ∵η~B(n,0.6),∴E(η)=0.6n=3,∴n=5,
∴P(η=1)=C·0.6·(1-0.6)4=3×0.44,故选B.
4.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为(  )
A.2.5 B.3
C.3.5 D.4
解析:选C P(ξ=k)=(k=1,2,3,…,6),∴E(ξ)=1×+2×+…+6×=(1+2+…+6)=×=3.5.
5.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是,则该随机变量的方差等于(  )
A.10 B.100
C. D.
解析:选C 由正态分布密度曲线上的最高点知=,即σ=,∴D(X)=σ2=.
6.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1)与D(2ξ+1)的值分别为(  )
A.13,4 B.13,8
C.7,8 D.7,16
解析:选D 由已知E(ξ)=3,D(ξ)=4,得E(2ξ+1)=2E(ξ)+1=7,D(2ξ+1)=4D(ξ)=16.
7.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.
解析:设事件A为“周日值班”,事件B为“周六值班”,则P(A)=,P(AB)=,故P(B|A)==.
答案:
8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为(  )
A.恰有1只是坏的 B.4只全是好的
C.恰有2只是好的 D.至多有2只是坏的
解析:选C X=k表示取出的螺丝钉恰有k只为好的,则P(X=k)=(k=1,2,3,4).∴P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,故表示恰好有2个是好的.
9.设X~N(μ,σ2),当x在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=(  )
A.1 B.2
C.3 D.4
解析:选D 因为x在(1,3]内取值的概率与在(5,7]内取值的概率相等,所以得正态分布的图象关于直线x=4对称,结合正态分布的图象,故μ=4.
10.某地区高二女生的体重X(单位:kg)服从正态分布N(50,25),若该地区共有高二女生2 000人,则体重在50 kg~65 kg间的女生共有(  )
A.683人 B.954人
C.997人 D.994人
解析:选C 由题意知μ=50,σ=5, ∴P(50-3×5<X<50+3×5)=0.997 4.∴P(50<X<65)=×0.997 4=0.498 7,∴体重在50 kg~65 kg的女生大约有:2 000×0.498 5≈997(人).
11.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是(  )
A. B.
C. D.
解析:选B 设A与B中至少有一个不闭合的事件为T,E与F至少有一个不闭合的事件为R,则P(T)=P(R)=1-×=,所以灯亮的概率为P=1-P(T)·P(R)·P()·P()=.
12.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为(  )
A. B.
C. D.
解析:选D 由已知,得3a+2b+0·c=2,得3a+2b=2,所以ab=×3a×2b≤2=.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)
13.某射手射击所得环数ξ的分布列如下:
ξ
7
8
9
10
P
x
0.1
0.3
y
已知ξ的期望E(ξ)=8.9,则y的值为________.
解析:由分布列可得x=0.6-y且7x+0.8+2.7+10y=8.9,解得y=0.4.
答案:0.4
14.某处有供水龙头5个,调查表示每个水龙头被打开的可能性均为, 3个水龙头同时被打开的概率为________.
解析:对5个水龙头的处理可视为做5次独立试验,每次试验有2种可能结果:打开或不打开,相应的概率为0.1或1-0.1=0.9,根据题意得3个水龙头同时被打开的概率为C×0.13×0.92=0.008 1.
答案:0.008 1
15.一台机器生产某种产品,如果生产一件甲等品可获得50元,生产一件乙等品可获得30元,生产一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期获利________元.
解析:设生产一件该产品可获利钱数为X,则随机变量X的取值可以是-20,30,50. 依题意,X的分布列为
X
-20
30
50
P
0.1
0.3
0.6
故E(X)=-20×0.1+0.3×30+50×0.6=37(元).
答案:37
16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________________(写出所有正确结论的序号).
①P(B)=;②P(B|A1)=;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.
解析:从甲罐中取出一球放入乙罐,则A1,A2,A3中任意两个事件不可能同时发生,即A1,A2,A3两两互斥,故④正确,易知P(A1)=,P(A2)=,P(A3)=,则P(B|A1)=,P(B|A2)=,P(B|A3)=,故②对③错;∴P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)·P(B|A1)+P(A2)P(B|A2)+P(A3)·P(B|A3)=×+×+×=,故①⑤错误.综上知,正确结论的序号为②④.
答案:②④
三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)灯泡厂生产的白炽灯泡的寿命为X(单位:小时),已知X~N(1 000,302),要使灯泡的平均寿命为1 000小时的概率为99.74%,问灯泡的最低寿命应控制在多少小时以上?
解:因为X~N(1 000,302),
所以μ=1 000,σ=30.
所以P(1 000-3×30=P(910所以灯泡的最低寿命应控制在910小时以上.
18.(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
解:(1)由题意知必须从1号通道走出迷宫,ξ的所有可能取值为:1,3,4,6.
P(ξ=1)=,P(ξ=3)=×=,P(ξ=4)=×=,P(ξ=6)=A×××1=,
所以ξ的分布列为:
ξ
1
3
4
6
P
(2)E(ξ)=1×+3×+4×+6×=(小时).
19.(本小题满分12分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
解:(1)ξ的所有可能取值为0,1,2,依题意得P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.
∴ξ的分布列为
ξ
0
1
2
P
(2)设“甲、乙都不被选中”为事件C,
则P(C)===.
∴所求概率为P()=1-P(C)=1-=.
(3)P(B)===;P(B|A)===.
20.(本小题满分12分)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有来该市的3名工人相互独立地从60个项目中任选一个项目参与建设.
(1)求这3人选择的项目所属类别互异的概率;
(2)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X,求X的分布列和数学期望.
解:记第i名工人选择的项目属于基础设施类、民生类、产业建设类分别为事件Ai,Bi,Ci(i=1,2,3).
由题意知,P(Ai)==,P(Bi)==,
P(Ci)==.
(1)3人选择的项目所属类别互异的概率
P=AP(A1B2C3)=6×××=.
(2)任一名工人选择的项目属于基础设施类或产业建设类工程的概率P=+=.
由X~B,
∴P(X=k)=Ck3-k(k=0,1,2,3),
∴X的分布列为
X
0
1
2
3
P
其数学期望为E(X)=3×=2.
21.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘,已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(1)求红队至少两名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).
解:(1)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,
则,,分别表示甲不胜A、乙不胜B、丙不胜C的事件.
因为P(D)=0.6,P(E)=0.5,P(F)=0.5,
由对立事件的概率公式知P()=0.4,P()=0.5,P()=0.5.
红队至少两人获胜的事件有:DE,DF,EF,DEF.
由于以上四个事件两两互斥且各盘比赛的结果相互独立,
因此红队至少两人获胜的概率为
P=P(DE)+P(DF)+P(EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.
(2)由题意知ξ可能的取值为0,1,2,3.
又由(1)知DEF,E,DEF是两两互斥事件,且各盘比赛的结果相互独立,
因此P(ξ=0)=P(DEF)=0.4×0.5×0.5=0.1,
P(ξ=1)=P(DEF)+P(E)+P(DEF)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35.
P(ξ=3)=P(DEF)=0.6×0.5×0.5=0.15.
由对立事件的概率公式得
P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=0.4.
所以ξ的分布列为:
ξ
0
1
2
3
P
0.1
0.35
0.4
0.15
因此E(ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.
22.(本小题满分12分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
办理业务所需的时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;
(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.
解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:
Y
1
2
3
4
5
P
0.1
0.4
0.3
0.1
0.1
(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形:
①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;
②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;
③第一个和第二个顾客办理业务所需的时间均为2分钟.
所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.
(2)X所有可能的取值为0,1,2.
X=0对应第一个顾客办理业务所需的时间超过2分钟,
所以P(X=0)=P(Y>2)=0.5;
X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,
所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)
=0.1×0.9+0.4=0.49;
X=2对应两个顾客办理业务所需的时间均为1分钟,
所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.
所以X的分布列为
X
0
1
2
P
0.5
0.49
0.01
E(X)=0×0.5+1×0.49+2×0.01=0.51.
 
预习课本P80~89,思考并完成以下问题
1.什么是回归分析?
2.什么是线性回归模型?
3.求线性回归方程的步骤是什么?
    
1.回归分析
(1)回归分析
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
(2)回归方程的相关计算
对于两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn).设其回归直线方程为=x+,其中,是待定参数,由最小二乘法得
==,
=-.
(3)线性回归模型
线性回归模型,其中a,b为模型的未知参数,通常e为随机变量,称为随机误差.x称为解释变量,y称为预报变量.
[点睛] 对线性回归模型的三点说明
(1)非确定性关系:线性回归模型y=bx+a+e与确定性函数y=a+bx相比,它表示y与x之间是统计相关关系(非确定性关系),其中的随机误差e提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a,b的工具.
(2)线性回归方程=x+中,的意义是:以为基数,x每增加1个单位,y相应地平均增加个单位.
2.线性回归分析
(1)残差:对于样本点(xi,yi)(i=1,2,…,n)的随机误差的估计值 i=yi-i称为相应于点(xi,yi)的残差,(yi-i)2称为残差平方和.
(2)残差图:利用图形来分析残差特性,作图时纵坐标为残差, 横坐标可以选为样本编号,或身高数据,或体重的估计值等,这样作出的图形称为残差图.
(3)R2=1-越接近1,表示回归的效果越好.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)残差平方和越小, 线性回归方程的拟合效果越好.(  )
(2)在画两个变量的散点图时, 预报变量在x轴上,解释变量在y轴上.(  )
(3)R2越小, 线性回归方程的拟合效果越好.(  )
答案:(1)√ (2)× (3)×
2.从散点图上看,点散布在从左下角到右上角的区域内, 两个变量的这种相关关系称为________.
答案:正相关
3.在残差分析中, 残差图的纵坐标为________.
答案:残差
4.如果发现散点图中所有的样本点都在一条直线上, 则残差平方和等于________, 解释变量和预报变量之间的相关系数等于________.
答案:0 1或-1
求线性回归方程
[典例] 某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x
6
8
10
12
y
2
3
5
6
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 =x+;
(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.
[解] (1)散点图如图:
(2)iyi=6×2+8×3+10×5+12×6=158,
==9,==4,
=62+82+102+122=344.
===0.7,=-=4-0.7×9=-2.3,
故线性回归方程为=0.7x-2.3.
(3)由(2)中线性回归方程知,当x=9时,=0.7×9-2.3=4,故预测记忆力为9的同学的判断力约为4.
求线性回归方程的三个步骤
(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系.
(2)求回归系数:若存在线性相关关系,则求回归系数.
(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.      
[活学活用]
某工厂1~8月份某种产品的产量与成本的统计数据见下表:
月份
1
2
3
4
5
6
7
8
产量(吨)
5.6
6.0
6.1
6.4
7.0
7.5
8.0
8.2
成本(万元)
130
136
143
149
157
172
183
188
以产量为x,成本为y.
(1)画出散点图;
(2)y与x是否具有线性相关关系?若有,求出其回归方程.
解:(1)由表画出散点图,如图所示.
(2)从上图可看出,这些点基本上散布在一条直线附近,可以认为x和y线性相关关系显著,下面求其回归方程,首先列出下表.
xi
yi
x
xiyi
1
5.6
130
31.36
728.0
2
6.0
136
36.00
816.0
3
6.1
143
37.21
872.3
4
6.4
149
40.96
953.6
5
7.0
157
49.00
1 099.0
6
7.5
172
56.25
1 290.0
7
8.0
183
64.00
1 464.0
8
8.2
188
67.24
1 541.6

54.8
1 258
382.02
8 764.5
计算得=6.85,=157.25.
∴=
=≈22.17,
=-=157.25-22.17×6.85≈5.39,
故线性回归方程为=22.17x+5.39.
回归分析
题点一:线性回归分析
1.在一段时间内,某种商品的价格x元和需求量y件之间的一组数据为:
x
14
16
18
20
22
y
12
10
7
5
3
求出y对x的回归直线方程,并说明拟合效果的程度.
解:=(14+16+18+20+22)=18,
=(12+10+7+5+3)=7.4.
=142+162+182+202+222=1 660,
iyi=14×12+16×10+18×7+20×5+22×3=620,
可得回归系数===-1.15.
所以=7.4+1.15×18=28.1
所以回归直线方程:=-1.15x+28.1.
列出残差表:
yi-i
0
0.3
-0.4
-0.1
0.2
yi-
4.6
2.6
-0.4
-2.4
-4.4
则(yi-i)2=0.3,(yi-)2=53.2.
R2=1-≈0.994.
所以回归模型的拟合效果很好.
题点二:非线性回归分析
2.为了研究某种细菌随时间x变化繁殖个数y的变化,收集数据如下
时间x/天
1
2
3
4
5
6
繁殖个数y
6
12
25
49
95
190
(1)用时间作解释变量,繁殖个数作预报变量作出这些数据的散点图;
(2)求y与x之间的回归方程.
解:(1)散点图如图所示:
(2)由散点图看出样本点分布在一条指数函数y1=c1ec2x的周围,于是令z=ln y,则
x
1
2
3
4
5
6
z
1.79
2.48
3.22
3.89
4.55
5.25
由计算器算得,=0.69x+1.112,则有=e0.69x+1.112.
(1)当两个变量已明显呈线性相关关系时,则无需作散点图,就可直接求回归直线方程,否则要先判定相关性再求回归方程.判断拟合效果的好坏需要利用R2确定,R2越接近1,说明拟合效果越好.
(2)非线性回归方程的求法
①根据原始数据(x,y)作出散点图;
②根据散点图,选择恰当的拟合函数;
③作恰当的变换,将其转化成线性函数,求线性回归方程;
④在③的基础上通过相应的变换,即可得非线性回归方程.    
层级一 学业水平达标
1.在对两个变量x,y进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释;
②收集数据(xi,yi),i=1,2,…,n;
③求线性回归方程;
④求相关系数;
⑤根据所搜集的数据绘制散点图.
如果根据可行性要求能够作出变量x,y具有线性相关的结论,则在下列操作顺序中正确的是(  )
A.①②⑤③④      B.③②④⑤①
C.②④③①⑤ D.②⑤④③①
解析:选D 对两个变量进行回归分析时,首先收集数据(xi,yi),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性相关关系的强弱,求相关系数,写出线性回归方程,最后依据所求出的回归直线方程作出解释;故正确顺序是②⑤④③①, 故选D.
2.有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
②R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;
③比较两个模型的拟合效果, 可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是(  )
A.0 B.1
C.2 D.3
解析:选D ①选用的模型是否合适与残差点的分布有关; 对于②③, R2的值越大, 说明残差平方和越小, 随机误差越小,则模型的拟合效果越好.
3.下图是根据变量x,y的观测数据(xi,yi)(i=1,2,…,10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是(  )
A.①② B.①④
C.②③ D.③④
解析:选D 根据散点图中点的分布情况,可判断③④中的变量x,y具有相关的关系.
4.(重庆高考)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能为(  )
A.=0.4x+2.3 B.=2x-2.4
C.=-2x+9.5 D.=-0.3x+4.4
解析:选A 依题意知,相应的回归直线的斜率应为正,排除C,D.且直线必过点(3,3.5)代入A,B得A正确.
5.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入x(万元)
8.2
8.6
10.0
11.3
11.9
支出y(万元)
6.2
7.5
8.0
8.5
9.8
根据上表可得回归直线方程=x+,其中=0.76,=-.据此估计,该社区一户年收入为15万元家庭的年支出为(  )
A.11.4万元 B.11.8万元
C.12.0万元 D.12.2万元
解析:选B 由题意知,==10,
==8,
∴=8-0.76×10=0.4,
∴当x=15时,=0.76×15+0.4=11.8(万元).
6.以下是某地区的降雨量与年平均气温的一组数据:
年平均气温(℃)
12.51
12.84
12.84
13.69
13.33
12.74
13.05
年降雨量(mm)
542
507
813
574
701
432
464
根据这组数据可以推断,该地区的降雨量与年平均气温________相关关系.(填“具有”或“不具有”)
解析:画出散点图,观察可知,降雨量与年平均气温没有相关关系.
答案:不具有
7.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为________.
解析:根据样本相关系数的定义可知, 当所有样本点都在直线上时, 相关系数为1.
答案:1
8.下列说法正确的命题是________(填序号).
①回归直线过样本点的中心(,);
②线性回归方程对应的直线=x+至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③在残差图中,残差点分布的带状区域的宽度越宽,其模型拟合的精度越高;
④在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好.
解析:由回归分析的概念知①④正确,②③错误.
答案:①④
9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y(件)
90
84
83
80
75
68
(1)求回归直线方程=x+,其中=-20,=-;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
解:(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80,
从而=+20=80+20×8.5=250,
故=-20x+250.
(2)由题意知, 工厂获得利润
z=(x-4)y=-20x2+330x-1 000=-202+361.25,所以当x==8.25时,zmax=361.25(元).
即当该产品的单价定为8.25元时,工厂获得最大利润.
10.关于x与y有以下数据:
x
2
4
5
6
8
y
30
40
60
50
70
已知x与y线性相关,由最小二乘法得=6.5,
(1)求y与x的线性回归方程;
(2)现有第二个线性模型:=7x+17,且R2=0.82.
若与(1)的线性模型比较,哪一个线性模型拟合效果比较好,请说明理由.
解:(1)依题意设y与x的线性回归方程为=6.5x+.
==5,
==50,
∵=6.5x+经过(,),
∴50=6.5×5+,∴=17.5,
∴y与x的线性回归方程为=6.5x+17.5.
(2)由(1)的线性模型得yi-i与yi-的关系如下表:
yi-i
-0.5
-3.5
10
-6.5
0.5
yi-
-20
-10
10
0
20
所以(yi-i)2=(-0.5)2+(-3.5)2+102+(-6.5)2+0.52=155.
(yi-)2=(-20)2+(-10)2+102+02+202=1 000.
所以R=1-=1-=0.845.
由于R=0.845,R2=0.82知R>R2,
所以(1)的线性模型拟合效果比较好.
层级二 应试能力达标
1.在建立两个变量y与x的回归模型中,分别选择4个不同模型,求出它们相对应的R2如表,则其中拟合效果最好的模型是(  )
模型
1
2
3
4
R2
0.67
0.85
0.49
0.23
A.模型1        B.模型2
C.模型3 D.模型4
解析:选B 线性回归分析中,相关系数为r,|r|越接近于1, 相关程度越大; |r|越小, 相关程度越小,故其拟合效果最好. 故选B.
2.如果某地的财政收入x与支出y满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过(  )
A.10亿 B.9亿
C.10.5亿 D.9.5亿
解析:选C ∵x=10时,y=0.8×10+2+e=10+e,
又∵|e|≤0.5,∴y≤10.5.
3.某咖啡厅为了了解热饮的销售量y(个)与气温x(℃)之间的关系,随机统计了某4天的销售量与气温,并制作了对照表:
气温(℃)
18
13
10
-1
销售量(个)
24
34
38
64
由表中数据,得线性回归方程=-2x+a.当气温为-4 ℃时,预测销售量约为(  )
A.68 B.66
C.72 D.70
解析:选A ∵=(18+13+10-1)=10,=(24+34+38+64)=40,∴40=-2×10+a,∴a=60,当x=-4时,y=-2×(-4)+60=68.
4.甲、乙、丙、丁4位同学各自对A,B两变量进行回归分析,分别得到散点图与残差平方和(yi-i)2如下表:




散点图
残差平方和
115
106
124
103
哪位同学的试验结果体现拟合A,B两变量关系的模型拟合精度高(  )
A.甲 B.乙
C.丙 D.丁
解析:选D 根据线性相关的知识,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获取的样本数据,R2的表达式中(yi-)2为确定的数,则残差平方和越小,R2越大),由回归分析建立的线性回归模型的拟合效果越好,由试验结果知丁要好些.故选D.
5.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y=ebx+a的周围,令=ln y,求得回归直线方程为=0.25x-2.58,则该模型的回归方程为________.
解析:因为=0.25x-2.58,=ln y,所以y=e0.25x-2.58.
答案:y=e0.25x-2.58
6.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.
解析:以x+1代x,得=0.254(x+1)+0.321,与=0.254x+0.321相减可得,年饮食支出平均增加0.254万元.
答案:0.254
7.下表是某年美国旧轿车价格的调查资料.
使用年数
1
2
3
4
5
6
7
8
9
10
平均价格(美元)
2 651
1 943
1 494
1 087
765
538
484
290
226
204
观察表中的数据,试问平均价格与使用年数间存在什么样的关系?
解:设x表示轿车的使用年数,y表示相应的平均价格,作出散点图.
由散点图可以看出y与x具有指数关系,
令z=ln y,变换得
x
1
2
3
4
5
6
7
8
9
10
z
7.883
7.572
7.309
6.991
6.640
6.288
6.182
5.670
5.421
5.318
作出散点图:
由图可知各点基本上处于一直线,由表中数据可求出线性回归方程:
=8.166-0.298x.
因为旧车的平均价格与使用年数具有指数关系,其非线性回归方程为=e8.166-0.298x.
8.某公司利润y(单位:千万元)与销售总额x(单位:千万元)之间有如下对应数据:
x
10
15
17
20
25
28
32
y
1
1.3
1.8
2
2.6
2.7
3.3
(1)画出散点图;
(2)求回归直线方程;
(3)估计销售总额为24千万元时的利润.
解:(1)散点图如图:
(2)列下表,并利用科学计算器进行有关计算.
i
1
2
3
4
5
6
7
xi
10
15
17
20
25
28
32
yi
1
1.3
1.8
2
2.6
2.7
3.3
=21,=2.1
=3 447,iyi=346.3
于是=≈0.104.
=2.1-0.104×21=-0.084,
因此回归直线方程为=0.104x-0.084.
(3)当x=24时,y=0.104×24-0.084=2.412(千万元).
 
预习课本P91~96,思考并完成以下问题
1.分类变量与列联表分别是如何定义的?
 
2.独立性检验的基本思想是怎样的?
 
 
3.独立性检验的常用方法有哪些?
 
 
    
1.与列联表相关的概念
(1)分类变量:变量的不同“值”表示个体所属的不同类型,像这样的变量称为分类变量.
(2)列联表:
①列出的两个分类变量的频数表, 称为列联表.
②一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0, 因此|ad-bc|越小, 关系越弱; |ad-bc|越大, 关系越强.
2.等高条形图
等高条形图与表格相比,图形更能直观地反映出两个分类变量间是否相互影响, 常用等高条形图展示列表数据的频率特征.
3.独立性检验的基本思想
(1)定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.
(2)公式:K2=,其中n=a+b+c+d为样本容量.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)分类变量中的变量与函数中的变量是同一概念.(  )
(2)列联表频率分析法、等高条形图可初步分析两分类变量是否有关系, 而独立性检验中K2取值则可通过统计表从数据上说明两分类变量的相关性的大小.(  )
(3)独立性检验的方法就是反证法.(  )
答案:(1)× (2)√ (3)×
2.与表格相比,能更直观地反映出相关数据总体状况的是(  )
A.列联表         B.散点图
C.残差图 D.等高条形图
答案:D
3.如果有99%的把握认为“X与Y有关系”,那么具体算出的数据满足(  )
附表:
P(K2≥k0)
0.05
0.025
0.010
0.005
0.001
k0
3.841
5.024
6.635
7.879
10.828
A.k>6.635 B.k>5.024
C.k>7.879 D.k>3.841
答案:A
4.下面是一个2×2列联表:
y1
y2
总计
x1
a
21
73
x2
2
25
27
总计
b
46
100
则表中a,b的值分别为________.
答案:52, 54
等高条形图的应用
[典例] 为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:
组别
阳性数
阴性数
总计
铅中毒病人
29
7
36
对照组
9
28
37
总计
38
35
73
试画出列联表的等高条形图,分析铅中毒病人和对照组的尿棕色素阳性数有无差别,铅中毒病人与尿棕色素为阳性是否有关系?
[解] 等高条形图如图所示:
其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.
由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系.
在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例.两个比例的值相差越大,X与Y有关系成立的可能性就越大.      
[活学活用]
某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.
解:作列联表如下:
性格内向
性格外向
总计
考前心情紧张
332
213
545
考前心情不紧张
94
381
475
总计
426
594
1 020
相应的等高条形图如图所示:
图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例,从图中可以看出考前紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例高,可以认为考前紧张与性格类型有关.
两个变量的独立性检验
[典例] 为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.能否在犯错误的概率不超过0.1的前提下,认为“学生选报文、理科与对外语的兴趣有关”?
[解] 根据题目所给的数据得到如下列联表:
理科
文科
总计
有兴趣
138
73
211
无兴趣
98
52
150
总计
236
125
361
根据列联表中数据由公式计算得随机变量K2的观测值
k=≈1.871×10-4.
因为1.871×10-4<2.706,
所以在犯错误的概率不超过0.1的前提下,不能认为“学生选报文、理科与对外语的兴趣有关”.
独立性检验的步骤
(1)确定分类变量,获取样本频数,得到列联表.
(2)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.
(3)利用公式K2=计算随机变量K2的观测值k0.
(4)作出判断.
如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y的关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.      
[活学活用]
在对人们的休闲方式的一次调查中, 共调查了124人, 其中女性70人, 男性54人.女性中有43人主要的休闲方式是看电视, 另外27人主要的休闲方式是运动; 男性中有21人主要的休闲方式是看电视, 另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表; 并估计, 以运动为主的休闲方式的人的比例;
(2)能否在犯错误的概率不超过0.025的前提下, 认为性别与休闲方式有关系?
附表:
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
K2=.
解:(1)由所给的数据得到列联表
休闲方式
性别
看电视
运动
总计

43
27
70

21
33
54
总计
64
60
124
所以以运动为主要的休闲方式的人的比例为15∶31.
(2)根据列联表中的数据计算得随机变量K2的观测值,
k=≈6.201,
因为k>5.024,
所以在犯错误的概率不超过0.025的前提下认为休闲方式与性别有关.
独立性检验的综合应用
[典例] 某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
[解] (1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件是:(86,93), (86,96), (86,97), (86,99), (86,99), (93,96),(93,97), (93,99), (93,99), (96,97), (96,99), (96,99),(97,99),(97,99),(99,99),共有15种结果,
符合条件的事件数(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共有10种结果,
根据等可能事件的概率得到P==.
(2)由已知数据得
甲班
乙班
总计
成绩优秀
1
5
6
成绩不优秀
19
15
34
总计
20
20
40
根据列联表中的数据,计算得随机变量K2的观测值
k=≈3.137,
由于3.137>2.706,所以在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.
(1)独立性检验问题是常与统计、概率相结合,解题时一定要认真审题,找出各数据的联系.
(2)解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.      
[活学活用]
某市教育局邀请教育专家深入该市多所中小学,开展听课、访谈及随堂检测等活动,他们把收集到的180节课分为三类课堂教学模式,教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式,A,B,C三类课的节数比例为3∶2∶1.
(1)为便于研究分析,教育专家将A模式称为传统课堂模式,B,C统称为新课堂模式,根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
高效
非高效
总计
新课堂模式
60
30
90
传统课堂模式
40
50
90
总计
100
80
180
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(2)教育专家采用分层抽样的方法从收集到的180节课中选出12节课作为样本进行研究,并从样本中的B模式和C模式课堂中随机抽取2节课,求至少有一节课为C模式课堂的概率.
参考临界值有:
P(K2≥k0)
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:K2=,
其中n=a+b+c+d.
解:(1)由列联表中的统计数据计算随机变量K2的观测值为:
∵k==9>6.635,
由临界值表P(K2≥6.635)≈0.010,
∴有99%的把握认为课堂效率与教学模式有关.
(2)样本中的B模式课堂和C模式课堂分别是4节和2节.
从中任取两节有C=15种取法,其中至少有一节课为C模式课堂取法有C-C=9种,
∴至少有一节课为C模式课堂的概率为=.
层级一 学业水平达标
1.以下关于独立性检验的说法中, 错误的是(  )
A.独立性检验依赖于小概率原理
B.独立性检验得到的结论一定准确
C.样本不同,独立性检验的结论可能有差异
D.独立性检验不是判断两事物是否相关的唯一方法
解析:选B 根据独立性检验的原理可知得到的结论是错误的情况是小概率事件,但并不一定是准确的.
2.观察下列各图,其中两个分类变量之间关系最强的是(  )
解析:选D 在四幅图中,D图中两个阴影条的高相差最明显,说明两个分类变量之间关系最强,故选D.
3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大(  )
A.与      B.与
C.与 D.与
解析:选C 由等高条形图可知与的值相差越大,|ad-bc|就越大,相关性就越强.
4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是(  )
A.k越大,“X与Y有关系”的可信程度越小
B.k越小,“X与Y有关系”的可信程度越小
C.k越接近于0,“X与Y没有关系”的可信程度越小
D.k越大,“X与Y没有关系”的可信程度越大
解析:选B K2的观测值k越大,“X与Y有关系”的可信程度越大.因此,A、C、D都不正确.
5.考察棉花种子经过处理跟生病之间的关系得到下表数据:

种子处理
种子未处理
总计
得病
32
101
133
不得病
61
213
274
总计
93
314
407
根据以上数据,可得出(  )
A.种子是否经过处理跟是否生病有关
B.种子是否经过处理跟是否生病无关
C.种子是否经过处理决定是否生病
D.以上都是错误的
解析:选B 由K2=≈0.164<2.706,即没有把握认为是否经过处理跟是否生病有关.
6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”)
解析:∵K2的观测值k=27.63,∴k>10.828,∴在犯错误的概率不超过0.001的前提下认为打鼾与患心脏病是有关的.
答案:有关
7.如果根据性别与是否爱好运动的列联表得到K2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.
解析:∵P(K2≥3.841)≈0.05.
∴判断性别与是否爱好运动有关,出错的可能性不超过5%.
答案:5%
8.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A与B有关;当________时,认为没有充分的证据显示事件A与B是有关的.
解析:当k>3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A与B有关,当k≤2.706时认为没有充分的证据显示事件A与B是有关的.
答案:k>3.841 k≤2.706
9.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.
(1)根据以上数据列出2×2列联表;
(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?
解:(1)由已知可列2×2列联表:
患胃病
未患胃病
总计
生活规律
20
200
220
生活不规律
60
260
320
总计
80
460
540
(2)根据列联表中的数据,由计算公式得K2的观测值
k=≈9.638.
∵9.638>6.635,
因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.
10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球
不喜爱打篮球
合计
男生
a
b=5
女生
c=10
d
合计
50
已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关;请说明理由.
附参考公式:K2=,其中n=a+b+c+d.
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
解:(1)列联表补充如下:
喜爱打篮球
不喜爱打篮球
合计
男生
20
5
25
女生
10
15
25
合计
30
20
50
(2)∵K2=≈8.333>7.879,
∴有99.5%的把握认为喜爱打篮球与性别有关.
层级二 应试能力达标
1.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性中有1 560名持反对意见,2 452名女性中有1 200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力(  )
A.平均数与方差     B.回归直线方程
C.独立性检验 D.概率
解析:选C 由于参加调查的人按性别被分成了两组,而且每一组又被分成了两种情况,判断有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.
2.对于独立性检验,下列说法正确的是(  )
A.K2>3.841时,有95%的把握说事件A与B无关
B.K2>6.635时,有99%的把握说事件A与B有关
C.K2≤3.841时,有95%的把握说事件A与B有关
D.K2>6.635时,有99%的把握说事件A与B无关
解析:选B 由独立性检验的知识知:K2>3.841时,有95%的把握认为“变量X与Y有关系”;K2>6.635时,有99%的把握认为“变量X与Y有关系”.故选项B正确.
3.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验(  )
A.H0:男性喜欢参加体育活动
B.H0:女性不喜欢参加体育活动
C.H0:喜欢参加体育活动与性别有关
D.H0:喜欢参加体育活动与性别无关
解析:选D 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K2应该很小,如果K2很大,则可以否定假设,如果K2很小,则不能够肯定或者否定假设.
4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:
做不到“光盘”
能做到“光盘”

45
10

30
15
由此表得到的正确结论是(  )
A.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”
D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”
解析:选C 由2×2列联表得到a=45,b=10,c=30,d=15.
则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
代入K2=,得K2的观测值k=≈3.030.因为2.706<3.030<3.841.
所以在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.
5.若两个分类变量X与Y的列联表为:
y1
y2
x1
10
15
x2
40
16
则“X与Y之间有关系”这个结论出错的可能性为________.
解析:由题意可得K2的观测值
k=≈7.227,
∵P(K2≥6.635)≈1%, 所以“x与y之间有关系”出错的可能性为1%.
答案:1%
6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:
又发作过心脏病
未发作过心脏病
合计
心脏搭桥手术
39
157
196
血管清障手术
29
167
196
合计
68
324
392
试根据上述数据计算K2≈________,能否作出这两种手术对病人又发作心脏病的影响有差别的结论________(填“能”或“不能”).
解析:根据列联表中的数据,可以求得K2的观测值k=≈1.779.
K2<2.072的概率为0.85.作出这两种手术对病人又发作心脏病的影响有差别的结论.
答案:1.779 不能
7.甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x(单位:cm)及个数y,如下表:
零件尺寸x
1.01
1.02
1.03
1.04
1.05
零件个数y

3
7
8
9
3

7
4
4
4
a
由表中数据得y关于x的线性回归方程为=-91+100x(1.01≤x≤1.05),其中合格零件尺寸为1.03±0.01(cm).完成下面列联表,并判断是否有99%的把握认为加工零件的质量与甲、乙有关?
合格零件数
不合格零件数
总计


总计
解:=1.03,=,由=-91+100x知,=-91+100×1.03,所以a=11,由于合格零件尺寸为1.03±0.01 cm,故甲、乙加工的合格与不合格零件的数据表为:
合格零件数
不合格零件数
总计

24
6
30

12
18
30
总计
36
24
60
所以K2=
==10,
因K2=10>6.635,故有99%的把握认为加工零件的质量与甲、乙有关.
8.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品
不喜欢甜品
总计
南方学生
60
20
80
北方学生
10
10
20
总计
70
30
100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
P(K2≥k0)
0.100
0.050
0.010
k0
2.706
3.841
6.635
解:(1)将2×2列联表中的数据代入公式计算,得
K2==≈4.762.
由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.
(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
(其中ai表示喜欢甜品的学生,i=1,2.bj表示不喜欢甜品的学生,j=1,2,3)Ω由10个基本事件组成,且这些基本事件的出现是等可能的.
用A表示“3人中至多有1人喜欢甜品”这一事件,则
A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
事件A是由7个基本事件组成,因而P(A)=.
(时间120分钟 满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.对有线性相关关系的两个变量建立的回归直线方程=+x中,回归系数(  )
A.可以小于0      B.大于0
C.能等于0 D.只能小于0
解析:选A ∵=0时,则r=0,这时不具有线性相关关系,但可以大于0也可以小于0.
2.每一吨铸铁成本y(元)与铸件废品率x%建立的回归方程=56+8x,下列说法正确的是(  )
A.废品率每增加1%,成本每吨增加64元
B.废品率每增加1%,成本每吨增加8%
C.废品率每增加1%,成本每吨增加8元
D.如果废品率增加1%,则每吨成本为56元
解析:选C 根据回归方程知y是关于x的单调增函数,并且由系数知x每增加一个单位,y平均增加8个单位.
3.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是(  )
x
4
5
6
7
8
9
10
y
14
18
19
20
23
25
28
A.线性函数模型 B.二次函数模型
C.指数函数模型 D.对数函数模型
解析:选A 画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.
4.试验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为(  )
A.=x+1 B. =x+2
C.=2x+1 D.=x-1
解析:选A 由题意发现,(x,y)的四组值均满足=x+1,故=x+1为回归直线方程.
5.下列关于等高条形图说法正确的是(  )
A.等高条形图表示高度相对的条形图
B.等高条形图表示的是分类变量的频数
C.等高条形图表示的是分类变量的百分比
D.等高条形图表示的是分类变量的实际高度
解析:选C 由等高条形图的特点及性质进行判断.
6.根据一组样本数据(x1,y1),(x2,y2),…,(xn,yn)的散点图分析存在线性相关关系,求得其回归方程=0.85x-85.7,则在样本点(165,57)处的残差为(  )
A.54.55 B.2.45
C.3.45 D.111.55
解析:选B 把x=165代入=0.85x-85.7,得y=0.85×165-85.7=54.55,由57-54.55=2.45,故选B.
7.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀
非优秀
总计
甲班
10
b
乙班
c
30
总计
105
已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(  )
A.列联表中c的值为30,b的值为35
B.列联表中c的值为15,b的值为50
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”
解析:选C 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c=20,b=45,选项A、B错误.根据列联表中的数据,得到K2=≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”,选项C正确.
8.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为=0.66x+1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为(  )
A.83% B.72%
C.67% D.66%
解析:选A 将y=7.675代入回归方程,可计算得x≈9.262,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.262≈0.83≈83%,即约为83%.
9.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:
年龄
总计
不超过40岁
超过40岁
吸烟量不多于
20支/天
50
15
65
吸烟量多于
20支/天
10
25
35
总计
60
40
100
则在犯错误的概率不超过__________的前提下认为吸烟量与年龄有关(  )
A.0.001 B.0.01
C.0.05 D.没有理由
解析:选A K2=≈22.16>10.828,
所以我们在犯错误的概率不超过0.001的前提下认为吸烟量与年龄有关.
10.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是(  )
A.直线l1和直线l2有交点(s,t)
B.直线l1和直线l2相交,但交点未必是点(s,t)
C.直线l1和直线l2由于斜率相等,所以必定平行
D.直线l1和直线l2必定重合
解析:选A l1与l2都过样本中心(,).
11.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表如下:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
对于以下数据,对同一样本能说明X与Y有关的可能性最大的一组为(  )
A.a=9,b=8,c=7,d=6
B.a=9,b=7,c=6,d=8
C.a=8,b=6,c=9,d=7
D.a=6,b=7,c=8,d=9
解析:选B 对于同一样本|ad-bc|越小,说明X与Y之间的关系越弱,|ad-bc|越大, 故检验知选B.
12.两个分类变量X和Y, 值域分别为{x1,x2}和{y1,y2}, 其样本频数分别是a=10, b=21, c+d=35. 若X与Y有关系的可信程度不小于97.5%, 则c等于(  )
A.3 B.4
C.5 D.6
解析:选A 列2×2列联表如下:
x1
x2
总计
y1
10
21
31
y2
c
d
35
总计
10+c
21+d
66
故K2的观测值k=≥5.024. 把选项A, B, C, D代入验证可知选A.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)
13.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要________h.
解析:当x=600时,=0.01×600+0.5=6.5.
答案:6.5
14.若一组观测值(x1,y1),(x2,y2),…,(xn,yn)之间满足yi=bxi+a+ei(i=1,2,…,n),若ei恒为0,则R2为________.
解析:ei恒为0,说明随机误差总为0,于是yi=,故R2=1.
答案:1
15.下列是关于出生男婴与女婴调查的列联表
晚上
白天
总计
男婴
45
A
B
女婴
E
35
C
总计
98
D
180
那么A=______,B=______,C______,D=________,E=________.
解析:∵45+E=98,∴E=53,
∵E+35=C,∴C=88,∵98+D=180,∴D=82,
∵A+35=D,∴A=47,∵45+A=B,∴B=92.
答案:47 92 88 82 53
16.已知x,y之间的一组数据如表,对于表中数据,甲、乙两同学给出的拟合直线分别为l1:y=x+1与l2:y=x+,利用最小二乘法判断拟合程度更好的直线是________.
x
1
3
6
7
8
y
1
2
3
4
5
解析:用y=x+1作为拟合直线时,所得y的实际值与y的估计值的差的平方和为:S1=2+(2-2)2+(3-3)2+2+2=.用y=x+作为拟合直线时,所得y的实际值与y的估计值的差的平方和为:S2=(1-1)2+(2-2)2+2+(4-4)2+2=.
因为S2答案:y=x+
三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)对某校小学生进行心理障碍测试得如下列联表:(其中焦虑、说谎、懒惰都是心理障碍)
焦虑
说谎
懒惰
总计
女生
5
10
15
30
男生
20
10
50
80
总计
25
20
65
110
试说明在这三种心理障碍中哪一种与性别关系最大?
解:对于上述三种心理障碍分别构造三个随机变量K,K,K,由表中数据可得
K=≈0.863,
K=≈6.366,
K=≈1.410.
因为K的值最大,所以说谎与性别关系最大.
18.(本小题满分12分)有人统计一个省的6个城市某一年的人均国内生产总值(人均GDP)x和这一年各城市患白血病的儿童数量y,其数据如下表所示:
人均GDP x/万元
10
8
6
4
3
1
患白血病的儿童数量y/人
351
312
207
175
132
180
(1)画出散点图,并判断是否线性相关;
(2)求y与x之间的回归方程.
解:(1)作散点图(如下图所示).
由散点图可知y与x具有线性相关关系.
(2)将数据代入公式,可得≈23.253,≈102.151.
故y与x之间的线性回归方程是=23.253x+102.151.
19.(本小题满分12分)某校在两个班进行教学方式对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如下表所示(单位:人):
80及80分以上
80分以下
总计
试验班
35
15
50
对照班
20
m
50
总计
55
45
n
(1)求m,n;
(2)能否在犯错误的概率不超过0.005的情况下认为教学方式与成绩有关系?
解:(1)m=45-15=30,n=50+50=100.
(2)由表中的数据,得K2的观测值为
k=≈9.091.
因为9.091>7.879,所以能在犯错误的概率不超过0.005的前提下认为教学方式与成绩有关系.
20.(本小题满分12分)某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:
(1)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?
甲工艺
乙工艺
总计
一等品
非一等品
总计
附:
P(K2≥k0)
0.10
0.05
0.01
k0
2.706
3.841
6.635
K2=
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
解:(1)2×2列联表如下
甲工艺
乙工艺
总计
一等品
50
60
110
非一等品
50
40
90
总计
100
100
200
K2=≈2.02<2.706,所以没有理由认为选择不同的工艺与生产出一等品有关.
(2)由题知运用甲工艺生产单件产品的利润X的分布列为
X
30
20
15
P
0.5
0.3
0.2
X的数学期望为E(X)=30×0.5+20×0.3+15×0.2=24,X的方差为D(X)=(30-24)2×0.5+(20-24)2×0.3+(15-24)2×0.2=39.
乙工艺生产单件产品的利润Y的分布列为
Y
30
20
15
P
0.6
0.1
0.3
Y的数学期望为E(Y)=30×0.6+20×0.1+15×0.3=24.5,
Y的方差为D(Y)=(30-24.5)2×0.6+(20-24.5)2×0.1+(15-24.5)2×0.3=47.25.
由上述结果可以看出D(X)21.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
性别
是否需要志愿者


需要
40
30
不需要
160
270
P(K2≥k0)
0.05
0.01
0.001
k0
3.841
6.635
10.828
附:K2的观测值k=.
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.
解:(1)调查的500位老人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为=14%.
(2)随机变量K2的观测值
k=≈9.967.
由于9.967>6.635,因此,在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关.
(3)由(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据中能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并且采用分层抽样方法比采用简单随机抽样的方法更好.
22.(本小题满分12分)某市为了对学生的数理(数学与物理)学习能力进行分析,从10 000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分
(0,1]
(1,2]
(2,3]
(3,4]
(4,5]
(5,6]
人数
3
17
30
30
17
3
(1)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率.
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间(1,2]的中点值为1.5)作为代表:
①据此,计算这100名学生数理学习能力等级分数的期望μ及标准差σ(精确到0.1);
②若总体服从正态分布,以样本估计总体,估计该市这10 000名学生中数理学习能力等级在(1.9,4.1)范围内的人数.
(3)从这10 000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:
x(数学学习能力)
2
3
4
5
6
y(物理学习能力)
1.5
3
4.5
5
6
①请画出上表数据的散点图;
②请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+(附参考数据:≈11.4).
解:(1)样本中学生为良好的人数为20人.故从样本中任意抽取2名学生,则仅有1名学生为良好的概率为=.
(2)①总体数据的期望约为:μ=0.5×0.03+1.5×0.17+2.5×0.30+3.5×0.30+4.5×0.17+5.5×0.03=3.0,
标准差σ=[(0.5-3)2×0.03+(1.5-3)2×0.17+(2.5-3)2×0.3+(3.5-3)2×0.3+(4.5-3)2×0.17+(5.5-3)2×0.03]=≈1.1,
②由于μ=3,σ=1.1
当x∈(1.9,4.1)时,即x∈(μ-σ,μ+σ),
故数理学习能力等级分数在(1.9,4.1)范围中的概率为0.682 6.
数理习能力等级分数在(1.9,4.1)范围中的学生的人数约为10 000×0.682 6=6 826人.
(3)①数据的散点图如图:
②设线性回归方程为=x+,则
==1.1,=-=-0.4.
故回归直线方程为=1.1x-0.4.

复习课(一) 计数原理
两个计数原理
(1)两个计数原理是学习排列与组合的基础,高考中一般以选择题、填空题的形式出现,难度中等.
(2)运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.
计数原理
(1)分类加法计数原理:N=n1+n2+n3+…+nm;
(2)分步乘法计数原理:N=n1·n2·n3·…·nm.
[典例] 如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有(  )
A.180种       B.240种
C.360种 D.420种
[解析] 由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.
①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A种方案.
②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A种方案.
③当用五种颜色时有A种方案.
因此所有栽种方案为A+2A+A=420(种).
[答案] D
[类题通法]
使用两个原理解决问题时应注意的问题
(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.
(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.
1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有(  )
A.24种 B.18种
C.12种 D.6种
解析:选B 法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18种.
法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18种.
2.有红、黄、蓝旗各3面,每次升一面、二面或三面在旗杆上纵向排列表示不同的信号,顺序不同则表示不同的信号,共可以组成的信号有________种.
解析:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理,共可组成3+9+27=39种不同的信号.
答案:39
排列与组合应用问题
(1)高考中往往以实际问题为背景,考查排列与组合的综合应用,同时考查分类讨论的思想方法,常以选择题、填空题形式出现,有时与概率结合考查.
(2)解决排列组合问题的关键是掌握四项基本原则
①特殊优先原则:如果问题中有特殊元素或特殊位置,优先考虑这些特殊元素或特殊位置的解题原则.
②先取后排原则:在既有取出又需要对取出的元素进行排列中,要先取后排,即完整地把需要排列的元素取出后,再进行排列.
③正难则反原则:当直接求解困难时,采用间接法解决问题的原则.
④先分组后分配原则:在分配问题中如果被分配的元素多于位置,这时要先进行分组,再进行分配.
1.排列与组合的概念
名称
定义
排列
从n个不同元素中取出m(m≤n)个元素
按照一定的顺序排成一列
组合
合成一组
2.排列数与组合数的概念
名称
定义
排列数
从n个不同元素中取出m(m≤n)个元素的所有不同
排列的个数
组合数
组合的个数
3.排列数与组合数公式
(1)排列数公式
①A=n(n-1)…(n-m+1)=;②A=n!.
(2)组合数公式
C===.
4.组合数的性质
(1)C=C;(2)C+C=C.
[典例] (1)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(  )
A.3×3! B.3×(3!)3
C.(3!)4 D.9!
(2)(重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是(  )
A.72 B.120
C.144 D.168
(3)从6位同学中选出4位参加一个座谈会,要求张、王两同学中至多有一个人参加,则不同选法的种数为(  )
A.9 B.14
C.12 D.15
[解析] (1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.
(2)依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为AA=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为AAA=24,因此满足题意的排法种数为144-24=120,选B.
(3)法一:(直接法)分两类,第一类张、王两同学都不参加,有C种选法;第二类张、王两同学中只有1人参加,有CC种选法.故共有C+CC=9种选法.
法二:(间接法)C-C=9种.
[答案] (1)C (2)B (3)A
[类题通法]
排列与组合综合问题的常见类型及解题策略
(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.
(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.
(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.
1.有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是(  )
A.12 B.24
C.36 D.48
解析:选B 2盆黄菊花捆绑作为一个元素与一盆红菊花排列,2盆白菊花采用插空法,所以这5盆花的不同摆放共有AAA=24种.
2.某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为(  )
A.720 B.520
C.600 D.360
解析:选C 根据题意,分2种情况讨论.①只有甲乙其中一人参加,有CCA=480种情况;②若甲乙两人都参加,有CCA=240种情况,其中甲乙相邻的有CCAA=120种情况,不同的排法种数为480+240-120=600种,故选C.
二项式定理及应用
(1)求二项展开式中的项或项的系数是高考的热点,通常以选择题、填空题形式考查,难度中低档.
(2)解决此类问题常遵循“知四求一”的原则
在二项式的通项公式中共含有a, b,n,k,Tk+1这五个元素,只要知道其中的4个元素,便可求第5个元素的值,在有关二项式定理的问题中,常常会遇到这样的问题:知道这5个元素中的若干个(或它们之间的关系),求另外几个元素. 这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组). 这里要注意n为正整数,k为自然数,且k≤n.
1.二项式定理
二项式定理
(a+b)n=Can+Can-1b+…+
Can-kbk+…+Cbn(n∈N*)
二项式系数
二项展开式中各项系数C(r=0,1,…,n)
二项式通项
Tr+1=Can-rbr,它表示第r+1项
2.二项式系数的性质
[典例] (1)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=(  )
A.-4 B.-3
C.-2 D.-1
(2)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=(  )
A.5 B.6
C.7 D.8
(3)若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=________.
[解析] (1)展开式中含x2的系数为C+aC=5,解得a=-1,故选D.
(2)由题意得:a=C,b=C,
所以13C=7C,
∴=,
∴=13,解得m=6,经检验为原方程的解,选B.
(3)令x=1可得a0+a1+a2+a3+a4=1,令x=0,可得a0=1,所以a1+a2+a3+a4=0.
[答案] (1)D (2)B (3)0
[类题通法]
求二项式展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r+1项,由特定项得出r值,最后求出其参数.
(3)与二项式各项系数的和有关的问题一般用赋值法求解.
1.在x(1+x)6的展开式中,含x3项的系数为(  )
A.30 B.20
C.15 D.10
解析:选C 只需求(1+x)6的展开式中含x2项的系数即可,而含x2项的系数为C=15,故选C.
2.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为(  )
A.9 B.8
C.6 D.5
解析:选B 令x=1,则a0+a1+a2+a3+a4=0,令x=-1,则a0-a1+a2-a3+a4=16,∴a0+a2+a4=8.
1.设二项式n的展开式各项系数的和为a,所有二项式系数的和为b,若a+2b=80,则n的值为(  )
A.8          B.4
C.3 D.2
解析:选C 由题意a=4n,b=2n,∵a+2b=80,
∴4n+2×2n-80=0,
即(2n)2+2×2n-80=0,解得n=3.
2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有(  )
A.63种 B.31种
C.8种 D.7种
解析:选D 由题意知,可以开2盏、4盏、6盏灯照明,不同方法有C+C+C=7(种).
3.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有(  )
A.A种 B.AA种
C.CA种 D.CCA种
解析:选C 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有CA种.
4.(x+2)2(1-x)5中x7的系数与常数项之差的绝对值为(  )
A.5 B.3
C.2 D.0
解析:选A 常数项为C·22·C=4,x7系数为C·C(-1)5=-1,因此x7系数与常数项之差的绝对值为5.
5.6的展开式中,常数项是(  )
A.- B.
C.- D.
解析:选D Tr+1=C(x2)6-rr=rCx12-13r,令12-3r=0,解得r=4.
∴常数项为4C=.故选D.
6.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有(  )
A.10种 B.20种
C.36种 D.52种
解析:选A 分为两类:①1号盒子放入1个球,2号盒子放入3个球,有C=4种放球方法;②1号盒子放入2个球,2号盒子放入2个球,有C=6种放球方法.
∴共有C+C=10种不同的放球方法.
7.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3=________.
解析:不妨设1+x=t,则x=t-1,因此有(t-1)5=a0+a1t+a2t2+a3t3+a4t4+a5t5,则a3=C(-1)2=10.
答案:10
8.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)
解析:由已知条件可得第1块地有C种种植方法,则第2~4块地共有A种种植方法,由分步乘法计数原理可得,不同的种植方案有CA=120种.
答案:120
9.(北京高考)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.
解析:将A,B捆绑在一起,有A种摆法,再将它们与其他3件产品全排列,有A种摆法,共有AA=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A=12种摆法,故A,B相邻,A,C不相邻的摆法有48-12=36种.
答案:36
10.若(2x+3)3=a0+a1(x+2)+a2(x+2)2+a3(x+2)3,求a0+a1+2a2+3a3的值.
解:由(2x+3)3=[2(x+2)-1]3
=C[2(x+2)]3(-1)0+C[2(x+2)]2(-1)1+C[2·(x+2)]1(-1)2+C[2(x+2)]0(-1)3
=8(x+2)3-12(x+2)2+6(x+2)-1
=a0+a1(x+2)+a2(x+2)2+a3(x+2)3.
则a0=-1,a1=6,a2=-12,a3=8.
则a0+a1+2a2+3a3=5.
11.将7个相同的小球放入4个不同的盒子中.
(1)不出现空盒时的放入方式共有多少种?
(2)可出现空盒时的放入方式共有多少种?
解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C=20种不同的放入方式.
(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C=120种放入方式.
12.已知(+3x2)n展开式中各项的系数和比各项的二项式系数和大992.
(1)求展开式中二项式系数的最大项;
(2)求展开式中系数最大的项.
解:(1)令x=1,则二项式各项系数和为(1+3)n=4n,
展开式中各项的二项式系数之和为2n.
由题意,知4n-2n=992.
∴(2n)2-2n-992=0.∴(2n+31)(2n-32)=0.
∴2n=-31(舍)或2n=32,∴n=5.
由于n=5为奇数,
∴展开式中二项式系数最大项为中间两项,它们是
T3=C(x)3(3x2)2=90x6,T4=C(x)2(3x2)3=270x.
(2)展开式通项公式为Tr+1=C3r·(x)5-r(x2)r=C·3r·x+.
假设Tr+1项系数最大,则有

∴∴≤r≤.
∵r∈N*,∴r=4.
∴展开式中系数最大项为T5=C·34·x+=405x.
复习课(三) 统计案例
回归分析
(1)变量间的相关关系是高考解答题命题的一个,主要考查变量间相关关系的判断,求解回归方程并进行预报估计,题型多为解答题,有时也有小题出现.
(2)掌握回归分析的步骤的是解答此类问题的关键,另外要掌握将两种非线性回归模型转化为线性回归分析求解问题.
1.一个重要方程
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其线性回归直线方程为=x+.
其中=,=-.
2.重要参数
相关指数R2是用来刻画回归模型的回归效果的,其值越大,残差平方和越小,模型的拟合效果越好.
3.两种重要图形
(1)散点图:
散点图是进行线性回归分析的主要手段,其作用如下:
一是判断两个变量是否具有线性相关关系,如果样本点呈条状分布,则可以断定两个变量有较好的线性相关关系;
二是判断样本中是否存在异常.
(2)残差图:
残差图可以用来判断模型的拟合效果,其作用如下:
一是判断模型的精度,残差点所分布的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高.
二是确认样本点在采集中是否有人为的错误.
[典例] (全国卷Ⅲ)如图是我国2008年到2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:i=9.32,iyi=40.17, =0.55,≈2.646.
参考公式:相关系数r=,
回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=-.
[解] (1)由折线图中数据和附注中参考数据得
=4,(ti-)2=28, =0.55,
(ti-)(yi-)=iyi-i=40.17-4×9.32=2.89,
r≈≈0.99.
因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.
(2)由=≈1.331及(1)得
==≈0.103,
=-≈1.331-0.103×4≈0.92.
所以y关于t的回归方程为=0.92+0.10t.
将2016年对应的t=9代入回归方程得
=0.92+0.10×9=1.82.
所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.
[类题通法]
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤是先画出散点图,并对样本点进行相关性检验,在此基础上选择适合的函数模型去拟合样本数据,从而建立较好的回归方程,并且用该方程对变量值进行分析;有时回归模型可能会有多种选择(如非线性回归模型),此时可通过残差分析或利用相关指数R2来检查模型的拟合效果,从而得到最佳模型.
1.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则(  )
A.r2C.r2<0解析:选C 画散点图,由散点图可知X与Y是正相关,则相关系数r1>0,U与V是负相关,相关系数r2<0,故选C.
2.寒假中, 某同学为组织一次爱心捐款, 在网上给网友发了张帖子, 并号召网友转发,下表是发帖后一段时间收到帖子的人数统计:
天数x
1
2
3
4
5
6
7
人数y
7
11
21
24
66
115
325
(1)作出散点图,并猜测x与y之间的关系.
(2)建立x与y的关系, 预报回归模型.
(3)如果此人打算在帖子传播10天时进行募捐活动, 根据上述回归模型, 估计可去多少人.
解:(1)画出散点图如图所示.
从散点图可以看出x与y不具有线性相关关系, 同时可发现样本点分布在某一个函数曲线y=kemx的周围, 其中k, m是参数.
(2)对y=kemx两边取对数,把指数关系变成线性关系. 令z=ln y,则变换后的样本点分布在直线z=bx+a(a=ln k, b=m)的周围, 这样就可以利用线性回归模型来建立x与y之间的非线性回归方程了, 数据可以转化为:
天数x
1
2
3
4
5
6
7
人数的
对数z
1.946
2.398
3.045
3.178
4.190
4.745
5.784
求得回归直线方程为=0.620x+1.133,
所以=e0.620x+1.133.
(3)当x=10, 此时=e0.620×10+1.133≈1 530(人).
所以估计可去1 530人.
独立性检验
(1)近几年高考中对独立性检验的考查频率有所降低,题目多以解答题形式出现,一般为容易题,多与概率、统计等内容综合命题.
(2)独立性检验的基本思想类似于数学中的反证法,要确认“两个分类变量有关系” 这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系” 成立,在该假设下构造的随机变量K2应该很小,如果由观测数据计算得到的K2的观测值k很大,则在一定程度上说明假设不合理,根据随机变量K2的含义,可以通过概率P(K2≥6.635)≈0.01来评价该假设不合理的程度,由实际计算出的k>6.635,说明该假设不合理的程度约为99%,即“两个分类变量有关系” 这一结论成立的可信程度约为99%.
在实际问题中常用的几个数值
(1)K2≥6.635表示认为“X与Y有关系”犯错误的概率不超过0.01.
(2)K2≥3.841表示认为“X与Y有关系”犯错误的概率不超过0.05.
(3)K2≥2.706表示认为“X与Y有关系”犯错误的概率不超过0.1.
[典例] 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数,如图所示.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食为肉类为主.)
(1)根据茎叶图,帮助这位同学说明其亲属30人的饮食习惯.
(2)根据以上数据完成如表所示的2×2列联表.
主食蔬菜
主食肉类
总计
50岁以下
50岁以上
总计
(3)在犯错误的概率不超过0.01的前提下,是否能认为“其亲属的饮食习惯与年龄有关”?
[解] (1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉类为主.
(2)2×2列联表如表所示:
主食蔬菜
主食肉类
总计
50岁以下
4
8
12
50岁以上
16
2
18
总计
20
10
30
(3)随机变量K2的观测值k===10>6.635,
故在犯错误的概率不超过0.01的前提下认为“其亲属的饮食习惯与年龄有关”.
[类题通法]
独立性检验问题的求解策略
(1)等高条形图法:依据题目信息画出等高条形图,依据频率差异来粗略地判断两个变量的相关性.
(2)K2统计量法:通过公式
K2=
先计算观测值k,再与临界值表作比较,最后得出结论.
1.下表是某地区的一种传染病与饮用水的调查表:
得病
不得病
总计
干净水
52
466
518
不干净水
94
218
312
总计
146
684
830
(1)能否在犯错误概率不超过0.01的前提下认为这种传染病与饮用水的卫生程度有关,请说明理由.
(2)若饮用干净水得病的有5人,不得病的有50人,饮用不干净水得病的有9人,不得病的有22人.按此样本数据分析能否在犯错误概率不超过0.025的前提下认为这种疾病与饮用水有关.
解:(1)把表中的数据代入公式得
K2的观测值k=≈54.21.
∵54.21>6.635,
所以在犯错误的概率不超过0.01的前提下,认为该地区这种传染病与饮用水不干净有关.
(2)依题意得2×2列联表:
得病
不得病
总计
干净水
5
50
55
不干净水
9
22
31
总计
14
72
86
此时,K2的观测值k=≈5.785.
因为5.785>5.024,
所以能在犯错误概率不超过0.025的前提下认为该种疾病与饮用水不干净有关.
2.2016年第三十一届奥运会在巴西首都里约热内卢举行,为调查某高校学生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了60人,结果如下:
是否愿意提供志愿者服务性别
愿意
不愿意
男生
20
10
女生
10
20
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人, 其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人, 求恰有一名女生的概率.
(3)你能否在犯错误的概率不超过0.01的前提下认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
独立性检验统计量K2=,其中n=a+b+c+d.
解:(1)由题意,男生抽取6×=4(人),女生抽取6×=2(人).
(2)在(1)中抽取的6人中任选2人,恰有一名女生的概率P==.
(3)K2=≈6.667,由于6.667>6.635,所以能在犯错误的概率不超过0.01的前提下认为该校高中生是否愿意提供志愿者服务与性别有关.
1.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见下表,则实验效果与教学措施(  )
优、良、中

总计
实验班
48
2
50
对比班
38
12
50
总计
86
14
100
A.有关          B.无关
C.关系不明确 D.以上都不正确
解析:选A 随机变量K2的观测值k=≈8.306>6.635,则有99%的把握认为“实验效果与教学措施有关”.
2.下列说法中正确的有:(  )
①若r>0,则x增大时,y也相应增大;
②若r<0,则x增大时,y也相应增大;
③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上.
A.①② B.②③
C.①③ D.①②③
解析:选C 若r>0,表示两个相关变量正相关,x增大时,y也相应增大,故①正确.r<0,表示两个变量负相关,x增大时,y相应减小,故②错误.|r|越接近1,表示两个变量相关性越高,|r|=1表示两个变量有确定的关系(即函数关系),故③正确.
3.有下列数据(  )
x
1
2
3
y
3
5.99
12.01
下列四个函数中,模拟效果最好的为(  )
A.y=3×2x-1 B.y=log2x
C.y=3x D.y=x2
解析:选A 分别把x=1,2,3,代入求值,求最接近y的值.即为模拟效果最好,故选A.
4.若两个变量的残差平方和是325,(yi-)2=923,则随机误差对预报变量的贡献率约为(  )
A.64.8% B.60%
C.35.2% D.40%
解析:选C 由题意可知随机误差对预报变量的贡献率约为≈0.352.
5.已知x与y之间的几组数据如下表:
x
1
2
3
4
5
6
y
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y′=b′x+a′,则以下结论正确的是(  )
A.>b′,>a′ B.>b′,C.< b′,>a′ D.解析:选C 过(1,0)和(2,2)的直线方程为y=2x-2,画出六点的散点图,回归直线的大概位置如图所示,显然a′. 故选C.
6.收集一只棉铃虫的产卵数y与温度x的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y与x之间的回归方程,并算出了对应相关指数R2如下表:
拟合曲线
直线
指数曲线
抛物线
二次曲线
y与x回归方程
=19.8x-
463.7
=e0.27x-3.84
=0.367x2-
202

相关指数R2
0.746
0.996
0.902
0.002
则这组数据模型的回归方程的最好选择应是(  )
A.=19.8x-463.7 B.=e0.27x-3.84
C.=0.367x2-202 D.=
解析:选B 用相关指数R2来刻画回归效果,R2的值越大,说明模型的拟合效果越好.
7.某学校对课程《人与自然》的选修情况进行了统计,得到如下数据:

未选
总计

405
45
450

230
220
450
总计
635
265
900
那么,认为选修《人与自然》与性别有关的把握是________.
解析:K2=
=163.794>10.828,即有99.9%的把握认为选修《人与自然》与性别有关.
答案:99.9%
8.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.
零件数x(个)
10
20
30
40
50
加工时间y(min)
62
75
81
89
现发现表中有一个数据模糊看不清,请你推断出该数据的值为________.
解析:由表知=30,设模糊不清的数据为m,则=(62+m+75+81+89)=,因为=0.67+54.9,
即=0.67×30+54.9,解得m=68.
答案:68
9.变量U与V相对应的一组样本数据为(1,1.4),(2,2.2),(3,3),(4,3.8),由上述样本数据得到U与V的线性回归分析,R2表示解释变量对于预报变量变化的贡献率,则R2=______.
解析:在线性回归中,相关指数R2等于相关系数,由x1=1,x2=2,x3=3,x4=4得:=2.5,y1=1.4,y2=2.2,y3=3,y4=3.8得:=2.6,
所以相关系数r=

===1.
故R2=1.
答案:1
10.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得的数据,试问:文科学生总成绩不好与数学成绩不好有关系吗?
总成绩情况
数学成绩情况
总成绩好
总成绩不好
总计
数学成绩好
478
12
490
数学成绩不好
399
24
423
总计
877
36
913
解:根据题意,计算随机变量的观测值:
K2=≈6.233>5.024,
因此有97.5%的把握认为“文科学生总成绩不好与数学成绩不好有关系”.
11.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加
班级工作
不太主动
参加班级工作
总计
学习积极性高
18
学习积极性一般
19
总计
50
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的2×2列联表.
(2)在(1)的条件下,试运用独立性检验的思想方法分析:在犯错误概率不超过0.1%的情况下判断学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
P(K2≥k0)
0.010
0.005
0.001
k0
6.635
7.879
10.828
解:(1)如果随机抽查这个班的一名学生,抽到积极参加班级工作的学生的概率是,所以积极参加班级工作的学生有24人,由此可以算出学习积极性一般且积极参加班级工作的人数为6,不太主动参加班级工作的人数为26,学习积极性高但不太主动参加班级工作的人数为7,学习积极性高的人数为25,学习积极性一般的人数为25,得到:
积极参加
班级工作
不太主动
参加班级工作
总计
学习积极性高
18
7
25
学习积极性一般
6
19
25
总计
24
26
50
(2)K2=≈11.538,
因为11.538>10.828,所以在犯错误的概率不超过0.001的前提下可以认为学习积极性与对待班级工作的态度有关系.
12.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷
体育迷
总计


10
55
总计
(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
附:K2=.
P(K2≥k0)
0.05
0.01
k0
3.841
6.635
解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:
非体育迷
体育迷
总计

30
15
45

45
10
55
总计
75
25
100
将2×2列联表中的数据代入公式计算,得
K2=
==≈3.030.
因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.
(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间为
Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}.
其中ai表示男性,i=1,2,3.bj表示女性,j=1,2.
Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.
用A表示“任选2人中,至少有1人是女性”这一事件,则
A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},
事件A由7个基本事件组成,因而P(A)=.
(时间120分钟 满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列说法正确的有(  )
①回归方程适用于一切样本和总体.
②回归方程一般都有时间性.
③样本取值的范围会影响回归方程的适用范围.
④回归方程得到的预报值是预报变量的精确值.
A.①②        B.②③
C.③④ D.①③
解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.
2.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有(  )
A.24种 B.52种
C.10种 D.7种
解析:选A 因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.
3.设随机变量X服从二项分布X~B(n,p),则等于(  )
A.p2 B.(1-p)2
C.1-p D.以上都不对
解析:选B 因为X~B(n,p),(D(X))2=[np(1-p)]2,(E(X))2=(np)2,所以==(1-p)2.故选B.
4.若(2x+)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是(  )
A.1 B.-1
C.0 D.2
解析:选A 令x=1,得a0+a1+…+a4=(2+)4,令x=-1,a0-a1+a2-a3+a4=(-2+)4. 所以(a0+a2+a4)2-(a1+a3)2=(2+)4(-2+)4=1.
5.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;
③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=;
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.
其中正确的说法是(  )
A.①④ B.②③
C.①③ D.②④
解析:选B ①中各小长方形的面积等于相应各组的频率;②正确,相关指数R2越大,拟合效果越好,R2越小,拟合效果越差;③随机变量ξ服从正态分布N(4,22),正态曲线对称轴为x=4,所以P(ξ>4)=;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则说明“X与Y有关系”的犯错误的概率越大.
6.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率(  )
A.(2,4] B.(0,2]
C.[-2,0) D.(-4,4]
解析:选C 此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.
7.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为(  )
A.0.504 B.0.994
C.0.496 D.0.06
解析:选B A、B、C三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P=1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.
8.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D(ξ)等于(  )
A.0.2 B.0.8
C.0.196 D.0.804
解析:选C 因为由题意知该病的发病率为0.02,且每次试验结果都是相互独立的,所以ξ~B(10,0.02),
所以由二项分布的方差公式得到D(ξ)=10×0.02×0.98=0.196.故选C.
9.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:
摄氏温度
-1
3
8
12
17
饮料瓶数
3
40
52
72
122
根据上表可得回归方程=x+中的为6,据此模型预测气温为30 ℃时销售饮料瓶数为(  )
A.141 B.191
C.211 D.241
解析:选B 由题意,==7.8,
==57.8,
因为回归方程=x+中的为6,所以57.8=6×7.8+,
所以=11,所以=6x+11,所以x=30时,=6×30+11=191,故选B.
10.如图,用4种不同颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有(  )
A.72 B.96
C.108 D.120
解析:选B 颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A=24种,所以一共有96种.
11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p的取值范围是(  )
A. B.
C. D.
解析:选B 4个引擎飞机成功飞行的概率为Cp3(1-p)+p4,2个引擎飞机成功飞行的概率为p2,要使Cp3(1-p)+p4>p2,必有12.(全国丙卷)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(  )
A.18个 B.16个
C.14个 D.12个
解析:选C 由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数”,则中间6个数的情况共有C=20(种),其中存在k≤2m,a1,a2,…,ak中0的个数少于1的个数的情况有:①若a2=a3=1,则有C=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)
13.(四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是__________.
解析:法一:由题意可知每次试验不成功的概率为,成功的概率为,在2次试验中成功次数X的可能取值为0,1,2,则P(X=0)=,P(X=1)=C××=,P(X=2)=2=.
所以在2次试验中成功次数X的分布列为
X
0
1
2
P
则在2次试验中成功次数X的均值为
E(X)=0×+1×+2×=.
法二:此试验满足二项分布,其中p=,所以在2次试验中成功次数X的均值为E(X)=np=2×=.
答案:
14.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如表
患慢性气管炎
未患慢性气管炎
总计
吸烟
43
162
205
不吸烟
13
121
134
总计
56
283
339
根据列联表数据,求得K2≈__________.
解析:由计算公式K2=,
得K2≈7.469.
答案:7.469
15.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.
解析:十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P==.
答案:
16.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14.
其中正确结论的序号是________(写出所有正确结论的序号).
解析:①因为各次射击是否击中目标相互之间没有影响,所以第3次击中目标的概率是0.9,正确;
②恰好击中目标3次的概率应为C×0.93×0.1;
③4次射击都未击中的概率为0.14;
所以至少击中目标1次的概率为1-0.14.
答案:①③
三、简答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知(a2+1)n展开式中的各项系数之和等于5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.
解:5的展开式的通项为
Tr+1=C5-rr
=5-rCx,
令20-5r=0,得r=4,
故常数项T5=C×=16.
又(a2+1)n展开式的各项系数之和等于2n,
由题意知2n=16,得n=4.
由二项式系数的性质知,(a2+1)n展开式中系数最大的项是中间项T3,
故有Ca4=54,解得a=±.
18.(本小题满分12分)(全国甲卷)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
0
1
2
3
4
≥5
概率
0.30
0.15
0.20
0.20
0.10
0.05
(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=1-(0.30+0.15)=0.55.
(2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.
又P(AB)=P(B),
故P(B|A)====.
因此所求概率为.
(3)记续保人本年度的保费为X,则X的分布列为
X
0.85a
a
1.25a
1.5a
1.75a
2a
P
0.30
0.15
0.20
0.20
0.10
0.05
EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.
因此续保人本年度的平均保费与基本保费的比值为1.23.
19.(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按1%的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]进行分组,绘制成频率分布直方图,如图所示.规定年龄在[20,40)岁的人为“青年人”,[40,60)岁的人为“中年人”,[60,80]岁的人为“老年人”.
(1)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;
(2)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人”的人数为X,求随机变量X的分布列和数学期望.
解:(1)由频率分布直方图可知60岁以上(含60岁)的频率为(0.01+0.01)×10=0.2,
故样本中60岁以上(含60岁)的人数为600×0.2=120,故该城市60岁以上(含60岁)的人数为120÷1%=12 000.
所调查的600人的平均年龄为
25×0.1+35×0.2+45×0.3+55×0.2+65×0.1+75×0.1=48(岁).
(2)由频率分布直方图知,“老年人”所占的频率为,
所以从该城市年龄在20~80岁的市民中随机抽取1人,抽到“老年人”的概率为,
分析可知X的所有可能取值为0,1,2,3,
P(X=0)=C03=,
P(X=1)=C12=,
P(X=2)=C21=,
P(X=3)=C30=.
所以X的分布列为
X
0
1
2
3
P
EX=0×+1×+2×+3×=.
20.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
(xi-)2
(wi-)2
(xi-)(yi-)
(wi-)(yi-)
46.6
563
6.8
289.8
1.6
1 469
108.8
表中wi=,=i.
(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.
(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为=,=- .
解:(1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.
(2)令w=,先建立y关于w的线性回归方程.
由于===68,
=-=563-68×6.8=100.6,
所以y关于w的线性回归方程=100.6+68w,
因此y关于x的回归方程为=100.6+68.
(3)①由(2)知,当x=49时,
年销售量y的预报值=100.6+68=576.6,
年利润z的预报值=576.6×0.2-49=66.32.
②根据(2)的结果知,年利润z的预报值
=0.2(100.6+68)-x=-x+13.6+20.12.
所以当==6.8,即x=46.24时,取得最大值.
故年宣传费为46.24千元时,年利润的预报值最大.
21.(本小题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率.
(2)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
解:(1)记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A,P(A)==.
(2)依据条件,ξ服从超几何分布:ξ的可能值为0,1,2,3,
其分布列为:
P(ξ=k)=(k=0,1,2,3).
ξ
0
1
2
3
P
则E(X)=0×+1×+2×+3×=1,
(3)依题意可知,一年中每天空气质量达到一级或二级的概率为P==,
一年中空气质量达到一级或二级的天数为η,
则η~B,
所以E(η)=360×=240,
所以一年中平均有240天的空气质量达到一级或二级.
22.(本小题满分12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
附:K2=
解:(1)由分层抽样得收集的女生样本数据为300×=90,
所以应收集90位女生的样本数据.
(2)由频率分布直方图得2×(0.150+0.125+0.075+0.025)=0.75,
所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.
(3)由(2)知,300名学生中有300×0.75=225人的每周平均体育运动时间超过4个小时.75人的每周平均体育运动时间不超过4个小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别的列联表如下:
平均体育运动时间与性别列联表
男生
女生
总计
不超过4个小时
45
30
75
超过4个小时
165
60
225
总计
210
90
300
结合列联表可算得K2的观测值k=≈4.762>3.841.
在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.
复习课(二) 随机变量及其分布
条件概率
(1)在近几年的高考中对条件概率的考查有所体现,一般以选择题或填空题形式考查,难度中低档.
(2)条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率.
条件概率的性质
(1)非负性:0≤P(B|A)≤1.
(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
[典例] 口袋中有2个白球和4个红球, 现从中随机地不放回连续抽取两次, 每次抽取1个, 则:
(1)第一次取出的是红球的概率是多少?
(2)第一次和第二次都取出的是红球的概率是多少?
(3)在第一次取出红球的条件下, 第二次取出的是红球的概率是多少?
[解] 记事件A:第一次取出的是红球; 事件B:第二次取出的是红球.
(1)从中随机地不放回连续抽取两次,每次抽取1个, 所有基本事件共6×5个; 第一次取出的是红球, 第二次是其余5个球中的任一个, 符合条件的有4×5个, 所以
P(A)==.
(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P(AB)==.
(3)利用条件概率的计算公式,可得P(B|A)===.
[类题通法]
条件概率的两个求解策略
(1)定义法:计算P(A),P(B),P(AB),利用P(A|B)=或P(B|A)=求解.
(2)缩小样本空间法:利用P(B|A)=求解.
其中(2)常用于古典概型的概率计算问题.
1.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.
解析:令事件A={选出的4个球中含4号球},B={选出的4个球中最大号码为6}.依题意知n(A)=C=84,n(AB)=C=6,∴P(B|A)===.
答案:
2.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.
(1)求此人患色盲的概率.
(2)如果此人是色盲,求此人是男人的概率.(以上各问结果写成最简分式形式).
解:设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.
(1)此人患色盲的概率
P=P(AC)+P(BC)=P(A)P(C|A)+P(B)P(C|B)
=×+×=.
(2)由(1)得P(AC)=,又因为P(C)=,
所以P(A|C)===.
相互独立事件的概率与二项分布
(1)相互独立事件一般与互斥事件、对立事件结合在一起进行考查,高考经常考查,各种题型均有可能出现,难度中低档. 而二项分布也是高考考查的重点,高考以大题为主,有时也以选择、填空题形式考查.
(2)解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.
(1)若事件A与B相互独立, 则事件与B,A与,与分别相互独立, 且有P(B)=P()P(B),P(A)=P(A)P(),P(AB)=P()P().
(2)若事件A1,A2,…,An相互独立,则有P(A1A2A3…An)=P(A1)P(A2)…P(An).
(3)在n次独立重复试验中,事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.
(4)二项分布满足的条件
与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定:
①每次试验中,事件发生的概率是相同的.
②各次试验中的事件是相互独立的.
③每次试验只有两种结果:事件要么发生,要么不发生.
④随机变量是这n次独立重复试验中某事件发生的次数.
[典例] 某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.
(1)求恰有一名同学当选的概率;
(2)求至多有两人当选的概率.
[解] 设甲、乙、丙当选的事件分别为A,B,C,
则有P(A)=,P(B)=,P(C)=.
(1)∵A,B,C相互独立,
∴ 恰有一名同学当选的概率为
P(A··)+P(·B·)+P(··C)
=P(A)·P()·P()+P()·P(B)·P()+P()·P()·P(C)
=××+××+××=.
(2)至多有两人当选的概率为1-P(ABC)
=1-P(A)·P(B)·P(C)=1-××=.
[类题通法]
求相互独立事件同时发生的概率需注意的三个问题
(1)“P(AB)=P(A)P(B)”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.
(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系.
(3)公式“P(A+B)=1-P() ”常应用于求相互独立事件至少有一个发生的概率.
1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是________.
解析:用间接法考虑,事件A,B一个都不发生的概率为P(AB)=P()·P()=×=,
则事件A,B中至少有一件发生的概率
P=1-P(AB)=.
答案:
2.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ不小于4的概率.
解:(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为:
P=C··4+5,
所以所求的概率为
1-P=1-=.
(2)当ξ=4时记事件A,
则P(A)=C··2·=.
当ξ=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B.
则P(B)=C··3+4=,
所以所求概率为:
P(A∪B)=P(A)+P(B)=+=.
离散型随机变量的期望与方差
(1)离散型随机变量的期望和方差是随机变量中两种最重要的特征数,它们反映了随机变量取值的平均值及其稳定性,是高考的一个热点问题,多与概率统计结合考查,难度中高档.
(2)期望与方差在实际优化问题中有大量的应用,关键要将实际问题数学化,然后求出它们的概率分布列,同时,要注意运用两点分布、二项分布等特殊分布的期望、方差公式以及期望与方差的线性性质,如E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).
(1)求离散型随机变量的期望与方差,一般先列出分布列,再按期望与方差的计算公式计算.
(2)要熟记特殊分布的期望与方差公式(如两点分布、二项分布、超几何分布).
(3)注意期望与方差的性质.
(4)实际应用问题,要注意分析实际问题用哪种数学模型来表达.
[典例] (全国乙卷)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X表示2 台机器三年内共需更换的易损零件数,n表示购买2 台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?
[解] (1)由柱状图及以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.
从而P(X=16)=0.2×0.2=0.04;
P(X=17)=2×0.2×0.4=0.16;
P(X=18)=2×0.2×0.2+0.4×0.4=0.24;
P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;
P(X=20)=2×0.2×0.4+0.2×0.2=0.2;
P(X=21)=2×0.2×0.2=0.08;
P(X=22)=0.2×0.2=0.04.
所以X的分布列为
X
16
17
18
19
20
21
22
P
0.04
0.16
0.24
0.24
0.2
0.08
0.04
(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,
故n的最小值为19.
(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).
当n=19时,
E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;
当n=20时,
E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.
可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.
[类题通法]
求离散型随机变量X的期望与方差的步骤
(1)理解X的意义,写出X可能的全部取值;
(2)求X取每个值的概率或求出函数P(X=k);
(3)写出X的分布列;
(4)由分布列和期望的定义求出E(X);
(5)由方差的定义, 求D(X), 若X~B(n,p), 则可直接利用公式求,E(X)=np,D(X)=np(1-p).
1.一袋中装有分别标记着1,2,3数字的3个小球,每次从袋中取出一个球(每只小球被取到的可能性相同),现连续取3次球,若每次取出一个球后放回袋中,记3次取出的球中标号最小的数字与最大的数字分别为X,Y,设ξ=Y-X,则E(ξ)=________.
解析:由题意知ξ的取值为0,1,2,ξ=0,表示X=Y,ξ=1表示X=1,Y=2或X=2,Y=3;ξ=2表示X=1,Y=3. ∴P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,∴E(ξ)=0×+1×+2×=.
答案:
2.一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).
(1)设随机变量η表示一次掷得的点数和,求η的分布列.
(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E(ξ),D(ξ).
解:(1)由已知,随机变量η的取值为:2,3,4,5,6.
投掷一次正方体骰子所得点数为X,则
P(X=1)=,P(X=2)=,P(X=3)=,
即P(η=2)=×=,
P(η=3)=2××=,
P(η=4)=2××+×=,
P(η=5)=2××=,
P(η=6)=×=.
故η的分布列为
P
2
3
4
5
6
η
(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p,由(1)知,p=,
因为随机变量ξ~B,
所以E(ξ)=np=10×=,D(ξ)=np(1-p)=10××=.
正态分布
(1)高考主要以选择、填空题形式考查正态曲线的形状特征与性质,在大题中主要以条件或一问呈现,难度中档.
(2)注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.
正态变量在三个特殊区间内取值的概率
(1)P(μ-σ(2)P(μ-2σ(3)P(μ-3σ[典例] 已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(-2≤ξ≤2)=(  )
A.0.447         B.0.628
C.0.954 D.0.977
[解析] ∵随机变量ξ服从标准正态分布N(0,σ2),
∴正态曲线关于x=0对称.又P(ξ>2)=0.023,
∴P(ξ<-2)=0.023.∴P(-2≤ξ≤2)=1-2×0.023=0.954.
[答案] C
[类题通法]
根据正态曲线的对称性求解概率的三个关键点
(1)正态曲线与x轴围成的图形面积为1;
(2)正态曲线关于直线x=μ对称,则正态曲线在对称轴x=μ的左右两侧与x轴围成的面积都为0.5;
(3)可以利用等式P(X≥μ+c)=P(X≤μ-c)(c>0)对目标概率进行转化求解.
1.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(  )
A.p B.1-p
C.1-2p D.-p
解析:选D 由于随机变量服从正态分布N(0,1),由标准正态分布图象可得P(-1<ξ<1)=1-2P(ξ>1)=1-2p. 故P(-1<ξ<0)=P(-1<ξ<1)=-p.
2.已知X~N(μ,σ2),且P(X>0)+P(X≥-4)=1,则μ=________.
解析:∵P(X>0)+P(X≥-4)=1,又∵P(X<-4)+P(X≥-4)=1,∴P(X>0)=P(X<-4),又0与-4关于x=-2对称,∴曲线关于x=-2对称,即μ=-2.
答案:-2
1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则 “ξ=5” 表示的试验结果是(  )
A.第5次击中目标      B.第5次未击中目标
C.前4次未击中目标 D.第4次击中目标
解析:选C 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C.
2.甲击中目标的概率是,如果击中赢10分,否则输11分,用X表示他的得分,计算X的均值为(  )
A.0.5分 B.-0.5分
C.1分 D.5分
解析:选B E(X)=10×+(-11)×=-.
3.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论(  )
工人


废品数
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲的产品质量比乙的产品质量好一些
B.乙的产品质量比甲的质量好一些
C.两人的产品质量一样好
D.无法判断谁的质量好一些
解析:选B ∵E(X甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,E(X乙)=0×0.3+1×0.5+2×0.2+3×0=0.9.∵E(X甲)>E(X乙),∴乙的产品质量比甲的产品质量好一些.
4.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6时,则两颗骰子点数之和大于8的概率为(  )
A. B.
C. D.
解析:选D 记事件A为“ 蓝骰子的点数为3或6”,A发生时红骰子的点数可以为1到6中任意一个,n(A)=12,记B:“两颗骰子点数之和大于8”,则AB包含(3,6),(6,3),(6,4),(6,5),(6,6)5种情况,所以P(B|A)==.
5.已知随机变量X和Y,其中Y=12X+7,且E(Y)=34,若X的分布列如下表,则m的值为(  )
X
1
2
3
4
P
m
n
A. B.
C. D.
解析:选A 由Y=12X+7,得E(Y)=12E(X)+7=34,从而E(X)=.∴E(X)=1×+2m+3n+4×=,即2m+3n=,m+n=1--=,解得m=.
6.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是(  )
A.0.45 B.0.6
C.0.65 D.0.75
解析:选D 令事件A,B分别表示甲、乙两人各射击一次击中目标,由题意可知P(A)=0.6,P(B)=0.5,令事件C表示目标被击中,则C=A∪B,则P(C)=1-P()P()=1-0.4×0.5=0.8,所以P(A|C)===0.75.
7.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.
解析:P(X≤6)=P(X=4)+P(X=6)==.
答案:
8.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p.若此人未能通过的科目数ξ的均值是2,则p=________.
解析:因为通过各科考试的概率为p,所以不能通过考试的概率为1-p,易知ξ~B(6,1-p),所以E(ξ)=6(1-p)=2,解得p=.
答案:
9.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)________.
解析:设“儿童体型合格”为事件A,“身体关节构造合格”为事件B,则P(A)=,P(B)=.又A,B相互独立,则,也相互独立,则P( )=P()P()=×=,故至少有一项合格的概率为P=1-P( )=.
答案:
10.某公司招聘员工,指定三门考试课程,有两种考试方案:
方案一:考三门课程至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.
(1)求该应聘者用方案一通过的概率;
(2)求该应聘者用方案二通过的概率.
解:记“应聘者对三门考试及格的事件”分别为A,B,C.P(A)=0.5,P(B)=0.6,P(C)=0.9.
(1)该应聘者用方案一通过的概率是P1=P(AB)+P(BC)+P(AC)+P(ABC)
=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9
=0.03+0.27+0.18+0.27=0.75.
(2)应聘者用方案二通过的概率
P2=P(AB)+P(BC)+P(AC)
=(0.5×0.6+0.6×0.9+0.5×0.9)=×1.29=0.43.
11.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).
解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元,
两人都付0元的概率为P1=×=,
两人都付40元的概率为P2=×=,
两人都付80元的概率为P3=×=×=,
则两人所付费用相同的概率为P=P1+P2+P3=++=.
(2)由题意得,ξ所有可能的取值为0,40,80,120,160.
P(ξ=0)=×=,
P(ξ=40)=×+×=,
P(ξ=80)=×+×+×=,
P(ξ=120)=×+×=,
P(ξ=160)=×=,
ξ的分布列为
ξ
0
40
80
120
160
P
E(ξ)=0×+40×+80×+120×+160×=80.
12.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
①利用该正态分布,求P(187.8②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX.
附:≈12.2.
若Z~N(μ,σ2),则P(μ-σ解析:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.
(2)①由(1)知,Z~N(200,150),从而P(187.8②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以EX=100×0.682 6=68.26.