2017-2018学年【人教A版】高中数学选修2-2全一册学案

文档属性

名称 2017-2018学年【人教A版】高中数学选修2-2全一册学案
格式 zip
文件大小 9.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-03-14 22:53:50

文档简介

复习课(一) 导数及其应用
导数的概念及几何意义的应用
(1)近几年的高考中,导数的几何意义和切线问题是常考内容,各种题型均有可能出现.
(2)利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点.
(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0);
(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k;
(3)已知过某点M(x1,f(x1))(不是切点)的切线斜率为k时,常需设出切点A(x0,f(x0)),利用k=求解.
[典例] (全国卷Ⅱ)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是________.
[解析] 设x>0,则-x<0,f(-x)=ex-1+x.
∵f(x)为偶函数,∴f(-x)=f(x),
∴f(x)=ex-1+x.
∵当x>0时,f′(x)=ex-1+1,
∴f′(1)=e1-1+1=1+1=2.
∴曲线y=f(x)在点(1,2)处的切线方程为y-2=2(x-1),即2x-y=0.
[答案] 2x-y=0
[类题通法]
(1)利用导数的几何意义解决切线问题的两种情况
①若已知点是切点,则在该点处的切线斜率就是该点处的导数.
②如果已知点不是切点,则应先出切点,再借助两点连线的斜率公式进行求解.
(2)曲线与直线相切并不一定只有一个公共点,例如,y=x3在(1,1)处的切线l与y=x3的图象还有一个交点(-2,-8).
1.曲线y=在点(-1,-1)处的切线方程为(  )
A.y=2x+1         B.y=2x-1
C.y=-2x-3 D.y=-2x-2
解析:选A ∵y′==,
∴k=y′|x=-1==2,
∴切线方程为:y+1=2(x+1),即y=2x+1.
2.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.
解析:∵y=x+ln x,∴y′=1+,
y′=2.
∴曲线y=x+ln x在点(1,1)处的切线方程为
y-1=2(x-1),即y=2x-1.
法一:∵y=2x-1与曲线y=ax2+(a+2)x+1相切,
∴a≠0(当a=0时曲线变为y=2x+1与已知直线平行).

消去y,得ax2+ax+2=0.
由Δ=a2-8a=0,解得a=8.
法二:设y=2x-1与曲线y=ax2+(a+2)x+1相切于点(x0,ax+(a+2)x0+1).
∵y′=2ax+(a+2),
∴y′=2ax0+(a+2).
由解得
答案:8
导数与函数的单调性
(1)题型既有选择题、填空题也有解答题,若以选择题、填空题的形式出现,则难度以中、低档为主,若以解答题形式出现,难度则以中等偏上为主,主要考查求函数的单调区间、证明或判断函数的单调性等问题。
(2)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.
特别要注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接.
函数的单调性与导函数值的关系
若函数f(x)在(a,b)内可导,则f′(x)在(a,b)任意子区间内部不恒等于0.
f′(x)>0 函数f(x)在(a,b)上单调递增;
f′(x)<0 函数f(x)在(a,b)上单调递减.
反之,函数f(x)在(a,b)上单调递增 f′(x)≥0;函数f(x)在(a,b)上单调递减 f′(x)≤0.即f′(x)>0(f′(x)<0)是f(x)为增(减)函数的充分不必要条件.
[典例] 已知函数f(x)=x++b(x≠0),其中a,b∈R.
(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(2)讨论函数f(x)的单调性并求出单调区间.
[解] f′(x)=1-.
(1)由导数的几何意义得f′(2)=3,即1-=3,
∴a=-8.
由切点P(2,f(2))在直线y=3x+1上,
得f(2)=3×2+1=7,则-2+b=7,解得b=9,
∴函数f(x)的解析式为f(x)=x-+9(x≠0).
(2)当a≤0时,显然f′(x)>0(x≠0),
这时f(x)在(-∞,0),(0,+∞)上是增函数.
当a>0时,由f′(x)=0,解得x=±.
当x<-或x>时,f′(x)>0;
当-<x<0或0<x<时,f′(x)<0.
∴f(x)在(-∞,-),(,+∞)上是增函数,
在(0,),(-,0)上是减函数.
[类题通法]
求函数的单调区间的方法步骤
(1)确定函数f(x)的定义域.
(2)计算函数f(x)的导数f′(x).
(3)解不等式f′(x)>0,得到函数f(x)的递增区间;解不等式f′(x)<0,得到函数f(x)的递减区间.
[提醒] 求函数单调区间一定要先确定函数定义域,往往因忽视函数定义域而导致错误.
1.设函数f′(x)=x2+3x-4,则y=f(x+1)的单调递减区间为________.
解析:由f′(x)=x2+3x-4,令f′(x)<0,即x2+3x-4<0,解得-4<x<1,所以函数f(x)的单调递减区间为(-4,1),所以y=f(x+1)的单调递减区间为(-5,0).
答案:(-5,0)
2.已知函数f(x)=-x2+2x-aex.
(1)若a=1,求f(x)在x=1处的切线方程;
(2)若f(x)在R上是增函数,求实数a的取值范围.
解:(1)当a=1时,f(x)=-x2+2x-ex,
则f(1)=-×12+2×1-e=-e,
f′(x)=-x+2-ex,f′(1)=-1+2-e=1-e,
故曲线y=f(x)在x=1处的切线方程为y-=(1-e)(x-1),即y=(1-e)x+.
(2)∵f(x)在R上是增函数,∴f′(x)≥0在R上恒成立,
∵f(x)=-x2+2x-aex,∴f′(x)=-x+2-aex,
于是有不等式-x+2-aex≥0在R上恒成立,
即a≤在R上恒成立,
令g(x)=,则g′(x)=,
令g′(x)=0,解得x=3,列表如下:
x (-∞,3) 3 (3,+∞)
g′(x) - 0 +
g(x) 减 极小值- 增
故函数g(x)在x=3处取得极小值,亦即最小值,
即g(x)min=-,所以a≤-,
即实数a的取值范围是.
导数与函数的极值、最值
从高考运用情况看,利用导数研究函数极值、最值是导数应用的核心部分,年年高考都有考查,多以解答题形式考查,难度相对较大.
1.导数与函数单调性、极值的关系
(1)f′(x)>0在(a,b)上成立,是f(x)在(a,b)上单调递增的充分不必要条件.
(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.
2.利用导数求函数极值应注意三点
(1)求单调区间时应先求函数的定义域,遵循定义域优先的原则;
(2)f′(x0)=0时,x0不一定是极值点;
(3)求最值时,应注意极值点和所给区间的关系,关系不确定时应分类讨论.
[典例] 已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.
[解] (1)因为f(x)=ax3+bx+c,
故f′(x)=3ax2+b.
由于f(x)在点x=2处取得极值c-16,
故有
即化简得
解得
(2)由(1)知f(x)=x3-12x+c;
f′(x)=3x2-12=3(x-2)(x+2).
令f′(x)=0,得x1=-2,x2=2.
当x∈(-∞,-2)时,f′(x)>0,
故f(x)在(-∞,-2)上为增函数;
当x∈(-2,2)时,f′(x)<0,
故f(x)在(-2,2)上为减函数;
当x∈(2,+∞)时,f′(x)>0,
故f(x)在(2,+∞)上为增函数.
由此可知f(x)在x=-2处取得极大值f(-2)=16+c,
f(x)在x=2处取得极小值f(2)=c-16.
由题设条件知16+c=28,解得c=12.
此时f(-3)=9+c=21,
f(3)=-9+c=3,f(2)=-16+c=-4,
因此f(x)在[-3,3]上的最小值为f(2)=-4.
[类题通法]
1.求函数的极值的方法
(1)确定函数的定义区间,求导数f′(x).
(2)求方程f′(x)=0的根.
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.
2.求函数的最值的方法
(1)求f(x)在(a,b)内的极值.
(2)将f(x)的各极值与f(a),f(b)比较得出函数f(x)在[a,b]上的最值.
1.已知函数f(x)=x-aln x(a∈R),试求函数的极值.
解:f′(x)=1-=,x>0.
(1)当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
(2)当a>0时,由f′(x)=0,解得x=a.
又当x∈(0,a)时,f′(x)<0;
当x∈(a,+∞)时,f′(x)>0,
从而函数f(x)在x=a处取得极小值,
且极小值为f(a)=a-aln a,无极大值.
综上,当a≤0时,函数f(x)无极值;当a>0时,
函数f(x)在x=a处取得极小值a-aln a,无极大值.
2.已知函数f(x)=(x≥1),
(1)试判断函数f(x)的单调性,并说明理由;
(2)若f(x)≥恒成立,求实数k的取值范围.
解:(1)f′(x)=-,
∵x≥1,∴ln x≥0,∴f′(x)≤0.
故函数f(x)在[1,+∞)上单调递减.
(2)∵x≥1,
∴f(x)≥ ≥k,
令g(x)=,
∴g′(x)==.
再令h(x)=x-ln x,则h′(x)=1-.
∵x≥1,则h′(x)≥0,
∴h(x)在[1,+∞)上单调递增.
∴[h(x)]min=h(1)=1>0,从而g′(x)>0,
故g(x)在[1,+∞)上单调递增,
∴[g(x)]min=g(1)=2,∴k≤2.
故实数k的取值范围为(-∞,2].
生活中的优化问题
优化问题是导数在实际生活中的应用之一,高考中有所体现,既可以以小题形式考查,也可以解答题形式考查,难度中低档.
(1)解决优化问题的策略
①要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域.
②要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
(2)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.
(3)在实际问题中,由f′(x)=0常常仅得到一个根,若能判断函数的最大(小)值在x的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.
[典例] 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π 元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域.
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
[解]  (1)因为蓄水池侧面的总成本为100·2πrh=200πrh(元),底面的总成本为160πr2元,
所以蓄水池的总成本为(200πrh+160πr2)元.
又据题意知200πrh+160πr2=12 000π,
所以h=(300-4r2),
从而V(r)=πr2h=(300r-4r3).
因为r>0,又由h>0可得r<5,
故函数V(r)的定义域为(0,5).
(2)因为V(r)=(300r-4r3),
所以V′(r)=(300-12r2).
令V′(r)=0,解得r1=5,r2=-5(因r2=-5不在定义域内,舍去).
当r∈(0,5)时,V′(r)>0,
故V(r)在(0,5)上为增函数;
当r∈(5,5)时,V′(r)<0,
故V(r)在(5,5)上为减函数.
由此可知,V(r)在r=5处取得最大值,此时 h=8.
即当r=5,h=8时,该蓄水池的体积最大.
[类题通法]
利用导数求实际问题的最大(小)值的一般方法
(1)分析实际问题中各个量之间的关系,正确设定所求最大或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系y=f(x),根据实际问题确定y=f(x)的定义域.
(2)求方程f′(x)=0的所有实数根.
(3)比较导函数在各个根和区间端点处的函数值的大小,根据实际问题的意义确定函数的最大值或最小值.
1.书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库存费40元,并假设该书均匀投放市场,问此书店分________次进货、每次进__________册,可使所付的手续费与库存费之和最少.
解析:设每次进书x千册(0<x<150),手续费与库存费之和为y元,由于该书均匀投放市场,则平均库存量为批量一半,即,故有y=×30+×40,
y′=-+20=,
∴当0<x<15时,y′<0,当15<x<150时,y′>0.
故当x=15时,y取得最小值,
此时进货次数为=10(次).
即该书店分10次进货,每次进15 000册书,所付手续费与库存费之和最少.
答案:10 15 000
2.一艘轮船在航行时的燃料费和它的速度的立方成正比,已知速度为每小时10千米时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每千米的费用总和最小?
解:设轮船速度为x(x>0)千米/时的燃料费用为Q元,则Q=kx3,由6=k×103,可得k=.∴Q=x3.
∴总费用y=·=x2+.
∵y′=-.令y′=0,得x=20.
∴当x∈(0,20)时,y′<0,此时函数单调递减,
当x∈(20,+∞)时,y′>0,此时函数单调递增.
∴当x=20时,y取得最小值,
∴此轮船以20千米/时的速度行驶每千米的费用总和最小.
1.函数f(x)=excos x的图象在点(0,f(0))处的切线的倾斜角为(  )
A.             B.0
C. D.1
解析:选A 由f′(x)=ex(cos x-sin x),则在点(0,f(0))处的切线的斜率k=f′(0)=1,故倾斜角为,选A.
2.已知函数f(x)=x3-x2+cx+d有极值,则c的取值范围为(  )
A.c< B.c≤
C.c≥ D.c>
解析:选A 由题意得f′(x)=x2-x+c,若函数f(x)有极值,则Δ=1-4c>0,解得c<.
3.函数y=ln x-x在x∈(0,e]上的最大值为(  )
A.e B.1
C.-1 D.-e
解析:选C 函数y=ln x-x的定义域为(0,+∞),又y′=-1=,令y′=0得x=1,当x∈(0,1)时,y′>0,函数单调递增;当x∈(1,e)时,y′<0,函数单调递减.当x=1时,函数取得最大值-1,故选C.
4.函数f(x)=x2+2mln x(m<0)的单调递减区间为(  )
A.(0,+∞)
B.(0,)
C.(,+∞)
D.(0,)∪(,+∞)
解析:选B 由条件知函数f(x)的定义域为(0,+∞).
因为m<0,则f′(x)=.
当x变化时,f′(x),f(x)的变化情况如下表:
x (0,) (,+∞)
f′(x) - 0 +
f(x) ? 极小值 ?
由上表可知,函数f(x)的单调递减区间是(0,),单调递增区间是(,+∞).
5.已知函数f(x)=-x3+2x2+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是(  )
A.[6,+∞) B.(-∞,2]
C.[2,6] D.[5,6]
解析:选C f′(x)=-x2+4x+2=-(x-2)2+6,因为x0∈[0,3],所以f′(x0)∈[2,6],又因为切线与直线x+my-10=0垂直,所以切线的斜率为m,所以m的取值范围是[2,6].
6.已知a为函数f(x)=x3-12x的极小值点,则a=(  )
A.-4 B.-2
C.4 D.2
解析:选D 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x=2处取得极小值,∴a=2.
7.已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为________.
解析:因为f(x)=(2x+1)ex,
所以f′(x)=2ex+(2x+1)ex=(2x+3)ex,
所以f′(0)=3e0=3.
答案:3
8.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.
解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.
答案:(2,6)
9.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈ [-1,1],则f(m)+f′(n)的最小值是________.
解析:f′(x)=-3x2+2ax,根据已知f′(2)=0,得a=3,即f(x)=-x3+3x2-4.根据函数f(x)的极值点,可得函数f(m)在[-1,1]上的最小值为f(0)=-4,f′(n)=-3n2+6n在[-1,1]上单调递增,所以f′(n)的最小值为f′(-1)=-9. [f(m)+f′(n)]min=f(m)min+f′(n)min=-4-9=-13.
答案:-13
10.请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).
(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
解:设包装盒的高为h(cm),底面边长为a(cm).
由已知得a=x,h==(30-x),0(1)S=4ah=8x(30-x)=-8(x-15)2+1 800,
所以当x=15时,S取得最大值.
(2)V=a2h=2(-x3+30x2),V′=6x(20-x).
由V′=0得x=0(舍去)或x=20.
当x∈(0,20)时,V′>0;
当x∈(20,30)时,V′<0.
所以当x=20时,V取得极大值,也是最大值.
此时=,即包装盒的高与底面边长的比值为.
11.(全国卷Ⅲ)设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
解:(1)由题设,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>0,f(x)单调递增;
当x>1时,f′(x)<0,f(x)单调递减.
(2)证明:由(1)知,f(x)在x=1处取得最大值,
最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当x∈(1,+∞)时,ln x<x-1,ln <-1,
即1<<x.
(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,
则g′(x)=c-1-cxln c.
令g′(x)=0,解得x0=.
当x<x0时,g′(x)>0,g(x)单调递增;
当x>x0时,g′(x)<0,g(x)单调递减.
由(2)知1<<c,故0<x0<1.
又g(0)=g(1)=0,故当0<x<1时,g(x)>0.
所以当x∈(0,1)时,1+(c-1)x>cx.
12.已知函数f(x)=(x+1)ln x-a(x-1).
(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
解:(1)f(x)的定义域为(0,+∞).
当a=4时,f(x)=(x+1)ln x-4(x-1),
f(1)=0,f′(x)=ln x+-3,f′(1)=-2.
故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.
设g(x)=ln x-,
则g′(x)=-=,g(1)=0.
①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;
②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.
由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.
综上,a的取值范围是(-∞,2]. 复习课(三) 数系的扩充与复数的引入
复数的概念
(1)复数的概念是学习复数的基础,是考试的重要的考查内容之一,一般以选择题或填空题形式出现,难度较小.
(2)解答此类问题的关键是明确复数相关概念.
1.复数是实数的充要条件
(1)z=a+bi(a,b∈R)∈R b=0.
(2)z∈R z=.
(3)z∈R z2≥0.
2.复数是纯虚数的充要条件
(1)z=a+bi(a,b∈R)是纯虚数 a=0,且b≠0.
(2)z是纯虚数 z+=0(z≠0).
(3)z是纯虚数 z2<0.
3.复数相等的充要条件
a+bi=c+di (a,b,c,d∈R).
[典例] 实数k分别为何值时,复数(1+i)k2-(3+5i)k-2(2+3i)满足下列条件?
(1)是实数;(2)是虚数;(3)是纯虚数;(4)是0.
[解] (1+i)k2-(3+5i)k-2(2+3i)=(k2-3k-4)+(k2-5k-6)i.
(1)当k2-5k-6=0,即k=6或k=-1时,该复数为实数.
(2)当k2-5k-6≠0,即k≠6且k≠-1时,该复数为虚数.
(3)当即k=4时,该复数为纯虚数.
(4)当即k=-1时,该复数为0.
[类题通法]
处理复数概念问题的两个注意点
(1)当复数不是a+bi(a,b∈R)的形式时,要通过变形化为a+bi的形式,以便确定其实部和虚部.
(2)求解时,要注意实部和虚部本身对变量的要求,否则容易产生增根.
1.若复数z=1+i(i为虚数单位),是z的共轭复数,则z2+的虚部为(  )
A.0           B.-1
C.1 D.-2
解析:选A 因为z=1+i,所以=1-i,所以z2+2=(1+i)2+(1-i)2=2i+(-2i)=0.故选A.
2.复数z=log3(x2-3x-3)+ilog2(x-3),当x为何实数时,
(1)z∈R;(2)z为虚数;(3)z为纯虚数.
解:(1)∵一个复数是实数的充要条件是虚部为0,

由②,得x=4,经验证满足①③式.
∴当x=4时,z∈R.
(2)∵一个复数是虚数的充要条件是虚部不等于0,
∴解得
即<x<4或x>4时,z为虚数.
(3)∵一个复数是纯虚数的充要条件是其实部为0且虚部不为0,
∴解得
方程组无解.∴复数z不可能是纯虚数.
复数加、减法的几何意义
(1)复数运算与复数几何意义的综合是高考常见的考查题型,以选择题或填空题形式考查,难度较小.
(2)解答此类问题的关键是利用复数运算将复数化为代数形式,再利用复数的几何意义解题.
1.复数的几何意义
(1)复数z=a+bi(a,b∈R)的对应点的坐标为(a,b),而不是(a,bi);
(2)复数z=a+bi(a,b∈R)的对应向量是以原点O为起点的,否则就谈不上一一对应,因为复平面上与相等的向量有无数个.
2.复数的模
(1)复数z=a+bi(a,b∈R)的模|z|=;
(2)从几何意义上理解,复数z的模表示复数z对应的点z和原点间的距离.
[典例] (1)若复数(a+i)2的对应点在y轴负半轴上,则实数a的值是(  )
A.-1 B.1
C.- D.
(2)复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[解析] (1)因为(a+i)2=a2-1+2ai,
又复数(a+i)2的对应点在y轴负半轴上,
所以即a=-1.
(2)z==
=[(m-4)-2(m+1)i],
其实部为(m-4),虚部为-(m+1),
由得
此时无解.故复数在复平面上对应的点不可能位于第一象限.
[答案] (1)A (2)A
[类题通法]
在复平面内确定复数对应点的步骤
(1)由复数确定有序实数对,即z=a+bi(a,b∈R)确定有序实数对(a,b).
(2)由有序实数对(a,b)确定复平面内的点Z(a,b).
1.(全国卷Ⅲ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=(  )
A.1 B.
C. D.2
解析:选B ∵(1+i)x=1+yi,∴x+xi=1+yi.
又∵x,y∈R,∴x=1,y=1.
∴|x+yi|=|1+i|=,故选B.
2.若复数(-6+k2)-(k2-4)i所对应的点在第三象限,则实数k的取值范围是________.
解析:由已知得∴4∴-答案:(-,-2)∪(2,)
3.已知复数z1=2+3i,z2=a+bi,z3=1-4i,它们在复平面上所对应的点分别为A,B,C.若=2+,则a=________,b=________.
解析:∵=2+
∴1-4i=2(2+3i)+(a+bi)
即 ∴
答案:-3 -10
复数的代数运算
(1)复数运算是本章的重要内容,是高考的考查的重点和热点,每年高考都有考查,一般以复数的乘法和除法运算为主.
(2)解答此类问题的关键是熟记并灵活运用复数的四则运算法则,用好复数相等的充要条件这一重要工具,将复数问题实数化求解.
复数运算中常见的结论
(1)(1±i)2=±2i,=i,=-i.
(2)-b+ai=i(a+bi);
(3)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i;
(4)i4n+i4n+1+i4n+2+i4n+3=0.
[典例] (1)设复数z满足=i,则|z|=(  )
A.1           B.
C. D.2
(2)(全国卷Ⅱ)若z=1+2i,则=(  )
A.1 B.-1
C.i D.-i
[解析] (1)由=i,得z====i,所以|z|=|i|=1,故选A.
(2)因为z=1+2i,则=1-2i,所以z =(1+2i)(1-2i)=5,则==i.故选C.
[答案] (1)A (2)C
[类题通法]
进行复数代数运算的策略
(1)复数代数形式的运算的基本思路就是应用运算法则进行计算.
①复数的加减运算类似于实数中的多项式加减运算(合并同类项).
②复数的乘除运算是复数运算的难点,在乘法运算中要注意i的幂的性质,区分(a+bi)2=a2+2abi-b2与(a+b)2=a2+2ab+b2;在除法运算中,关键是“分母实数化”(分子、分母同乘以分母的共轭复数),此时要注意区分(a+bi)(a-bi)=a2+b2与(a+b)(a-b)=a2-b2.
(2)复数的四则运算中含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可,但要注意把i的幂写成最简单的形式.
(3)利用复数相等,可实现复数问题的实数化.
1.复数z满足z(+1)=1+i,其中i是虚数单位,则z=(   )
A.1+i或-2+i B.i或1+i
C.i或-1+i D.-1-i或-2+i
解析:选C 设z=a+bi(a,b∈R),由z(+1)=1+i得a2+b2+a+bi=1+i,所以b=1,a2+a+1=1,所以a=0或a=-1.故z=i或z=-1+i.
2.i是虚数单位,2 016+6=________.
解析:原式=1 008+6=1 008+i6=i1008+i6=i4×252+i4+2=i4+i2=0.
答案:0
1.若i为虚数单位,则复数z=5i(3-4i)在复平面内对应的点所在的象限为(  )
A.第一象限         B.第二象限
C.第三象限 D.第四象限
解析:选A z=5i(3-4i)=20+15i,则复数对应的点在第一象限.
2.(山东高考)已知a,b∈R,i是虚数单位.若a+i=2-bi ,则 (a+bi)2=(  )
A.3-4i        B.3+4i
C.4-3i D.4+3i
解析:选A 由a+i=2-bi可得a=2,b=-1,则(a+bi)2=(2-i)2=3-4i.
3.在复平面内,向量对应的复数是2+i,向量CB―→对应的复数是-1-3i,则向量对应的复数为(  )
A.1-2i B.-1+2i
C.3+4i D.-3-4i
解析:选D ∵对应复数2+i,对应复数1+3i,
∴对应复数(2+i)+(1+3i)=3+4i,
∴对应的复数是-3-4i.
4.(山东高考)若复数z满足2z+=3-2i,其中i为虚数单位,则z=(  )
A.1+2i        B.1-2i
C.-1+2i D.-1-2i
解析:选B 法一:设z=a+bi(a,b∈R),则2z+=2a+2bi+a-bi=3a+bi=3-2i.由复数相等的定义,得3a=3,b=-2,解得a=1,b=-2,∴z=1-2i.
法二:由已知条件2z+=3-2i①,得2+z=3+2i②,解①②组成的关于z,的方程组,得z=1-2i.故选B.
5.(全国卷Ⅰ)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是(  )
A.(-3,1)         B.(-1,3)
C.(1,+∞) D.(-∞,-3)
解析:选A 由题意知即-36.设z是复数,则下列命题中的假命题是(  )
A.若z2≥0,则z是实数
B.若z2<0,则z是虚数
C.若z是虚数,则z2≥0
D.若z是纯虚数,则z2<0
解析:选C 设z=a+bi(a,b∈R),
选项A,z2=(a+bi)2=a2-b2+2abi≥0,则
故b=0或a,b都为0,即z为实数,正确.
选项B,z2=(a+bi)2=a2-b2+2abi<0,则则故z一定为虚数,正确.选项C,若z为虚数,则b≠0,z2=(a+bi)2=a2-b2+2abi,由于a的值不确定,故z2无法与0比较大小,错误.选项D,若z为纯虚数,则则z2=-b2<0,正确.
7.如果一个复数与它的模的和为5+i,那么这个复数是________.
解析:设z=a+bi (a,b∈R),根据题意得
a+bi+=5+i,
所以有解之得
∴z=+i.
答案:+i
8.已知z,ω为复数,(1+3i)z为纯虚数,ω=,且|ω|=5,则ω=________.
解析:由题意设(1+3i)z=ki(k≠0且k∈R),
则ω=.
∵|ω|=5,∴k=±50,故ω=±(7-i).
答案:±(7-i)
9.i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=________.
解析:∵(2,-3)关于原点的对称点是(-2,3),
∴z2=-2+3i.
答案:-2+3i
10.已知复数z满足:|z|=1+3i-z,求的值.
解:设z=a+bi(a,b∈R),而|z|=1+3i-z,
即-1-3i+a+bi=0,
所以得
所以z=-4+3i.
所以===3+4i.
11.已知复数z=(1-i)2+1+3i.
(1)求|z|;(2)若z2+az+b=,求实数a,b的值.
解:z=(1-i)2+1+3i=-2i+1+3i=1+i.
(1)|z|==.
(2)z2+az+b=(1+i)2+a(1+i)+b
=2i+a+ai+b=a+b+(a+2)i,
∵=1-i,∴a+b+(a+2)i=1-i,
∴∴a=-3,b=4.
12.已知等腰梯形OABC的顶点A,B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.
解:设z=x+yi,x,y∈R,如图,因为OA∥BC,|OC|=|BA|,
所以kOA=kBC,|zC|=|zB-zA|,

解得或
因为|OA|≠|BC|,
所以x=-3,y=4(舍去),
故z=-5.
(时间120分钟 满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数z1=2+i,z2=1+i,则在复平面内对应的点位于(  )
A.第一象限         B.第三象限
C.第二象限 D.第四象限
解析:选D ==-,对应点在第四象限.
2.下面几种推理中是演绎推理的为(  )
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列,,,…的通项公式为an=(n∈N+)
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2
解析:选C 由演绎推理的概念可知C正确.
3.函数y=(sin x2)3的导数是(  )
A.y′=3xsin x2·sin 2x2 B.y′=3(sin x2)2
C.y′=3(sin x2)2cos x2 D.y′=6sin x2cos x2
解析:选A y′=[(sin x2)3]′=3(sin x2)2·(sin x2)′=3(sin x2)2·cos x2·2x=3×2sin x2·cos x2·x·sin x2=3x·sin x2·sin 2x2,故选A.
4.设f(x)=xln x,若f′(x0)=2,则x0的值为(  )
A.e2 B.e
C. D.ln 2
解析:选B 由f(x)=xln x,得f′(x)=ln x+1. 根据题意知ln x0+1=2,所以ln x0=1,因此x0=e.
6.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=(  )
A.192 B.202
C.212 D.222
解析:选C 归纳得13+23+33+43+53+63=2=212.
8.函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+bx+的单调递增区间是(  )
A.(-∞,-2] B.
C.[-2,3] D.
解析:选D 由题图可知d=0.不妨取a=1,∵f(x)=x3+bx2+cx,∴f′(x)=3x2+2bx+c.由图可知f′(-2)=0,f′(3)=0,∴12-4b+c=0,27+6b+c=0,
∴b=-,c=-18.∴y=x2-x-6,y′=2x-. 当x>时,y′>0,∴y=x2-x-6的单调递增区间为.故选D.
9.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为(  )
解析:选C 根据题意得g(x)=cos x,∴y=x2g(x)=x2cos x为偶函数.又x=0时,y=0,故选C.
10.设函数f(x)在R上可导,f(x)=x2f′(2)-3x,则f(-1)与f(1)的大小关系是(  )
A.f(-1)=f(1) B.f(-1)>f(1)
C.f(-1)解析:选B 因为f(x)=x2f′(2)-3x,所以f′(x)=2xf′(2)-3,则f′(2)=4f′(2)-3,解得f′(2)=1,所以f(x)=x2-3x,所以f(1)=-2,f(-1)=4,故f(-1)>f(1).
11.若不等式2xln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,0) B.(-∞,4]
C.(0,+∞) D.[4,+∞)
解析:选B 由2xln x≥-x2+ax-3,得a≤2ln x+x+,设h(x)=2ln x+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.故a的取值范围是(-∞,4].
12.定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则ex1f(x2)与ex2f(x1)的大小关系为(  )
A.ex1f(x2)>ex2f(x1)
B.ex1f(x2)<ex2(x1)
C.ex1f(x2)=ex2f(x1)
D.ex1f(x2)与ex2f(x1)的大小关系不确定
解析:选A 设g(x)=,则g′(x)==,由题意g′(x)>0,所以g(x)单调递增,当x1<x2时,g(x1)<g(x2),即<,所以ex1f(x2)>ex2f(x1).
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)
13.设z=(2-i)2(i为虚数单位),则复数z的模为______.
解析:z=(2-i)2=3-4i,所以|z|=|3-4i|==5.
答案:5
14.(天津高考)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________.
解析:f′(x)=a=a(1+ln x).
由于f′(1)=a(1+ln 1)=a,又f′(1)=3,所以a=3.
答案:3
15.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p元,销量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8 300-170p-p2,则该商品零售价定为______元时利润最大,利润的最大值为______元.
解析:设商场销售该商品所获利润为y元,则
y=(p-20)(8 300-170p-p2)
=-p3-150p2+11 700p-166 000(p≥20),
则y′=-3p2-300p+11 700.
令y′=0得p2+100p-3 900=0,
解得p=30或p=-130(舍去).
则p,y,y′变化关系如下表:
p (20,30) 30 (30,+∞)
y′ + 0 -
y ? 极大值 ?
故当p=30时,y取极大值为23 000元.
又y=-p3-150p2+11 700p-166 000在[20,+∞)上只有一个极值,故也是最值.所以该商品零售价定为每件30元,所获利润最大为23 000元.
答案:30 23 000
16.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.下图中实心点的个数5,9,14,20,…,被称为梯形数.根据图形的构成,记第2 016个梯形数为a2 016,则a2 016=________.
解析:5=2+3=a1,9=2+3+4=a2,14=2+3+4+5=a3,…,an=2+3+…+(n+2)==×(n+1)(n+4),由此可得a2 016=2+3+4+…+2 018=×2 017×2 020=2 017×1 010.
答案:2 017×1 010
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知a>b>c,求证:+≥.
证明:已知a>b>c,因为+=+=2++≥2+2=4,
所以+≥4,即+≥.
18.(本小题满分12分)设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值.
解:(1)当m=1时,f(x)=-x3+x2,
f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,1-m) 1-m (1-m,1+m) 1+m (1+m,+∞)
f′(x) - 0 + 0 -
f(x) ? 极小值 ? 极大值 ?
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
函数f(x)在x=1-m处取得极小值f(1-m),
且f(1-m)=-m3+m2-.
函数f(x)在x=1+m处取得极大值f(1+m),
且f(1+m)=m3+m2-.
19.(本小题满分12分)已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
解:(1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
所以f(x)在上单调递增,在上单调递减.
(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;
当a>0时,f(x)在x=处取得最大值,最大值为
f=ln+a=-ln a+a-1.
因此f>2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当01时,g(a)>0.
因此a的取值范围是(0,1).
20.(本小题满分12分)已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.
(1)求a1,a2,a3;
(2)猜想{an}的通项公式,并用数学归纳法证明.
解:(1)a1=S1=+-1,
所以a1=-1±.
又因为an>0,所以a1=-1.
S2=a1+a2=+-1,所以a2=-.
S3=a1+a2+a3=+-1,
所以a3=-.
(2)由(1)猜想an=-,n∈N*.
下面用数学归纳法加以证明:
①当n=1时,由(1)知a1=-1成立.
②假设n=k(k∈N*)时,ak=-成立.
当n=k+1时,ak+1=Sk+1-Sk
=-
=+-,
所以a+2ak+1-2=0,
所以ak+1=-,
即当n=k+1时猜想也成立.
综上可知,猜想对一切n∈N*都成立.
21.(本小题满分12分)已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
解:(1)由奇函数的定义,
应有f(-x)=-f(x),x∈R,
即-ax3-cx+d=-ax3-cx-d,∴d=0.
因此f(x)=ax3+cx,f′(x)=3ax2+c.
由条件f(1)=-2为f(x)的极值,必有f′(1)=0.
故解得a=1,c=-3.
因此f(x)=x3-3x,
f′(x)=3x2-3=3(x+1)(x-1),
f′(-1)=f′(1)=0.
当x∈(-∞,-1)时,f′(x)>0,
故f(x)在区间(-∞,-1)上是增函数;
当x∈(-1,1)时,f′(x)<0,
故f(x)在区间(-1,1)上是减函数;
当x∈(1,+∞)时,f′(x)>0,
故f(x)在区间(1,+∞)上是增函数.
∴f(x)在x=-1处取得极大值,极大值为f(-1)=2.
(2)证明:由(1)知,f(x)=x3-3x(x∈[-1,1])是减函数,
且f(x)在[-1,1]上的最大值M=f(-1)=2,
f(x)在[-1,1]上的最小值m=f(1)=-2.
∴对任意的x1,x2∈(-1,1),
恒有|f(x1)-f(x2)|22.(本小题满分12分)已知函数f(x)=ex+2x2-3x.
(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点.
(2)当x≥时,若关于x的不等式f(x)≥x2+(a-3)x+1恒成立,试求实数a的取值范围.
解:(1)证明:f′(x)=ex+4x-3,
∵f′(0)=e0-3=-2<0,f′(1)=e+1>0,
∴f′(0)·f′(1)<0.
令h(x)=f′(x)=ex+4x-3,则h′(x)=ex+4>0,
∴f′(x)在区间[0,1]上单调递增,
∴f′(x)在区间[0,1]上存在唯一零点,
∴f(x)在区间[0,1]上存在唯一的极小值点.
(2)由f(x)≥x2+(a-3)x+1,
得ex+2x2-3x≥x2+(a-3)x+1,
即ax≤ex-x2-1,
∵x≥,∴a≤.
令g(x)=,
则g′(x)=.
令φ(x)=ex(x-1)-x2+1,则φ′(x)=x(ex-1).
∵x≥,∴φ′(x)>0.
∴φ(x)在上单调递增.
∴φ(x)≥φ=->0.
因此g′(x)>0,故g(x)在上单调递增,
则g(x)≥g==2-,
∴a的取值范围是. 复习课(二) 直接证明与间接证明
合情推理
(1)近几年的高考中归纳推理和类比推理有时考查,考查的形式以填空题为主,其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力.
(2)处理与归纳推理相关的类型及策略
①与数字有关:观察数字特点,找出等式左右两侧的规律可解.
②与式有关:观察每个式的特点,找到规律后可解.
③进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.
1.归纳推理的特点及一般步骤
2.类比推理的特点及一般步骤
[典例] (1)(陕西高考)观察下列等式:
1-=,
1-+-=+,
1-+-+-=++,
……,
据此规律,第n个等式可为____________________________________________________.
(2)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.
[解析] (1)等式的左边的通项为-,前n项和为1-+-+…+-;右边的每个式子的第一项为,共有n项,故为++…+.
(2)因为两个正三角形是相似三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.
[答案] (1)1-+-+…+-=++…+
(2)1∶8
[类题通法]
(1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.
(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.
1.观察下图中各正方形图案,每条边上有n(n≥2)个点,第n个图案中圆点的总数是Sn.
n=2,S2=4,n=3,S3=8,n=4,S4=12,…,按此规律,推出Sn与n的关系式为________.
解析:依图的构造规律可以看出:
S2=2×4-4,
S3=3×4-4,
S4=4×4-4(正方形四个顶点重复计算一次,应减去).
……
猜想:Sn=4n-4(n≥2,n∈N*).
答案:Sn=4n-4(n≥2,n∈N*)
2.在平面几何中:△ABC的∠C内角平分线CE分AB所成线段的比为=.把这个结论类比到空间:在三棱锥A BCD中(如图),DEC平分二面角A CD B且与AB相交于E,则得到类比的结论是________________.
解析:由平面中线段的比转化为空间中面积的比可得
=.
答案:=
演绎推理
(1)演绎推理在高考中不会刻意去考查,但实际上是无处不在,常以数列、不等式、立体几何、解析几何等主干知识为载体进行考查.
(2)解答此类问题,结合已学过的知识和生活中的实例,了解演绎推理的含义、基本方法在证明中的应用是关键.
演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确.
[典例] 已知f(x)=- ,数列{an}的前n项和为Sn,点Pn在曲线y=f(x)上(n∈N*),且a1=1,an>0.
(1)求数列{an}的通项公式;
(2)求证:Sn>(-1),n∈N*.
[解] (1)f(an)=-=-,且an>0,
∴=,
∴-=4(n∈N*).
∴数列是等差数列,首项=1,公差d=4,
∴=1+4(n-1),∴a=.
∵an>0,∴an=(n∈N*).
(2)证明:∵an=
=>
=,
∴Sn=a1+a2+…+an>[(-1)+(-)+…
+(-)]
=(-1).
[类题通法]
应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.
常见的解题错误:
(1)条件理解错误(小前提错);
(2)定理引入和应用错误(大前提错);
(3)推理过程错误等.
1.已知a=,函数f(x)=ax,若实数m,n满足f(m)>f(n),则m,n的大小关系是    .
解析:当0a=∈(0,1),∴函数f(x)=x为减函数,故由f(m)>f(n),得m答案:m2.设a>0,f(x)=+是R上的偶函数,求a的值.
解析:∵f(x)=+是R上的偶函数,
∴f(-x)=f(x),即+=+,
∴(e-x-ex)+a=0.
∴=0对一切x∈R恒成立,
∴a-=0,即a2=1.
又a>0,∴a=1.
综合法与分析法
(1)综合法与分析法是高考重点考查内容,一般以某一知识点作为载体,考查由分析法获得解题思路以及用综合法有条理地表达证明过程.
(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题.
1.综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法.
2.分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“只需证……”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.
[典例] 设a>0,b>0,a+b=1,
求证:++≥8.
[证明] 法一:综合法
因为a>0,b>0,a+b=1,
所以1=a+b≥2,≤,ab≤,所以≥4,
又+=(a+b)=2++≥4,
所以++≥8(当且仅当a=b=时等号成立).
法二:分析法
因为a>0,b>0,a+b=1,要证++≥8.
只要证+≥8,
只要证+≥8,
即证+≥4.
也就是证+≥4.
即证+≥2,
由基本不等式可知,当a>0,b>0时,+≥2成立,
所以原不等式成立.
[类题通法]
综合法和分析法的特点
(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.
(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.
1.已知a>0,b>0,如果不等式+≥恒成立,那么m的最大值等于(  )
A.10           B.9
C.8 D.7
解析:选B ∵a>0,b>0,∴2a+b>0.
∴不等式可化为m≤(2a+b)=5+2.
∵5+2≥5+4=9,即其最小值为9,
∴m≤9,即m的最大值等于9.
2.若a>b>c>d>0且a+d=b+c,
求证:+<+.
证明:要证+<+,
只需证(+)2<(+)2,
即a+d+2<b+c+2,
因a+d=b+c,只需证<,
即ad<bc,设a+d=b+c=t,
则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,
故ad<bc成立,从而+<+成立.
反证法
(1)反证法是证明问题的一种方法,在高考中很少单独考查,常用来证明解答题中的一问.
(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾.
1.使用反证法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.
2.一般以下题型用反证法:
(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;
(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;
(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.
[典例] (1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为(  )
A.a,b,c都是偶数
B.a,b,c都是奇数
C.a,b,c中至少有两个偶数
D.a,b,c中都是奇数或至少有两个偶数
(2)已知:ac≥2(b+d).
求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一个方程有实数根.
[解析] (1)自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c中都是奇数或至少有两个偶数.”
答案:D
(2)证明:假设两方程都没有实数根.则Δ1=a2-4b<0与Δ2=c2-4d<0,有a2+c2<4(b+d),而a2+c2≥2ac,
从而有4(b+d)>2ac,即ac<2(b+d),
与已知矛盾,故原命题成立.
[类题通法]
反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.
1.已知x∈R,a=x2+,b=2-x,c=x2-x+1,试证明a,b,c至少有一个不小
于1.
证明:假设a,b,c均小于1,即a<1,b<1,c<1,
则有a+b+c<3,
而a+b+c=2x2-2x++3=22+3≥3,
两者矛盾,所以假设不成立,
故a,b,c至少有一个不小于1.
2.设二次函数f(x)=ax2+bx+c(a≠0)中的a,b,c都为整数,已知f(0),f(1)均为奇数,求证:方程f(x)=0无整数根.
证明:假设方程f(x)=0有一个整数根k,
则ak2+bk+c=0,
∵f(0)=c,f(1)=a+b+c都为奇数,
∴a+b必为偶数,ak2+bk为奇数.
当k为偶数时,令k=2n(n∈Z),
则ak2+bk=4n2a+2nb=2n(2na+b)必为偶数,
与ak2+bk为奇数矛盾;
当k为奇数时,令k=2n+1(n∈Z),
则ak2+bk=(2n+1)·(2na+a+b)为一奇数与一偶数乘积,必为偶数,也与ak2+bk为奇数矛盾.
综上可知方程f(x)=0无整数根.
数学归纳法
(1)数学归纳法在近几年高考试题中都有所体现,常与数列、不等式结合在一起考查,一般涉及通项公式的求解,相关等式、不等式的证明等,考查模式一般为“归纳——猜想——证明”.
(2)数学归纳法是一种特殊的直接证明的方法,在证明一些与正整数有关的数学命题时,往往是非常有用的研究工具.在使用时注意“归纳奠基”和“归纳递推”两个步骤缺一不可.
1.定义:数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.
第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.
2.注意问题:
①n=n0时成立,要弄清楚命题的含义.
②由假设n=k成立证n=k+1时,要推导详实,并且一定要运用n=k成立的结论.
③要注意n=k到n=k+1时增加的项数.
[典例] 设a>0,f(x)=,令a1=1,an+1=f(an),n∈N*.
(1)写出a2,a3,a4的值,并猜想数列{an}的通项公式;
(2)用数学归纳法证明你的结论.
[解] (1)∵a1=1,
∴a2=f(a1)=f(1)=;
a3=f(a2)=;a4=f(a3)=.
猜想an=(n∈N*).
(2)证明:①易知,n=1时,猜想正确.
②假设n=k(k∈N*)时猜想正确,
即ak=,
则ak+1=f(ak)==
==.
这说明,n=k+1时猜想正确.
由①②知,对于任何n∈N*,都有an=.
[类题通法]
与“归纳—猜想—证明”相关的常用题型的处理策略
(1)与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.
(2)与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法.
1.设数列{an}的前n项和为Sn,且对任意的自然数n都有:(Sn-1)2=anSn,通过计算S1,S2,S3,猜想Sn=________.
解析:由(S1-1)2=S得:S1=;
由(S2-1)2=(S2-S1)S2得:S2=;
由(S3-1)2=(S3-S2)S3得:S3=.
猜想Sn=.
答案:
2.设数列{an}的前n项和Sn=(n∈N*),a2=2.
(1)求{an}的前三项a1,a2,a3;
(2)猜想{an}的通项公式,并证明.
解:(1)由Sn=得a1=1,又由a2=2,得a3=3.
(2)猜想:an=n.证明如下:①当n=1时,猜想成立.
②假设当n=k(k≥2)时,猜想成立,即ak=k,
那么当n=k+1时,ak+1=Sk+1-Sk
=-
=-.
所以ak+1=-=k+1,
所以当n=k+1时,猜想也成立.
根据①②知,对任意n∈N*,都有an=n.
1.用演绎推理证明函数y=x3是增函数时的大前提是(   )
A.增函数的定义
B.函数y=x3满足增函数的定义
C.若x1D.若x1>x2,则f(x1)>f(x2)
解析:选A 根据演绎推理的特点知,演绎推理是一种由一般到特殊的推理,所以函数y=x3是增函数的大前提应是增函数的定义.
2.数列{an}中,已知a1=1,当n≥2时,an=an-1+2n-1,依次计算a2, a3,a4后,猜想an的表达式是(   )
A.an=3n-2         B.an=n2
C.an=3n-1 D.an=4n-3
解析:选B 求得a2=4,a3=9,a4=16,猜想an=n2.
3.在平面直角坐标系内,方程+=1表示在x,y轴上的截距分别为a,b的直线,拓展到空间直角坐标系内,在x,y,z轴上的截距分别为a,b,c(abc≠0)的平面方程为(  )
A.++=1 B.++=1
C.++=1 D.ax+by+cz=1
解析:选A 类比到空间应选A.另外也可将点(a,0,0)代入验证.
4.(山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是(  )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.
5.公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项,S8=32,则S10=(  )
A.18 B.24
C.60 D.90
解析:选C 由a=a3a7得(a1+3d)2=(a1+2d)(a1+6d),即2a1+3d=0.再由S8=8a1+d=32,得2a1+7d=8,则d=2,a1=-3.所以S10=10a1+d=60,选C.
6.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则=(  )
A.1 B.2
C.3 D.4
7.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是    .
解析:分别观察正方体的个数为:1,1+5,1+5+9,…
归纳可知,第n个叠放图形中共有n层,构成了以1为首项,以4为公差的等差数列,
所以Sn=n+[n(n-1)×4]÷2=2n2-n,
所以S7=2×72-7=91.
答案:91
8.用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=(n∈N*)的第二步中,当n=k+1时等式左边与n=k时的等式左边的差等于________.
解析:当n=k+1时,左边=(k+2)+(k+3)+…+(2k+2);当n=k时,左边=(k+1)+(k+2)+…+2k,其差为(2k+1)+(2k+2)-(k+1)=3k+2.
答案:3k+2
9.(全国卷Ⅰ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
解析:法一:由题意得丙的卡片上的数字不是2和3.
若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;
若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.
故甲的卡片上的数字是1和3.
法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.
答案:1和3
10.设函数f(x)=exln x+,证明:f(x)>1.
证明:由题意知f(x)>1等价于xln x>xe-x-.
设函数g(x)=xln x,则g′(x)=1+ln x.
所以当x∈时,g′(x)<0;
当x∈时,g′(x)>0.
故g(x)在上单调递减,在上单调递增,
从而g(x)在(0,+∞)上的最小值为g=-.
设函数h(x)=xe-x-,则h′(x)=e-x(1-x).
所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0.
故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
从而h(x)在(0,+∞)上的最大值为h(1)=-.
综上,当x>0时,g(x)>h(x),即f(x)>1.
11.各项都为正数的数列{an}满足a1=1,a-a=2.
(1)求数列{an}的通项公式;
(2)求证:++…+≤对一切n∈N*恒成立.
解:(1)∵a-a=2,
∴数列{a}为首项为1,公差为2的等差数列,
∴a=1+(n-1)·2=2n-1,
又an>0,则an=.
(2)证明:由(1)知,即证1++…+≤.
①当n=1时,左边=1,右边=1,所以不等式成立.
当n=2时,左边<右边,所以不等式成立.
②假设当n=k(k≥2,k∈N*)时不等式成立,
即1++…+≤,
当n=k+1时,
左边=1++…++≤+
<+
=+
==.
所以当n=k+1时不等式成立.
由①②知对一切n∈N*不等式恒成立.
12.已知函数f(x)=x2-ax+ln(x+1)(a∈R).
(1)当a=2时,求函数f(x)的极值点;
(2)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围;
(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),证明数列{cn}是单调递增数列.
解:(1)当a=2时,f(x)=x2-2x+ln(x+1),
f′(x)=2x-2+=.
令f′(x)=0,得x=±.
当x∈时,f′(x)>0,f(x)单调递增,
当x∈时,f′(x)<0,f(x)单调递减.
当x∈时,f′(x)>0,f(x)单调递增.
∴函数f(x)的极大值点为x=-,
极小值点为x=.
(2)∵f′(x)=2x-a+,
由f′(x)>x,
得2x-a+>x,
所以a又x+=x+1+-1>1,
∴a≤1.
故所求实数a的取值范围为(-∞,1].
(3)证明:(用数学归纳法证明)
①当n=1时,c2=f′(c1)=2c1-a+,
∵c1>0,∴c1+1>1,又a<1,
∴c2-c1=c1-a+=c1+1+-(a+1)>2-(a+1)=1-a>0,
∴c2>c1,即当n=1时结论成立.
②假设当n=k(k∈N*,k≥1)时结论成立,
即ck+1>ck>0,
当n=k+1时,
ck+2-ck+1=ck+1-a+=ck+1+1+-(a+1)>2-(a+1)=1-a>0.
∴ck+2>ck+1,
即当n=k+1时结论成立.
由①②知数列{cn}是单调递增数列.1.1.1&1.1.2 变化率问题 导数的概念
(1)平均变化率的定义是什么?平均变化率的几何意义是什么?
(2)瞬时变化率的定义是怎样的?如何求瞬时变化率?
(3)如何用定义求函数在某一点处的导数?
    
1.函数y=f(x)从x1到x2的平均变化率
(1)定义式:=.
(2)实质:函数值的改变量与自变量的改变量之比.
(3)意义:刻画函数值在区间[x1,x2]上变化的快慢.
(4)平均变化率的几何意义:
设A(x1,f(x1)),B(x2,f(x2))是曲线y=f(x)上任意不同的两点,函数y=f(x)的平均变化率==为割线AB的斜率,如图所示.
[点睛] Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点,即Δx=x2-x1≠0,但Δx可以为正,也可以为负.
2.函数y=f(x)在x=x0处的瞬时变化率
定义式 li =
实质 瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值
作用 刻画函数在某一点处变化的快慢
[点睛] “Δx无限趋近于0”的含义
Δx趋于0的距离要多近有多近,即|Δx-0|可以小于给定的任意小的正数,且始终Δx≠0.
3.导数的概念
定义式 li =
记法 f′(x0)或y′|x=x0
实质 函数y=f(x)在x=x0处的导数就是y=f(x)在x=x0处的瞬时变化率
1.判断(正确的打“√”,错误的打“×”)
(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.(  )
(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.(  )
(3)在导数的定义中,Δx,Δy都不可能为零.(  )
答案:(1)√ (2)× (3)×
2.质点运动规律为s(t)=t2+3,则从3到3+Δt的平均速度为(  )
A.6+Δt        B.6+Δt+
C.3+Δt D.9+Δt
答案:A
3.已知函数f(x)=2x2-4的图象上两点A,B,且xA=1,xB=1.1,则函数f(x)从A点到B点的平均变化率为(  )
A.4 B.4x
C.4.2 D.4.02
答案:C
4.在f′(x0)= 中,Δx不可能为(  )
A.大于0 B.小于0
C.等于0 D.大于0或小于0
答案:C
求函数的平均变化率
[典例] 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为,哪一点附近的平均变化率最大?
[解] 在x=1附近的平均变化率为
k1===2+Δx;
在x=2附近的平均变化率为
k2===4+Δx;
在x=3附近的平均变化率为
k3===6+Δx;
若Δx=,则k1=2+=,k2=4+=,
k3=6+=,
由于k1<k2<k3,
故在x=3附近的平均变化率最大.
求平均变化率的步骤
(1)先计算函数值的改变量Δy=f(x1)-f(x0).
(2)再计算自变量的改变量Δx=x1-x0.
(3)求平均变化率=.      
[活学活用]
求函数y=x3从x0到x0+Δx之间的平均变化率,并计算当x0=1,Δx=时平均变化率的值.
解:当自变量从x0变化到x0+Δx时,函数的平均变化率为==
=3x+3x0Δx+(Δx)2,
当x0=1,Δx=时平均变化率的值为
3×12+3×1×+2=.
求瞬时速度
[典例] 一做直线运动的物体,其位移s与时间t的关系是s(t)=3t-t2.
(1)求此物体的初速度;
(2)求此物体在t=2时的瞬时速度.
[解] (1)当t=0时的速度为初速度.在0时刻取一时间段[0,0+Δt],即 [0,Δt],
∴Δs=s(Δt)-s(0)=[3Δt-(Δt)2]-(3×0-02)=3Δt-(Δt)2,
==3-Δt,li =li (3-Δt)=3.
∴物体的初速度为3.
(2)取一时间段[2,2+Δt],
∴Δs=s(2+Δt)-s(2)
=[3(2+Δt)-(2+Δt)2]-(3×2-22)
=-Δt-(Δt)2,
==-1-Δt,
li =li (-1-Δt)=-1,
∴当t=2时,物体的瞬时速度为-1.
1.求运动物体瞬时速度的三个步骤
(1)求时间改变量Δt和位移改变量Δs=s(t0+Δt)-s(t0).
(2)求平均速度=;
(3)求瞬时速度,当Δt无限趋近于0时,无限趋近于常数v,即为瞬时速度.
2.求(当Δx无限趋近于0时)的极限的方法
(1)在极限表达式中,可把Δx作为一个数来参与运算;
(2)求出的表达式后,Δx无限趋近于0就是令Δx=0,求出结果即可.     
 [活学活用]
一木块沿某一斜面自由滑下,测得下滑的水平距离s与时间t之间的函数关系为s=t2,则t=2时,此木块在水平方向的瞬时速度为(  )
A.2 B.1
C. D.
解析:选A ∵==Δt+2,
∴li =li =2,故选A.
求函数在某点处的导数
[典例] (1)函数y=在x=1处的导数为________.
(2)如果一个质点由定点A开始运动,在时间t的位移函数为y=f(t)=t3+3,
①当t1=4,Δt=0.01时,求Δy和比值;
②求t1=4时的导数.
[解析] (1)Δy=-1,
==,
li =,所以y′|x=1=.
答案:(1)
(2)解:①Δy=f(t1+Δt)-f(t1)=3t·Δt+3t1·(Δt)2+(Δt)3,故当t1=4,Δt=0.01时,Δy=0.481 201,=48.120 1.
②li =li[3t+3t1·Δt+(Δt)2]=3t=48,
故函数y=t3+3在t1=4处的导数是48,
即y′|t1=4=48.
1.用导数定义求函数在某一点处的导数的步骤
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
(2)求平均变化率=;
(3)求极限li .
2.瞬时变化率的变形形式
li
=li
=li
=li
=f′(x0).    
[活学活用]
求函数y=x-在x=1处的导数.
解:因为Δy=(1+Δx)--=Δx+,所以==1+.
当Δx→0时,→2,
所以函数y=x-在x=1处的导数为2.
层级一 学业水平达标
1.如果一个函数的瞬时变化率处处为0,则这个函数的图象是(  )
A.圆          B.抛物线
C.椭圆 D.直线
解析:选D 当f(x)=b时,瞬时变化率li = =0,所以f(x)的图象为一条直线.
2.设函数y=f(x)=x2-1,当自变量x由1变为1.1时,函数的平均变化率为(  )
A.2.1 B.1.1
C.2 D.0
解析:选A ===2.1.
3.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(  )
A.f′(x)=a B.f′(x)=b
C.f′(x0)=a D.f′(x0)=b
解析:选C f′(x0)=
= (a+b·Δx)=a.
4.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为(  )
A.6    B.18    
C.54     D.81
解析:选B ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3·32=18Δt+3(Δt)2.∴=18+3Δt.∴ = (18+3Δt)=18,故应选B.
5.已知f(x)=x2-3x,则f′(0)=(  )
A.Δx-3 B.(Δx)2-3Δx
C.-3 D.0
解析:选C f′(0)=
= = (Δx-3)=-3.故选C.
6.设f(x)=ax+4,若f′(1)=2,则a=________.
解析:∵f′(1)=
= =a,∴a=2.
答案:2
7.汽车行驶的路程s和时间t之间的函数图象如图,在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为1,2,3,则三者的大小关系为________.
解析:1=kOA,2=kAB,3=kBC,
由图象知kOA<kAB<kBC.
答案:1<2<3
8.球的半径从1增加到2时,球的体积平均膨胀率为______.
解析:∵Δy=π×23-π×13=,
∴==.
答案:
9.质点按规律s(t)=at2+1做直线运动(s单位:m,t单位:s).若质点在t=2时的瞬时速度为8 m/s,求常数a的值.
解:∵Δs=s(2+Δt)-s(2)=[a(2+Δt)2+1]-(a×22+1)=4aΔt+a(Δt)2,∴=4a+aΔt,
∴在t=2时,瞬时速度为 =4a,4a=8,∴a=2.
10.已知函数f(x)=求f′(4)·f′(-1)的值.
解:当x=4时,Δy=-+
=-=
=.
∴=.
∴ =
==.
∴f′(4)=.
当x=-1时,=
==Δx-2,
由导数的定义,得f′(-1)= (Δx-2)=-2,
∴f′(4)·f′(-1)=×(-2)=-.
层级二 应试能力达标
1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则等于(  )
A.4           B.4x
C.4+2Δx D.4+2(Δx)2
解析:选C ====2Δx+4.
2.甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图,则在[0,t0]这个时间段内,甲、乙两人的平均速度v甲,v乙的关系是(  )
A.v甲>v乙
B.v甲<v乙
C.v甲=v乙
D.大小关系不确定
解析:选B 设直线AC,BC的斜率分别为kAC,kBC,由平均变化率的几何意义知,s1(t)在[0,t0]上的平均变化率v甲=kAC,s2(t)在[0,t0]上的平均变化率v乙=kBC.因为kAC<kBC,所以v甲<v乙.
3.若可导函数f(x)的图象过原点,且满足 =-1,则f′(0)=(  )
A.-2 B.-1
C.1 D.2
解析:选B ∵f(x)图象过原点,∴f(0)=0,
∴f′(0)= = =-1,
∴选B.
4.已知f(x)=,且f′(m)=-,则m的值等于(  )
A.-4 B.2
C.-2 D.±2
解析:选D f′(x)=li =-,于是有-=-,m2=4,解得m=±2.
5.已知函数f(x)=-x2+x在区间[t,1]上的平均变化率为2,则t=________.
解析:∵Δy=f(1)-f(t)=(-12+1)-(-t2+t)=t2-t,
∴==-t. 又∵=2,∴t=-2.
答案:-2
6.一物体的运动方程为s=7t2+8,则其在t=________时的瞬时速度为1.
解析:==7Δt+14t0,
当 (7Δt+14t0)=1时,t=t0=.
答案:
7.枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度是5.0×105 m/s2,枪弹从枪口射出时所用时间为1.6×10-3 s,求枪弹射出枪口时的瞬时速度.
解:位移公式为s=at2,
∵Δs=a(t0+Δt)2-at=at0Δt+a(Δt)2,
∴=at0+aΔt,∴ = =at0,
已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800 m/s.
所以枪弹射出枪口时的瞬时速度为800 m/s.
8.设函数f(x)在x0处可导,求下列各式的值.
(1) ;
(2 .
解:(1)
=-m =-mf′(x0).
(2)原式

= -
=4 -5
=4f′(x0)-5f′(x0)=-f′(x0).
预习课本P2~6,思考并完成下列问题1.1.3 导数的几何意义
预习课本P6~8,思考并完成下列问题
(1)导数的几何意义是什么?
 
(2)导函数的概念是什么?怎样求导函数?
(3)怎么求过一点的曲线的切线方程?
 
   
1.导数的几何意义
(1)切线的概念:如图,对于割线PPn,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k= =f′(x0).
2.导函数的概念
(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).
(2)记法:f′(x)或y′,即f′(x)=y′= .
[点睛] 曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.与曲线只有一个公共点的直线也不一定是曲线的切线.
1.判断(正确的打“√”,错误的打“×”)
(1)导函数f′(x)的定义域与函数f(x)的定义域相同.(  )
(2)直线与曲线相切,则直线与已知曲线只有一个公共点.(  )
(3)函数f(x)=0没有导函数.(  )
答案:(1)× (2)× (3)×
2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线(  )
A.不存在        B.与x轴平行或重合
C.与x轴垂直 D.与x轴斜交
答案:B
3.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=(  )
A.4   B.-4   
C.-2    D.2
答案:D
4.抛物线y2=x与x轴、y轴都只有一个公共点,在x轴和y轴这两条直线中,只有________是它的切线,而______不是它的切线.
答案:y轴 x轴
求曲线的切线方程
[典例] 已知曲线C:y=x3+,求曲线C上的横坐标为2的点处的切线方程.
[解]  将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2= =
= [4+2·Δx+(Δx)2]=4.
∴k=y′|x=2=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),
即4x-y-4=0.
1.过曲线上一点求切线方程的三个步骤
2.求过曲线y=f(x)外一点P(x1,y1)的切线方程的六个步骤
(1)设切点(x0,f(x0)).
(2)利用所设切点求斜率k=f′(x0)=li .
(3)用(x0,f(x0)),P(x1,y1)表示斜率.
(4)根据斜率相等求得x0,然后求得斜率k.
(5)根据点斜式写出切线方程.
(6)将切线方程化为一般式.      
[活学活用]
过点(1,-1)且与曲线y=x3-2x相切的直线方程为(  )
A.x-y-2=0或5x+4y-1=0
B.x-y-2=0
C.x-y-2=0或4x+5y+1=0
D.x-y+2=0
解析:选A 显然点(1,-1)在曲线y=x3-2x上,
若切点为(1,-1),则由f′(1)=li

= [(Δx)2+3Δx+1]=1,
∴切线方程为y-(-1)=1×(x-1),即x-y-2=0.
若切点不是(1,-1),设切点为(x0,y0),
则k===
=x+x0-1,
又由导数的几何意义知
k=f′(x0)=
= =3x-2,
∴x+x0-1=3x-2,∴2x-x0-1=0,
∵x0≠1,∴x0=-.
∴k=x+x0-1=-,
∴切线方程为y-(-1)=-(x-1),
即5x+4y-1=0,故选A.
求切点坐标
[典例]  已知抛物线y=2x2+1分别满足下列条件,请求出切点的坐标.
(1)切线的倾斜角为45°.
(2)切线平行于直线4x-y-2=0.
(3)切线垂直于直线x+8y-3=0.
[解] 设切点坐标为(x0,y0),则
Δy=2(x0+Δx)2+1-2x-1=4x0·Δx+2(Δx)2,
∴=4x0+2Δx,
当Δx→0时,→4x0,即f′(x0)=4x0.
(1)∵抛物线的切线的倾斜角为45°,
∴斜率为tan 45°=1.
即f′(x0)=4x0=1,得x0=,
∴切点的坐标为.
(2)∵抛物线的切线平行于直线4x-y-2=0,
∴k=4,即f′(x0)=4x0=4,得x0=1,
∴切点坐标为(1,3).
(3)∵抛物线的切线与直线x+8y-3=0垂直,
则k·=-1,即k=8,
故f′(x0)=4x0=8,得x0=2,∴切点坐标为(2,9).
求切点坐标可以按以下步骤进行
(1)设出切点坐标;
(2)利用导数或斜率公式求出斜率;
(3)利用斜率关系列方程,求出切点的横坐标;
(4)把横坐标代入曲线或切线方程,求出切点纵坐标.      
[活学活用]
直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,则a的值为___________,切点坐标为____________.
解析:设直线l与曲线C的切点为(x0,y0),
因为y′=
=3x2-2x,
则y′|x=x0=3x-2x0=1,解得x0=1或x0=-,
当x0=1时,y0=x-x+1=1,
又(x0,y0)在直线y=x+a上,
将x0=1,y0=1代入得a=0与已知条件矛盾舍去.
当x0=-时,y0=3-2+1=,
则切点坐标为,将代入直线y=x+a中得a=.
答案: 
层级一 学业水平达标
1.下面说法正确的是(  )
A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线
B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在
C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在
D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在
解析:选C f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处切线的斜率,当切线垂直于x轴时,切线的斜率不存在,但存在切线.
2.曲线f(x)=-在点M(1,-2)处的切线方程为(  )
A.y=-2x+4        B.y=-2x-4
C.y=2x-4 D.y=2x+4
解析:选C ==,所以当Δx→0时,f′(1)=2,即k=2.所以直线方程为y+2=2(x-1).即y=2x-4.故选C.
3.曲线y=x3-2在点处切线的倾斜角为(  )
A.1 B.
C. D.-
解析:选B ∵y′=
= =x2,
∴切线的斜率k=y′|x=1=1.
∴切线的倾斜角为,故应选B.
4.曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于(  )
A.1 B.
C.- D.-1
解析:选A ∵y′|x=1= =
=li (2a+aΔx)=2a,
∴2a=2,∴a=1.
5.过正弦曲线y=sin x上的点的切线与y=sin x的图象的交点个数为(  )
A.0个 B.1个
C.2个 D.无数个
解析:选D 由题意,y=f(x)=sin x,
则f′=
= .
当Δx→0时,cos Δx→1,
∴f′=0.
∴曲线y=sin x的切线方程为y=1,且与y=sin x的图象有无数个交点.
6.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=________.
解析:由导数的几何意义得f′(1)=,由点M在切线上得f(1)=×1+2=,所以f(1)+f′(1)=3.
答案:3
7.已知曲线f(x)=,g(x)=过两曲线交点作两条曲线的切线,则曲线f(x)在交点处的切线方程为____________________.
解析:由,得
∴两曲线的交点坐标为(1,1).
由f(x)=,
得f′(x)=li = =,
∴y=f(x)在点(1,1)处的切线方程为y-1=(x-1).
即x-2y+1=0,
答案:x-2y+1=0
8.曲线y=x2-3x的一条切线的斜率为1,则切点坐标为________.
解析:设f(x)=y=x2-3x,切点坐标为(x0,y0),
f′(x0)=
= =2x0-3=1,故x0=2,
y0=x-3x0=4-6=-2,故切点坐标为(2,-2).
答案:(2,-2)
9.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.
解:根据题意可知与直线x-y-2=0平行的抛物线y=x2的切线对应的切点到直线x-y-2=0的距离最短,设切点坐标为(x0,x),则y′|x=x0= =2x0=1,所以x0=,所以切点坐标为,
切点到直线x-y-2=0的距离 d==,所以抛物线上的点到直线x-y-2=0的最短距离为.
10.已知直线l:y=4x+a和曲线C:y=x3-2x2+3相切,求a的值及切点的坐标.
解:设直线l与曲线C相切于点P(x0,y0),
∵=
=(Δx)2+(3x0-2)Δx+3x-4x0.
∴当Δx→0时,→3x-4x0,即f′(x0)=3x-4x0,
由导数的几何意义,得3x-4x0=4,
解得x0=-或x0=2.
∴切点的坐标为或(2,3),
当切点为时,
有=4×+a,∴a=,
当切点为(2,3)时,有3=4×2+a,∴a=-5,
当a=时,切点为;
a=-5时,切点为(2,3).
层级二 应试能力达标
1.已知y=f(x)的图象如图,则f′(xA)与f′(xB)的大小关系是(  )
A.f′(xA)>f′(xB)
B.f′(xA)C.f′(xA)=f′(xB)
D.不能确定
解析:选B 由图可知,曲线在点A处的切线的斜率比曲线在点B处的切线的斜率小,结合导数的几何意义知f′(xA)2.已知曲线y=2x3上一点A(1,2),则点A处的切线斜率等于(  )
A.0           B.2
C.4 D.6
解析:选D Δy=2(1+Δx)3-2×13=6Δx+6(Δx)2+2(Δx)3, = [2(Δx)2+6Δx+6]=6,故选D.
3.设f(x)存在导函数,且满足 =-1,则曲线y=f(x)上点(1,f(1))处的切线斜率为(  )
A.2 B.-1
C.1 D.-2
解析:选B 
= =f′(x)=-1.
4.已知直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则为(  )
A. B.
C.- D.-
解析:选D 由导数的定义可得y′=3x2,∴y=x3在点P(1,1)处的切线斜率k=y′|x=1=3,由条件知,3×=-1,∴=-.
5.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则
=______.
解析:由导数的概念和几何意义知,
=f′(1)=kAB==-2.
答案:-2
6.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则的最小值为________.
解析:由导数的定义,得f′(0)=
= = (a·Δx+b)=b.
又因为对于任意实数x,有f(x)≥0,
则所以ac≥,所以c>0.
所以=≥≥=2.
答案:2
7.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx,若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值.
解:∵f′(x)= = =2ax,
∴f′(1)=2a,即切线斜率k1=2a.
∵g′(x)= =
=3x2+b,
∴g′(1)=3+b,即切线斜率k2=3+b.
∵在交点(1,c)处有公共切线,∴2a=3+b.
又∵a+1=1+b,即a=b,故可得
8.已知曲线y=x2+1,是否存在实数a,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出实数a的取值范围;若不存在,请说明理由.
解:∵==2x+Δx,
∴y′= = (2x+Δx)=2x.
设切点为P(x0,y0),则切线的斜率为k=y′|x=x0=2x0,由点斜式可得所求切线方程为y-y0=2x0(x-x0).
又∵切线过点(1,a),且y0=x+1,
∴a-(x+1)=2x0(1-x0),
即x-2x0+a-1=0.∵切线有两条,
∴Δ=(-2)2-4(a-1)>0,解得a<2.
故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2). 
第一课时 几个常用函数的导数和基本初等函数的导数公式
 预习课本P12~14,思考并完成下列问题
(1)函数y=c,y=x,y=x-1,y=x2,y=的导数分别是什么?能否得出y=xn的导数公式?
 
(2)正余弦函数的导数公式、指数函数、对数函数的导数公式是什么?
 
1.几种常用函数的导数
函数 导数
f(x)=c(c为常数) f′(x)=0
f(x)=x f′(x)=1
f(x)=x2 f′(x)=2x
f(x)= f′(x)=-
f(x)= f′(x)=
[点睛] 对几种常用函数的导数的两点说明
(1)以上几个常用函数的导数是求解其他函数的导数的基础,都是通过导数的定义求得的,都属于幂函数的导数.
(2)以上几个常见的导数公式需记牢,在求导数时,可直接应用,不必再用定义去求导.
2.基本初等函数的导数公式
原函数 导函数
f(x)=c(c为常数) f′(x)=0
f(x)=xα(α∈Q*) f′(x)=αxα-1
原函数 导函数
f(x)=sin x f′(x)=cos_x
f(x)=cos x f′(x)=-sin_x
f(x)=ax(a>0且a≠1) f′(x)=axln_a
f(x)=ex f′(x)=ex
f(x)=logax(a>0且a≠1) f′(x)=
f(x)=ln x f′(x)=
1.判断(正确的打“√”,错误的打“×”)
(1)若y=,则y′=×2=1.(  )
(2)若f′(x)=sin x,则f(x)=cos x.(  )
(3)f(x)=,则f′(x)=-.(  )
答案:(1)× (2)× (3)√
2.下列结论不正确的是(  )
A.若y=0,则y′=0    B.若y=5x,则y′=5
C.若y=x-1,则y′=-x-2 D.若y=x,则y′=x
答案:D
3.若y=cos,则y′=(  )
A.-    B.-   
C.0     D.
答案:C
4.函数y=在点处切线的倾斜角为(  )
A. B.
C. D.
答案:B
利用导数公式求函数导数
[典例] 求下列函数的导数.
(1)y=x12;(2)y=;(3)y=;(4)y=3x;
(5)y=log5x.
[解] (1)y′=(x12)′=12x11.
(2)y′=′=(x-4)′=-4x-5=-.
(3)y′=()′=(x)′=x.
(4)y′=(3x)′=3xln 3.
(5)y′=(log5x)′=.
求简单函数的导函数有两种基本方法
(1)用导数的定义求导,但运算比较繁杂;
(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.      
[活学活用]
求下列函数的导数:
(1)y=lg x;(2)y=x;(3)y=x;(4)y=logx.
解:(1)y′=(lg x)′=′=.
(2)y′=′=xln =-xln 2.
(3)y′=(x)′=(x)′=x=.
(4)y′=′==-.
利用导数公式求切线方程
[典例]  已知曲线y=.
(1)求曲线在点P(1,1)处的切线方程;
(2)求曲线过点Q(1,0)处的切线方程.
[解] ∵y=,∴y′=-.
(1)显然P(1,1)是曲线上的点,所以P为切点,所求切线斜率为函数y=在点P(1,1)的导数,即k=f′(1)=-1.
所以曲线在P(1,1)处的切线方程为y-1=-(x-1),即为y=-x+2.
(2)显然Q(1,0)不在曲线y=上,
则可设过该点的切线的切点为A,
那么该切线斜率为k=f′(a)=-.
则切线方程为y-=-(x-a).①
将Q(1,0)代入方程:0-=-(1-a).
将得a=,代入方程①整理可得切线方程为y=-4x+4.
利用导数的几何意义解决切线问题的两种情况
(1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.
(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.      
[活学活用]
当常数k为何值时,直线y=x与曲线y=x2+k相切?请求出切点.
解:设切点为A(x0,x+k).∵y′=2x,∴
∴故当k=时,直线y=x与曲线y=x2+k相切,且切点坐标为.
导数的简单综合应用
[典例] (1)质点的运动方程是S=sin t,则质点在t=时的速度为________;质点运动的加速度为________.
(2)已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.
[解析] (1)v(t)=S′(t)=cos t,
∴v=cos =.
即质点在t=时的速度为.
∵v(t)=cos t,
∴加速度a(t)
=v′(t)=(cos t)′=-sin t.
答案:  -sin t
(2)解:由于y=sin x,y=cos x,设这两条曲线的一个公共点为P(x0,y0).∴两条曲线在P(x0,y0)处的斜率分别为k1=cos x0,k2=-sin x0.
若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,
即sin x0·cos x0=1,也就是sin 2x0=2,这是不可能的.
∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
导数的综合应用的解题技巧
(1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很多综合问题我们可以数形结合,巧妙利用导数的几何意义,即切线的斜率建立相应的未知参数的方程来解决,往往这是解决问题的关键所在.
(2)导数作为重要的解题工具,常与函数、数列、解析几何、不等式等知识结合出现综合大题.遇到解决一些与距离、面积相关的最值、不等式恒成立等问题.可以结合导数的几何意义分析.    
[活学活用]
曲线y=x在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为(  )
A.   B.   C.   D.
解析:选C 可求得y′=x-,即y′|x=1=,切线方程为2x-3y+1=0,与x轴的交点坐标为,与x=2的交点坐标为,围成三角形面积为××=.
层级一 学业水平达标
1.已知函数f(x)=x3的切线的斜率等于3,则切线有(  )
A.1条          B.2条
C.3条 D.不确定
解析:选B ∵f′(x)=3x2=3,解得x=±1.切点有两个,即可得切线有2条.
2.曲线y=ex在点A(0,1)处的切线斜率为(  )
A.1 B.2
C.e D.
解析:选A 由条件得y′=ex,根据导数的几何意义,可得k=y′|x=0=e0=1.
3.已知f(x)=-3x,则f′(2)=(  )
A.10 B.-5x
C.5 D.-10
解析:选D ∵f′(x)=-5x,∴f′(2)=-5×2×=-10,故选D.
4.已知f(x)=xα,若f′(-1)=-2,则α的值等于(  )
A.2 B.-2
C.3 D.-3
解析:选A  若α=2,则f(x)=x2,∴f′(x)=2x,
∴f′(-1)=2×(-1)=-2适合条件.故应选A.
5. 曲线y=x3在x=1处切线的倾斜角为(  )
A.1 B.-
C. D.
解析:选C ∵y′=x2,∴y′|x=1=1,
∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=.
6.曲线y=ln x在点M(e,1)处的切线的斜率是________,切线方程为____________.
解析:∵y′=(ln x)′=,∴y′|x=e=.
∴切线方程为y-1=(x-e),即x-ey=0.
答案: x-ey=0
7.已知f(x)=a2(a为常数),g(x)=ln x,若2x[f′(x)+1]-g′(x)=1,则x=________.
解析:因为f′(x)=0,g′(x)=,
所以2x[f′(x)+1]-g′(x)=2x-=1.
解得x=1或x=-,因为x>0,所以x=1.
答案:1
8.设坐标平面上的抛物线C:y=x2,过第一象限的点(a,a2)作抛物线C的切线l,则直线l与y轴的交点Q的坐标为________.
解析:显然点(a,a2)为抛物线C:y=x2上的点,∵y′=2x,∴直线l的方程为y-a2=2a(x-a).
令x=0,得y=-a2,∴直线l与y轴的交点的坐标为(0,-a2).
答案:(0,-a2)
9.求下列函数的导数:
(1)y=x8;(2)y=4x;(3)y=log3x;
(4)y=sin;(5)y=e2.
解:(1)y′=(x8)′=8x8-1=8x7.
(2)y′=(4x)′=4xln 4.
(3)y′=(log3x)′=.
(4)y′=(cos x)′=-sin x.
(5)y′=(e2)′=0.
10.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,
(1)求过点P,Q的曲线y=x2的切线方程.
(2)求与直线PQ平行的曲线y=x2的切线方程.
解:(1)因为y′=2x,P(-1,1),Q(2,4)都是曲线y=x2上的点.
过P点的切线的斜率k1=y′|x=-1=-2,
过Q点的切线的斜率k2=y′|x=2=4,
过P点的切线方程:y-1=-2(x+1),即2x+y+1=0.
过Q点的切线方程:y-4=4(x-2),即4x-y-4=0.
(2)因为y′=2x,直线PQ的斜率k==1,
切线的斜率k=y′|x=x0=2x0=1,
所以x0=,所以切点M,
与PQ平行的切线方程为:
y-=x-,即4x-4y-1=0.
层级二 应试能力达标
1.质点沿直线运动的路程s与时间t的关系是s=,则质点在t=4时的速度为(  )
A.          B.
C. D.
解析:选B ∵s′=t-.∴当t=4时,
s′=·= .
2.直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为(  )
A.2 B.ln 2+1
C.ln 2-1 D.ln 2
解析:选C ∵y=ln x的导数y′=,
∴令=,得x=2,∴切点为(2,ln 2).
代入直线y=x+b,得b=ln 2-1.
3.在曲线f(x)=上切线的倾斜角为π的点的坐标为(  )
A.(1,1) B.(-1,-1)
C.(-1,1) D.(1,1)或(-1,-1)
解析:选D 因为f(x)=,所以f′(x)=-,因为切线的倾斜角为π,所以切线斜率为-1,
即f′(x)=-=-1,所以x=±1,
则当x=1时,f(1)=1;
当x=-1时,f(1)=-1,则点坐标为(1,1)或(-1,-1).
4.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1·x2·…·xn的值为(  )
A. B.
C. D.1
解析:选B 对y=xn+1(n∈N*)求导得y′=(n+1)xn. 令x=1,得在点(1,1)处的切线的斜率k=n+1,∴在点(1,1)处的切线方程为y-1=(n+1)(xn-1).令y=0,得xn=,∴x1·x2·…·xn=×××…××=, 故选B.
5.与直线2x-y-4=0平行且与曲线y=ln x相切的直线方程是________.
解析:∵直线2x-y-4=0的斜率为k=2,
又∵y′=(ln x)′=,∴=2,解得x=.
∴切点的坐标为.
故切线方程为y+ln 2=2.
即2x-y-1-ln 2=0.
答案:2x-y-1-ln 2=0
6.若曲线y=在点P(a,)处的切线与两坐标轴围成的三角形的面积为2,则实数a的值是________________.
解析:∵y′=,∴切线方程为y-=(x-a),令x=0,得y=,令y=0,得x=-a,由题意知··a=2,∴a=4.
答案:4
7.已知曲线方程为y=f(x)=x2,求过点B(3,5)且与曲线相切的直线方程.
解:设切点P的坐标为(x0,x).
∵y=x2,∴y′=2x,∴k=f′(x0)=2x0,
∴切线方程为y-x=2x0(x-x0).
将点B(3,5)代入上式,得5-x=2x0(3-x0),
即x-6x0+5=0,∴(x0-1)(x0-5)=0,
∴x0=1或x0=5,
∴切点坐标为(1,1)或(5,25),
故所求切线方程为y-1=2(x-1)或y-25=10(x-5),
即2x-y-1=0或10x-y-25=0.
8.求证:双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数.
证明:设P(x0,y0)为双曲线xy=a2上任一点.
∵y′=′=-.
∴过点P的切线方程为y-y0=-(x-x0).
令x=0,得y=;令y=0,得x=2x0.
则切线与两坐标轴围成的三角形的面积为
S=··|2x0|=2a2.
即双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a2.第二课时 导数的运算法则
预习课本P15~18,思考并完成下列问题
(1)导数的四则运算法则是什么?在使用运算法则时的前提条件是什么?
 
(2)复合函数的定义是什么,它的求导法则又是什么?
 
1.导数的四则运算法则
(1)条件:f(x),g(x)是可导的.
(2)结论:①[f(x)±g(x)]′=f′(x)±g′(x).
②[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x).
③′=(g(x)≠0).
[点睛] 应用导数公式的注意事项
(1)两个导数的和差运算只可推广到有限个函数的和差的导数运算.
(2)两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导.
(3)若两个函数不可导,则它们的和、差、积、商不一定不可导.
(4)对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.
2.复合函数的求导公式
(1)复合函数的定义:①一般形式是y=f(g(x)).
②可分解为y=f(u)与u=g(x),其中u称为中间变量.
(2)求导法则:复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为:yx′=yu′·ux′.
1.判断(正确的打“√”,错误的打“×”)
(1)f′(x)=2x,则f(x)=x2.(  )
(2)函数f(x)=xex的导数是f′(x)=ex(x+1).(  )
(3)函数f(x)=sin(-x)的导数为f′(x)=cos x.(  )
答案:(1)× (2)√ (3)×
2.函数y=sin x·cos x的导数是(  )
A.y′=cos 2x+sin 2x   B.y′=cos 2x
C.y′=2cos x·sin x D.y′=cos x·sin x
答案:B
3.函数y=xcos x-sin x的导数为________.
答案:-xsin x
4.若f(x)=(2x+a)2,且f′(2)=20,则a=________.
答案:1
利用导数四则运算法则求导
[典例] 求下列函数的导数:
(1)y=x2+log3x;(2)y=x3·ex;(3)y=.
[解]  (1)y′=(x2+log3x)′=(x2)′+(log3x)′
=2x+.
(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′
=3x2·ex+x3·ex=ex(x3+3x2).
(3)y′=′=
==-.
求函数的导数的策略
(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数.
(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.      
[活学活用]
求下列函数的导数:
(1)y=sin x-2x2;(2)y=cos x·ln x;(3)y=.
解:(1)y′=(sin x-2x2)′=(sin x)′-(2x2)′=cos x-4x.
(2)y′=(cos x·ln x)′=(cos x)′·ln x+cos x·(ln x)′
=-sin x·ln x+.
(3)y′=′=
==
复合函数的导数运算
[典例] 求下列函数的导数:
(1)y=;(2)y=esin(ax+b);
(3)y=sin2;(4)y=5log2(2x+1).
[解] (1)设y=u-,u=1-2x2,
则y′=(u-)′ (1-2x2)′=·(-4x)
=-(1-2x2)- (-4x)=2x(1-2x2)-.
(2)设y=eu,u=sin v,v=ax+b,
则yx′=yu′·uv′·vx′=eu·cos v·a
=acos(ax+b)·esin(ax+b).
(3)设y=u2,u=sin v,v=2x+,
则yx′=yu′·uv′·vx′=2u·cos v·2
=4sin vcos v=2sin 2v=2sin.
(4)设y=5log2u,u=2x+1,
则y′=5(log2u)′·(2x+1)′
==.
1.求复合函数的导数的步骤
2.求复合函数的导数的注意点
(1)内、外层函数通常为基本初等函数.
(2)求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点.      
[活学活用]
求下列函数的导数:
(1)y=(3x-2)2; (2)y=ln(6x+4);
(3)y=e2x+1; (4)y=;
(5)y=sin;(6)y=cos2x.
解:(1)y′=2(3x-2)·(3x-2)′=18x-12;
(2)y′=·(6x+4)′=;
(3)y′=e2x+1·(2x+1)′=2e2x+1;
(4)y′=·(2x-1)′= .
(5)y′=cos·′=3cos.
(6)y′=2cos x·(cos x)′=-2cos x·sin x=-sin 2x.
与切线有关的综合问题
[典例] (1)函数y=2cos2x在x=处的切线斜率为________.
(2)已知函数f(x)=ax2+ln x的导数为f′(x),
①求f(1)+f′(1).
②若曲线y=f(x)存在垂直于y轴的切线,求实数a的取值范围.
[解析] (1)由函数y=2cos2x=1+cos 2x,得y′=(1+cos 2x)′=-2sin 2x,所以函数在x=处的切线斜率为-2sin=-1.
答案:-1
(2)解:①由题意,函数的定义域为(0,+∞),
由f(x)=ax2+ln x,得f′(x)=2ax+,
所以f(1)+f′(1)=3a+1.
②因为曲线y=f(x)存在垂直于y轴的切线,故此时切线斜率为0,问题转化为在x∈(0,+∞)内导函数f′(x)=2ax+存在零点,
即f′(x)=0 2ax+=0有正实数解,
即2ax2=-1有正实数解,故有a<0,所以实数a的取值范围是(-∞,0).
关于函数导数的应用及其解决方法
(1)应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.
(2)方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.      
[活学活用]
若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a的值为(  )
A.-1或-      B.-1或
C.-或- D.-或7
解析:选A 设过点(1,0)的直线与曲线y=x3相切于点(x0,x),
则切线方程为y-x=3x(x-x0),即y=3xx-2x.
又点(1,0)在切线上,代入以上方程得x0=0或x0=.
当x0=0时,直线方程为y=0.
由y=0与y=ax2+x-9相切可得a=-.
当x0=时,直线方程为y=x-.
由y=x-与y=ax2+x-9相切可得a=-1.
层级一 学业水平达标
1.已知函数f(x)=ax2+c,且f′(1)=2,则a的值为(  )
A.1            B.
C.-1 D.0
解析:选A ∵f(x)=ax2+c,∴f′(x)=2ax,
又∵f′(1)=2a,∴2a=2,∴a=1.
2.函数y=(x+1)2(x-1)在x=1处的导数等于(  )
A.1 B.2
C.3 D.4
解析:选D y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)·(x-1)+(x+1)2=3x2+2x-1,∴y′|x=1=4.
3.曲线f(x)=xln x在点x=1处的切线方程为(  )
A.y=2x+2 B.y=2x-2
C.y=x-1 D.y=x+1
解析:选C ∵f′(x)=ln x+1,∴f′(1)=1,又f(1)=0,∴在点x=1处曲线f(x)的切线方程为y=x-1.
4. 已知物体的运动方程为s=t2+(t是时间,s是位移),则物体在时刻t=2时的速度为(  )
A. B.
C. D.
解析:选D ∵s′=2t-,∴s′|t=2=4-=.
5.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=(  )
A.0 B.1
C.2 D.3
解析:选D y′=a-,由题意得y′|x=0=2,即a-1=2,所以a=3.
6.曲线y=x3-x+3在点(1,3)处的切线方程为________.
解析:∵y′=3x2-1,∴y′|x=1=3×12-1=2.
∴切线方程为y-3=2(x-1),即2x-y+1=0.
答案:2x-y+1=0
7.已知曲线y1=2-与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0=________.
解析:由题知y′1=,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为,3x-2x0+2,所以=3,所以x0=1.
答案:1
8.已知函数f(x)=f′cos x+sin x,则f的值为________.
解析:∵f′(x)=-f′sin x+cos x,
∴f′=-f′×+,
得f′=-1.
∴f(x)=(-1)cos x+sin x.
∴f=1.
答案:1
9.求下列函数的导数:
(1)y=xsin2x;(2)y=;
(3)y=;(4)y=cos x·sin 3x.
解:(1)y′=(x)′sin2x+x(sin2x)′
=sin2x+x·2sin x·(sin x)′=sin2x+xsin 2x.
(2)y′=
= .
(3)y′=

=.
(4)y′=(cos x·sin 3x)′
=(cos x)′sin 3x+cos x(sin 3x)′
=-sin xsin 3x+3cos xcos 3x
=3cos xcos 3x-sin xsin 3x.
10.偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求f(x)的解析式.
解:∵f(x)的图象过点P(0,1),∴e=1.
又∵f(x)为偶函数,∴f(-x)=f(x).
故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.
∴b=0,d=0.∴f(x)=ax4+cx2+1.
∵函数f(x)在x=1处的切线方程为y=x-2,
∴切点为(1,-1).∴a+c+1=-1.
∵f′(x)|x=1=4a+2c,∴4a+2c=1.
∴a=,c=-.
∴函数f(x)的解析式为f(x)=x4-x2+1.
层级二 应试能力达标
1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于(  )
A.-1          B.-2
C.2 D.0
解析:选B ∵f′(x)=4ax3+2bx为奇函数,∴f′(-1)=-f′(1)=-2.
2.曲线y=xex-1在点(1,1)处切线的斜率等于(  )
A.2e B.e
C.2 D.1
解析:选C 函数的导数为f′(x)=ex-1+xex-1=(1+x)ex-1,
当x=1时,f′(1)=2,即曲线y=xex-1在点(1,1)处切线的斜率k=f′(1)=2,故选C.
3.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=(  )
A.e-1 B.-1
C.-e-1 D.-e
解析:选C ∵f(x)=2xf′(e)+ln x,
∴f′(x)=2f′(e)+,
∴f′(e)=2f′(e)+,解得f′(e)=-,故选C.
4.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为(  )
A.(0,+∞) B.(-1,0)∪(2,+∞)
C.(2,+∞) D.(-1,0)
解析:选C ∵f(x)=x2-2x-4ln x,
∴f′(x)=2x-2->0,
整理得>0,解得-1<x<0或x>2,
又因为f(x)的定义域为(0,+∞),所以x>2.
5.已知直线y=2x-1与曲线y=ln(x+a)相切,则a的值为________________.
解析:∵y=ln(x+a),∴y′=,设切点为(x0,y0),
则y0=2x0-1,y0=ln(x0+a),且=2,
解之得a=ln 2.
答案:ln 2
6.曲线y=在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是____________.
解析:y′=-,则y′=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=2,圆的半径r=1,∴所求最近距离为2-1.
答案:2-1
7.已知曲线f(x)=x3+ax+b在点P(2,-6)处的切线方程是13x-y-32=0.
(1)求a,b的值;
(2)如果曲线y=f(x)的某一切线与直线l:y=-x+3垂直,求切点坐标与切线的方程.
解:(1)∵f(x)=x3+ax+b的导数f′(x)=3x2+a,
由题意可得f′(2)=12+a=13,f(2)=8+2a+b=-6,
解得a=1,b=-16.
(2)∵切线与直线y=-x+3垂直,
∴切线的斜率k=4.
设切点的坐标为(x0,y0),
则f′(x0)=3x+1=4,∴x0=±1.
由f(x)=x3+x-16,可得y0=1+1-16=-14,
或y0=-1-1-16=-18.
则切线方程为y=4(x-1)-14或y=4(x+1)-18.
即y=4x-18或y=4x-14.
8.设fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(1)求fn′(2);
(2)证明:fn(x)在内有且仅有一个零点(记为an),且0<an-<.
解:(1)由题设fn′(x)=1+2x+…+nxn-1.
所以fn′(2)=1+2×2+…+(n-1)2n-2+n·2n-1,①
则2fn′(2)=2+2×22+…+(n-1)2n-1+n·2n,②
①-②得,-fn′(2)=1+2+22+…+2n-1-n·2n
=-n·2n=(1-n)·2n-1,
所以fn′(2)=(n-1)·2n+1.
(2)因为f(0)=-1<0,
fn=-1=1-2×n≥1-2×2>0,
因为x≥0,n≥2.
所以fn(x)=x+x2+…+xn-1为增函数,
所以fn(x)在内单调递增,
因此fn(x)在内有且仅有一个零点an.
由于fn(x)=-1,
所以0=fn(an)=-1,
由此可得an=+a>,故<an<.
所以0<an-=a<×n+1=.1.3.1 函数的单调性与导数
预习课本P22~26,思考并完成下列问题
(1)函数的单调性与导数的正负有什么关系?
 
(2)利用导数判断函数单调性的步骤是什么?
 
(3)怎样求函数的单调区间?
 
1.函数的单调性与其导数正负的关系
在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果恒有f′(x)=0,那么函数y=f(x)在这个区间内是常数函数.
[点睛] 对函数的单调性与其导数正负的关系的两点说明
(1)若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).
(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为0.
2.函数图象的变化趋势与导数值大小的关系
如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f′(x)|越大,则函数f(x)的切线的斜率越大,函数f(x)的变化率就越大.
1.判断(正确的打“√”,错误的打“×”)
(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.(  )
(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.(  )
(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.(  )
答案:(1)× (2)× (3)√
2.函数f(x)=(x-3)ex的单调递增区间是(  )
A.(-∞,2)          B.(0,3)
C.(1,4) D.(2,+∞)
答案:D
3.函数f(x)=2x-sin x在(-∞,+∞)上(  )
A.是增函数
B.是减函数
C.在(0,+∞)上单调递增,在(-∞,0)上单调递减
D.在(0,+∞)上单调递减,在(-∞,0)上单调递增
答案:A
4. 函数y=x3+x在(-∞,+∞)上的图象是________(填“上升”或“下降”)的.
答案:上升
判断或讨论函数的单调性
[典例] 已知函数f(x)=ax3-3x2+1-,讨论函数f(x)的单调性.
[解]  由题设知a≠0.
f′(x)=3ax2-6x=3ax,
令f′(x)=0,得x1=0,x2=.
当a>0时,若x∈(-∞,0),则f′(x)>0.
∴f(x)在区间(-∞,0)上为增函数.
若x∈,则f′(x)<0,
∴f(x)在区间上为减函数.
若x∈,则f′(x)>0,
∴f(x)在区间上是增函数.
当a<0时,若x∈,则f′(x)<0.
∴f(x)在上是减函数.
若x∈,则f′(x)>0.
∴f(x)在区间上为增函数.
若x∈(0,+∞),则f′(x)<0.
∴f(x)在区间(0,+∞)上为减函数.
  
利用导数证明或判断函数单调性的思路
[活学活用]
判断函数y=ax3-1(a∈R)在(-∞,+∞)上的单调性.
解:∵y′=(ax3-1)′=3ax2.
①当a>0时,y′≥0,函数在R上单调递增;
②当a<0时,y′≤0,函数在R上单调递减;
③当a=0时,y′=0,函数在R上不具备单调性.
求函数的单调区间
[典例] 求下列函数的单调区间:
(1)f(x)=x3-3x+1;
(2)f(x)=x+(b>0).
[解] (1)函数f(x)的定义域为R,
f′(x)=3x2-3,令f′(x)>0,则3x2-3>0.
即3(x+1)(x-1)>0,解得x>1或x<-1.
∴函数f(x)的单调递增区间为(-∞,-1)和(1,+∞),
令f′(x)<0,则3(x+1)(x-1)<0,解得-1<x<1.
∴函数f(x)的单调递减区间为(-1,1).
(2)函数f(x)的定义域为(-∞,0)∪(0,+∞),
f′(x)=′=1-,
令f′(x)>0,则(x+)(x-)>0,
∴x>,或x<-.
∴函数的单调递增区间为(-∞,-)和(,+∞).
令f′(x)<0,则(x+)(x-)<0,
∴-<x<,且x≠0.
∴函数的单调递减区间为(-,0)和(0,).
(1)利用导数求函数f(x)的单调区间的一般步骤为:
①确定函数f(x)的定义域;
②求导数f′(x);
③在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;
④根据(3)的结果确定函数f(x)的单调区间.
(2)如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.      
[活学活用]
1.函数f(x)=2x2-ln x的递增区间是(  )
A.      B.和
C. D.和
解析:选C ∵f(x)=2x2-ln x,
∴f′(x)=4x-==(x>0),
由f′(x)>0得x>.
2.已知函数f(x)=x3+ax2+bx(a、b∈R)的图象过点P(1,2),且在点P处的切线斜率为8.
(1)求a,b的值;
(2)求函数f(x)的单调区间.
解:(1)∵函数f(x)的图象过点P(1,2),∴f(1)=2.
∴a+b=1.①
又函数图象在点P处的切线斜率为8,
∴f′(1)=8,又f′(x)=3x2+2ax+b,
∴2a+b=5.②
解由①②组成的方程组,可得a=4,b=-3.
(2)由(1)得f′(x)=3x2+8x-3=(3x-1)(x+3),
令f′(x)>0,可得x<-3或x>;
令f′(x)<0,可得-3∴函数f(x)的单调增区间为(-∞,-3),,
单调减区间为.
利用导数求参数的取值范围
[典例] 若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)内单调递减,在(6,+∞)上单调递增,求实数a的取值范围.
[解] [法一 直接法]
f′(x)=x2-ax+a-1,
令f′(x)=0得x=1或x=a-1.
当a-1≤1,即a≤2时,函数f(x)在(1,+∞)内单调递增,不合题意.
当a-1>1,即a>2时,f(x)在(-∞,1)和(a-1,+∞)上单调递增,在(1,a-1)上单调递减,
由题意知(1,4) (1,a-1)且(6,+∞) (a-1,+∞),所以4≤a-1≤6,即5≤a≤7.
故实数a的取值范围为[5,7].
[法二 数形结合法]
如图所示,f′(x)=(x-1)[x-(a-1)].
∵在(1,4)内f′(x)≤0,
在(6,+∞)内f′(x)≥0,
且f′(x)=0有一根为1,
∴另一根在[4,6]上.

即∴5≤a≤7.
故实数a的取值范围为[5,7]
[法三 转化为不等式的恒成立问题]
f′(x)=x2-ax+a-1.
因为f(x)在(1,4)内单调递减,所以f′(x)≤0在(1,4)上恒成立.
即a(x-1)≥x2-1在(1, 4)上恒成立,所以a≥x+1,因为2所以a≤x+1,因为x+1>7,所以a≤7时,f′(x)≥0在(6,+∞)上恒成立.综上知5≤a≤7.
故实数a的取值范围为[5,7].
1.利用导数法解决取值范围问题的两个基本思路
(1)将问题转化为不等式在某区间上的恒成立问题,即f′(x)≥0(或f′(x)≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意.
(2)先令f′(x)>0(或f′(x)<0),求出参数的取值范围后,再验证参数取“=”时f(x)是否满足题意.
2.恒成立问题的重要思路
(1)m≥f(x)恒成立 m≥f(x)max.
(2)m≤f(x)恒成立 m≤f(x)min.      
[活学活用]
若f(x)=(x∈R)在区间[-1,1]上是增函数,则a∈________.
解析:f′(x)=2·,
∵f(x)在[-1,1]上是增函数,
∴f′(x)=2·≥0.
∵(x2+2)2>0,
∴x2-ax-2≤0对x∈[-1,1]恒成立.
令g(x)=x2-ax-2,

即 
∴-1≤a≤1.
即a的取值范围是[-1,1].
答案:[-1,1]
层级一 学业水平达标
1.下列函数中,在(0,+∞)内为增函数的是(  )
A.y=sin x        B.y=xex
C.y=x3-x D.y=ln x-x
解析:选B B中,y′=(xex)′=ex+xex=ex(x+1)>0在(0,+∞)上恒成立,∴y=xex在(0,+∞)上为增函数.对于A、C、D都存在x>0,使y′<0的情况.
2.若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是(  )
A. B.
C. D.
解析:选C y′=3x2+2x+m,由条件知y′≥0在R上恒成立,∴Δ=4-12m≤0,∴m≥.
3.函数y=x4-2x2+5的单调递减区间为(  )
A.(-∞,-1)和(0,1) B.[-1,0]和[1,+∞)
C.[-1,1] D.(-∞,-1]和[1,+∞)
解析:选A y′=4x3-4x,令y′<0,即4x3-4x<0,解得x<-1或04.函数y=xln x在(0,5)上的单调性是(  )
A.单调递增
B.单调递减
C.在上单调递减,在上单调递增
D.在上单调递增,在上单调递减
解析:选C 由已知得函数的定义域为(0,+∞).
∵y′=ln x+1,令y′>0,得x>.
令y′<0,得x<.
∴函数y=xln x在上单调递减,在上单调递增.
5.若函数y=a(x3-x)的单调减区间为,则a的取值范围是(  )
A.(0,+∞) B.(-1,0)
C.(1,+∞) D.(0,1)
解析:选A y′=a(3x2-1)=3a.
当-<x<时,<0,
要使y=a(x3-x)在上单调递减,
只需y′<0,即a>0.
6.函数f(x)=cos x+x的单调递增区间是________.
解析:因为f′(x)=-sin x+>0,所以f(x)在R上为增函数.
答案:(-∞,+∞)
7.若函数y=ax3-ax2-2ax(a≠0)在[-1,2]上为增函数,则a∈________.
解析:y′=ax2-ax-2a=a(x+1)(x-2)>0,
∵当x∈(-1,2)时,(x+1)(x-2)<0,∴a<0.
答案:(-∞,0)
8.若函数y=-x3+ax有三个单调区间,则a的取值范围是    .
解析:∵y′=-4x2+a,且y有三个单调区间,
∴方程y′=-4x2+a=0有两个不等的实根,
∴Δ=02-4×(-4)×a>0,∴a>0.
答案:(0,+∞)
9.已知函数f(x)=x3+ax2+bx,且f′(-1)=-4,f′(1)=0.
(1)求a和b;
(2)试确定函数f(x)的单调区间.
解:(1)∵f(x)=x3+ax2+bx,
∴f′(x)=x2+2ax+b,
由得
解得a=1,b=-3.
(2)由(1)得f(x)=x3+x2-3x.
f′(x)=x2+2x-3=(x-1)(x+3).
由f′(x)>0得x>1或x<-3;
由f′(x)<0得-3∴f(x)的单调递增区间为(-∞,-3),(1,+∞),单调递减区间为(-3,1).
10.已知a≥0,函数f(x)=(x2-2ax)ex.设f(x)在区间[-1,1]上是单调函数,求a的取值范围.
解:f′(x)=(2x-2a)ex+(x2-2ax)ex
=ex[x2+2(1-a)x-2a].
令f′(x)=0,即x2+2(1-a)x-2a=0.
解得x1=a-1-,x2=a-1+,
令f′(x)>0,得x>x2或x<x1,
令f′(x)<0,得x1<x<x2.
∵a≥0,∴x1<-1,x2≥0.
由此可得f(x)在[-1,1]上是单调函数的充要条件为x2≥1,即a-1+≥1,解得a≥.
故所求a的取值范围为.
层级二 应试能力达标
1.已知函数f(x)=+ln x,则有(  )
A.f(2)C.f(3)解析:选A 在(0,+∞)内,f′(x)=+>0,所以f(x)在(0,+∞)内是增函数,所以有f(2)2.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是(  )
解析:选C 由f′(x)的图象知,x∈(-∞,0)时,f′(x)>0,f(x)为增函数,x∈(0,2)时,f′(x)<0,f(x)为减函数,x∈(2,+∞)时,f′(x)>0,f(x)为增函数.只有C符合题意,故选C.
3.(全国Ⅱ卷)若函数f(x)=kx-ln x在区间(1,+∞)内单调递增,则k的取值范围是(  )
A.(-∞,-2] B.(-∞,-1]
C.[2,+∞) D.[1,+∞)
解析:选D 因为f(x)=kx-ln x,所以f′(x)=k-.因为f(x)在区间(1,+∞)上单调递增,所以当x>1时,f′(x)=k-≥0恒成立,即k≥在区间(1,+∞)上恒成立.因为x>1,所以0<<1,所以k≥1.故选D.
4.设函数F(x)=是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)A.f(2)>e2f(0),f(2 016)>e2 016f(0)
B. f(2)e2 016f(0)
C.f(2)D.f(2)>e2f(0),f(2 016)解析:选C ∵函数F(x)=的导数F′(x)==<0,
∴函数F(x)=是定义在R上的减函数,
∴F(2)同理可得f(2 016)5.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为____________.
解析:设g(x)=f(x)-2x-4,则g′(x)=f′(x)-2.
∵对任意x∈R,f′(x)>2,∴g′(x)>0. ∴g(x)在R上为增函数.又g(-1)=f(-1)+2-4=0,∴x>-1时,g(x)>0.
∴由f(x)>2x+4,得x>-1.
答案:(-1,+∞)
6.若f(x)=-x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是_____________.
解析:∵f(x)在(-1,+∞)上为减函数,
∴f′(x)≤0在(-1,+∞)上恒成立,
∵f′(x)=-x+,∴-x+≤0,
∵b≤x(x+2)在(-1,+∞)上恒成立,
g(x)=x(x+2)=(x+1)2-1,
∴g(x)min=-1,∴b≤-1.
答案:(-∞,-1]
7.已知x>0,证明不等式ln(1+x)>x-x2成立.
证明:设f(x)=ln(1+x)-x+x2,
其定义域为(-1,+∞),则f′(x)=-1+x=.
当x>-1时,f′(x)>0,
则f(x)在(-1,+∞)内是增函数.
∴当x>0时,f(x)>f(0)=0.
∴当x>0时,不等式ln(1+x)>x-x2成立.
8.已知函数f(x)=x3-ax-1.
(1)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.
(2)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
解:(1)已知函数f(x)=x3-ax-1,
∴f′(x)=3x2-a,
由题意知3x2-a≤0在(-1,1)上恒成立,
∴a≥3x2在x∈ (-1,1)上恒成立.
但当x∈(-1,1)时,0<3x2<3,∴a≥3,
即当a≥3时,f(x)在(-1,1)上单调递减.
(2)证明:取x=-1,得f(-1)=a-2<a,
即存在点(-1,a-2)在f(x)=x3-ax-1的图象上,且在直线y=a的下方.
即f(x)的图象不可能总在直线y=a的上方.1.3.2 函数的极值与导数
预习课本P26~29,思考并完成下列问题
(1)函数极值点、极值的定义是什么?
 
(2)函数取得极值的必要条件是什么?
 
(3)求可导函数极值的步骤有哪些?
 
 
    
1.函数极值的概念
(1)函数的极大值
一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.
(2)函数的极小值
一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.极大值与极小值统称为极值.
[点睛] 如何理解函数极值的概念
(1)极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值.
(2)一个函数在某区间上或定义域内的极大值或极小值可以不止一个.
(3)函数的极大值与极小值之间无确定的大小关系.
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.
(5)单调函数一定没有极值.
2.求函数y=f(x)极值的方法
一般地,求函数y=f(x)的极值的方法是:
解方程f′(x)=0. 当f′(x0)=0时:
(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;
(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.
[点睛] 一般来说,“f′(x0)=0”是“函数y=f(x)在点x0处取得极值”的必要不充分条件.若可导函数y=f(x)在点x0处可导,且在点x0处取得极值,那么f′(x0)=0;反之,若f′(x0)=0,则点x0不一定是函数y=f(x)的极值点.
1.判断(正确的打“√”,错误的打“×”)
(1)函数f(x)=x3+ax2-x+1必有2个极值.(  )
(2)在可导函数的极值点处,切线与x轴平行或重合.(  )
(3)函数f(x)=有极值.(  )
答案:(1)√ (2)√ (3)×
2.下列四个函数:①y=x3;②y=x2+1;③y=|x|;④y=2x,其中在x=0处取得极小值的是(  )
A.①②   B.②③   
C.③④    D.①③
答案:B
3.已知函数y=|x2-1|,则(  )
A.y无极小值,且无极大值
B.y有极小值-1,但无极大值
C.y有极小值0,极大值1
D.y有极小值0,极大值-1
答案:C
4. 函数f(x)=x+2cos x在上的极大值点为(  )
A.0 B.
C. D.
答案:B
运用导数解决函数的极值问题
题点一:知图判断函数的极值
1.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)(  )
A.在(-∞,0)上为减函数  B.在x=0处取极小值
C.在(4,+∞)上为减函数 D.在x=2处取极大值
解析:选C 由导函数的图象可知:x∈(-∞,0)∪(2,4)时,f′(x)>0,x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x=0取得极大值,x=2取得极小值,x=4取得极大值,因此选C.
题点二:已知函数求极值
2.求函数f(x)=x2e-x的极值.
解:函数的定义域为R,
f′(x)=2xe-x+x2·e-x·(-x)′
=2xe-x-x2·e-x
=x(2-x)e-x.
令f′(x)=0,得x(2-x)·e-x=0,
解得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0, 2) 2 (2,+∞)
f′(x) - 0 + 0 -
f(x) ? 极小值0 ? 极大值4e-2 ?
因此当x=0时,f(x)有极小值,
并且极小值为f(0)=0;
当x=2时,f(x)有极大值,并且极大值为f(2)=4e-2=.
题点三 已知函数的极值求参数
3.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )
A.(-∞,-1)       B.(0,+∞)
C.(0,1) D.(-1,0)
解析:选D 若a<-1,∵f′(x)=a(x+1)(x-a),
∴f(x)在(-∞,a)上单调递减,在(a,-1)上单调递增,∴f(x)在x=a处取得极小值,与题意不符;
若-1若a>0,则f(x)在(-1,a)上单调递减,在(a,+∞)上单调递增,与题意矛盾,∴选D.
4.已知f(x)=ax5-bx3+c在x=±1处的极大值为4,极小值为0,试确定a,b,c的值.
解:f′(x)=5ax4-3bx2=x2(5ax2-3b).
由题意,f′(x)=0应有根x=±1,故5a=3b,
于是f′(x)=5ax2(x2-1)
(1)当a>0,x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,-1) -1 (-1,0) 0 (0,1) 1 (1,+∞)
f′(x) + 0 - 0 - 0 +
f(x) ? 极大值 ? 无极值 ? 极小值 ?
由表可知:
又5a=3b,解之得:a=3,b=5,c=2.
(2)当a<0时,同理可得a=-3,b=-5,c=2.
1.求函数极值的步骤
(1)确定函数的定义域.
(2)求导数f′(x).
(3)解方程f′(x)=0得方程的根.
(4)利用方程f′(x)=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号.
(5)确定函数的极值,如果f′(x)的符号在x0处由正(负)变负(正),则f(x)在x0处取得极大(小)值.
2.已知函数极值,确定函数解析式中的参数时,注意两点
(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.
(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.    
函数极值的综合应用
[典例] 已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
[解] 因为f(x)在x=-1处取得极值且f′(x)=3x2-3a,
所以f′(-1)=3×(-1)2-3a=0,所以a=1.
所以f(x)=x3-3x-1,f′(x)=3x2-3,
由f′(x)=0,解得x1=-1,x2=1.
当x<-1时,f′(x)>0;
当-1当x>1时,f′(x)>0.
所以由f(x)的单调性可知,
f(x)在x=-1处取得极大值f(-1)=1,
在x=1处取得极小值f(1)=-3.
作出f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的图象可知,m的取值范围是(-3,1).
[一题多变]
1.[变条件]若本例中条件改为“已知函数f(x)=-x3+ax2-4”在x=处取得极值,其他条件不变,求m的取值范围.
解:由题意可得f′(x)=-3x2+2ax,由f′=0,
可得a=2,所以f(x)=-x3+2x2-4,
则f′(x)=-3x2+4x.
令f′(x)=0,得x=0或x=,
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0
f′(x) - 0 + 0 -
f(x) ? -4 ? - ?
作出函数f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点,所以m的取值范围是.
2.[变条件]若本例“三个不同的交点”改为“两个不同的交点”结果如何?改为“一个交点”呢?
解:由例题解析可知:当m=-3或m=1时,直线y=m与y=f(x)的图象有两个不同的交点;当m<-3或m>1时,直线y=m与y=f(x)的图象只有一个交点.
(1)研究方程根的问题可以转化为研究相应函数的图象问题,一般地,方程f(x)=0的根就是函数f(x)的图象与x轴交点的横坐标,方程f(x)=g(x)的根就是函数f(x)与g(x)的图象的交点的横坐标.
(2)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.    
层级一 学业水平达标
1.已知函数y=f(x)在定义域内可导,则函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的(  )
A.充分不必要条件    B.必要不充分条件
C.充要条件 D.非充分非必要条件
解析:选B 根据导数的性质可知,若函数y=f(x)在这点处取得极值,则f′(x)=0,即必要性成立;反之不一定成立,如函数f(x)=x3在R上是增函数,f′(x)=3x2,则f′(0)=0,但在x=0处函数不是极值,即充分性不成立.故函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的必要不充分条件,故选B.
2.设函数f(x)=+ln x,则(  )
A.x=为f(x)的极大值点
B.x=为f(x)的极小值点
C.x=2为f(x)的极大值点
D.x=2为f(x)的极小值点
解析:选D 由f′(x)=-+==0可得x=2.当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增.故x=2为f(x)的极小值点.
3.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是(  )
A.(2,3) B.(3,+∞)
C.(2,+∞) D.(-∞,3)
解析:选B 因为函数f(x)=2x3+ax2+36x-24在x=2处有极值,又f′(x)=6x2+2ax+36,所以f′(2)=0解得a=-15.令f′(x)>0,解得x>3或x<2,所以函数的一个递增区间是(3,+∞).
4.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )
解析:选C 由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B、D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.
5.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为(  )
A.,0 B.0,
C.-,0 D.0,-
解析:选A f′(x)=3x2-2px-q,
由f′(1)=0,f(1)=0得,
解得∴f(x)=x3-2x2+x.
由f′(x)=3x2-4x+1=0得x=或x=1,易得当x=时f(x)取极大值.当x=1时f(x)取极小值0.
6.设x=1与x=2是函数f(x)=aln x+bx2+x的两个极值点,则常数a=______________.
解析:∵f′(x)=+2bx+1,由题意得
∴a=-.
答案:-
7.函数f(x)=ax2+bx在x=处有极值,则b的值为________.
解析:f′(x)=2ax+b,∵函数f(x)在x=处有极值,
∴f′=2a·+b=0,即b=-2.
答案:-2
8.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________.(填序号)
①当x=时,函数f(x)取得最小值;
②f(x)有两个极值点;
③当x=2时函数值取得极小值;
④当x=1时函数取得极大值.
解析:由图象可知,x=1,2是函数的两极值点,∴②正确;又x∈(-∞,1)∪(2,+∞)时,y>0;x∈(1,2)时,y<0,∴x=1是极大值点,x=2是极小值点,故③④正确.
答案:①
9.设a为实数,函数f(x)=ex-2x+2a,x∈R,求f(x)的单调区间与极值.
解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln 2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2) ln 2 (ln 2,+∞)
f′(x) - 0 +
f(x) 单调递减↘ 2(1-ln 2+a) 单调递增↗
故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞);
且f(x)在x=ln 2处取得极小值.
极小值为f(ln 2)=2(1-ln 2+a),无极大值.
10.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a,b,c的值;
(2)试判断x=±1时函数取得极小值还是极大值,并说明理由.
解:(1)由已知,f′(x)=3ax2+2bx+c,
且f′(-1)=f′(1)=0,得3a+2b+c=0,3a-2b+c=0.
又f(1)=-1,∴a+b+c=-1.
∴a=,b=0,c=-.
(2)由(1)知f(x)=x3-x,
∴f′(x)=x2-=(x-1)(x+1).
当x<-1或x>1时,f′(x)>0;当-1∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.
∴当x=-1时,函数取得极大值f(-1)=1;
当x=1时,函数取得极小值f(1)=-1.
层级二 应试能力达标
1.函数f(x)=ax3+bx在x=1处有极值-2,则a,b的值分别为(  )
A.1,-3         B.1,3
C.-1,3 D.-1,-3
解析:选A ∵f′(x)=3ax2+b,由题意知f′(1)=0,f(1)=-2,∴∴a=1,b=-3.
2.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围是(  )
A.(-1,2) B.(-3,6)
C.(-∞,-3)∪(6,+∞) D.(-∞,-1)∪(2,+∞)
解析:选C f′(x)=3x2+2ax+a+6,
∵f(x)有极大值与极小值,∴f′(x)=0有两不等实根,∴Δ=4a2-12(a+6)>0,∴a<-3或a>6.
3.设a∈R,若函数y=ex+ax(x∈R)有大于零的极值点,则(  )
A.a<-1 B.a>-1
C.a<- D.a>-
解析:选A ∵y=ex+ax,∴y′=ex+a.令y′=ex+a=0,则ex=-a,∴x=ln(-a).又∵x>0,∴-a>1,即a<-1.
4.已知函数f(x)=ex(sin x-cos x),x∈(0,2 017π),则函数f(x)的极大值之和为(  )
A. B.
C. D.
解析:选B f′(x)=2exsin x,令f′(x)=0得sin x=0,∴x=kπ,k∈Z,当2kπ0,f(x)单调递增,当(2k-1)π5.若函数y=-x3+6x2+m的极大值为13,则实数m等于______.
解析:y′=-3x2+12x=-3x(x-4).由y′=0,得x=0或4.且x∈(-∞,0)∪(4,+∞)时,y′<0;x∈(0,4)时,y′>0,∴x=4时取到极大值.故-64+96+m=13,解得m=-19.
答案:-19
6.若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个极值点,则实数a的取值范围为______.
解析:由题意,f′(x)=3x2+2x-a,
则f′(-1)f′(1)<0,即(1-a)(5-a)<0,解得1答案:[1,5)
7.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.
解:(1)f′(x)=ex(ax+a+b)-2x-4.
由已知得f(0)=4,f′(0)=4,故b=4,a+b=8.
从而a=4,b=4.
(2)由(1)知,f(x)=4ex(x+1)-x2-4x,
f′(x)=4ex(x+2)-2x-4=4(x+2).
令f′(x)=0得,x=-ln 2或x=-2.
从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0;当x∈(-2,-ln 2)时,f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.
当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).
8.已知f(x)=2ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值.
(2)若关于x的方程f(x)+b=0的区间[-1,1]上恰有两个不同的实数根,求实数b的取值范围.
解:(1)f′(x)=-2x-1,当x=0时,f(x)取得极值,
所以f′(0)=0,解得a=2,检验知a=2符合题意.
(2)令g(x)=f(x)+b=2ln(x+2)-x2-x+b,
则g′(x)=-2x-1=-(x>-2).
g(x),g′(x)在(-2,+∞)上的变化状态如下表:
x (-2,0) 0 (0,+∞)
g′(x) + 0 -
g(x) ? 2ln 2+b ?
由上表可知函数在x=0处取得极大值,极大值为2ln 2+b.
要使f(x)+b=0在区间[-1,1]上恰有两个不同的实数根,
只需

所以-2ln 2<b≤2-2ln 3.
故实数b的取值范围是(-2ln 2,2-2ln 3].1.3.3 函数的最大(小)值与导数
预习课本P29~31,思考并完成下列问题
(1)什么是函数的最值?函数在闭区间上取得最值的条件是什么?
 
(2)函数的最值与极值有什么关系?
 
(3)求函数最值的方法和步骤是什么?
 
    
1.函数y=f(x)在闭区间[a,b]上取得最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
[点睛] 对函数最值的三点说明
(1)闭区间上的连续函数一定有最值,开区间内的连续函数不一定有最值. 若有唯一的极值,则此极值必是函数的最值.
(2)函数的最大值和最小值是一个整体性概念.
(3)函数y=f(x)在[a,b]上连续,是函数y=f(x)在[a,b]上有最大值或最小值的充分而非必要条件.
2.求函数y=f(x)在[a,b]上的最大值与最小值的步骤
(1)求函数y=f(x)在(a,_b)内的极值.
(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
[点睛] 函数极值与最值的关系
(1)函数的极值是函数在某一点附近的局部概念,函数的最大值和最小值是一个整体性概念.
(2)函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个.
(3)极值只能在区间内取得,最值则可以在端点处取得.有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值不在端点处取得时必定是极值.
1.判断(正确的打“√”,错误的打“×”)
(1)函数的最大值一定是函数的极大值.(  )
(2)开区间上的单调连续函数无最值.(  )
(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.(  )
答案:(1)× (2)√ (3)×
2.若函数f(x)=-x4+2x2+3,则f(x)(  )
A.最大值为4,最小值为-4
B.最大值为4,无最小值
C.最小值为-4,无最大值
D.既无最大值,也无最小值
答案:B
3.函数f(x)=3x+sin x在x∈[0,π]上的最小值为________.
答案:1
4.已知f(x)=-x2+mx+1在区间[-2,-1]上的最大值就是函数f(x)的极大值,则m的取值范围是________.
答案:(-4,-2)
求函数的极值
  [典例] 求函数f(x)=4x3+3x2-36x+5在区间[-2,+∞)上的最值.
[解] f′(x)=12x2+6x-36,令f′(x)=0,
得x1=-2,x2=.
当x变化时,f′(x),f(x)的变化情况如下表:
x -2
f′(x) 0 - 0 +
f(x) 57 ? - ?
由于当x>时,f′(x)>0,
所以f(x)在上为增函数.
因此,函数f(x)在[-2,+∞)上只有最小值-,无最大值.
求函数最值的四个步骤
第一步求函数的定义域.
第二步求f′(x),解方程f′(x)=0.
第三步列出关于x,f(x),f′(x)的变化表.
第四步求极值、端点值,确定最值.    
[活学活用]
函数y=x+2cos x在上取最大值时,x的值为(  )
A.0            B.
C. D.
解析:选B y′=1-2sin x,令y′=0,得sin x=,
∵x∈,∴x=. 由y′>0得sin x<,
∴0≤x<;由y′<0得sin x>,∴∴原函数在上单调递增,在上单调递减.当x=0时,y=2,当x=时,y=,当x=时,y=+,∵+>2>,∴当x=时取最大值,故应选B.
由函数的最值求参数的取值范围
[典例]  (1)函数f(x)=x3-x2-x+a在区间[0,2]上的最大值是3,则a等于(  )
A.3   B.1   
C.2    D.-1
(2)已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值,并求f(x)在[-2,2]上的最大值.
[解析] (1)f′(x)=3x2-2x-1,
令f′(x)=0,解得x=-(舍去)或x=1,
又f(0)=a,f(1)=a-1,f(2)=a+2,
则f(2)最大,即a+2=3,
所以a=1.
答案:B
(2)解:f′(x)=6x2-12x=6x(x-2),
令f′(x)=0,得x=0或x=2.
又f(0)=a,f(2)=a-8,f(-2)=a-40.
f(0)>f(2)>f(-2),
所以当x=-2时,f(x)min=a-40=-37,得a=3.
所以当x=0时,f(x)max=3.
已知函数最值求参数的步骤
(1)求出函数在给定区间上的极值及函数在区间端点处的函数值.
(2)通过比较它们的大小,判断出哪个是最大值,哪个是最小值.
(3)结合已知求出参数,进而使问题得以解决.      
[活学活用]
已知函数f(x)=ax3-6ax2+b,问是否存在实数a,b,使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a,b的值;若不存在,请说明理由.
解:存在.显然a≠0.
f′(x)=3ax2-12ax=3ax(x-4).
令f′(x)=0,解得x1=0,x2=4(舍去).
(1)当a>0, x变化时,f′(x),f(x)的变化情况如表:
x [-1,0) 0 (0,2]
f′(x) + 0 -
f(x) 单调递增 极大值 单调递减?
所以当x=0时,f(x)取得最大值,所以f(0)=b=3.
又f(2)=-16a+3,f(-1)=-7a+3,f(-1)>f(2).
所以当x=2时,f(x)取得最小值,
即-16a+3=-29,解得a=2.
(2)当a<0,x变化时,f′(x),f(x)的变化情况如表:
x [-1,0) 0 (0,2]
f′(x) - 0 +
f(x) 单调递减 极小值 单调递增?
所以当x=0时,f(x)取得最小值,所以b=-29.
又f(2)=-16a-29,f(-1)=-7a-29,
f(2)>f(-1).
所以当x=2时,f(x)取得最大值,
∴f(2)=-16a-29=3,解得a=-2,
综上可得,a=2,b=3或a=-2,b=-29.
与最值有关的恒成立问题
[典例] 已知函数f(x)=x3+ax2+bx+c在x=-与x=1处都取得极值.
(1)求a,b的值及函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)[解] (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
因为f′(1)=3+2a+b=0,f′=-a+b=0,解得a=-,b=-2,
所以f′(x)=3x2-x-2=(3x+2)(x-1),
当x变化时,f′(x),f(x)的变化情况如表:
x - 1 (1,+∞)
f′(x) + 0 - 0 +
f(x) 单调递增? 极大值 单调递减? 极小值 单调递增?
所以函数f(x)的递增区间为和(1,+∞);
递减区间为.
(2)由(1)知,f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f=+c为极大值,
因为f(2)=2+c,所以f(2)=2+c为最大值.
要使f(x)f(2)=2+c,
解得c<-1或c>2.
故c的取值范围为(-∞,-1)∪(2,+∞).
[一题多变]
1.[变设问]若本例中条件不变,“把(2)中对x∈[-1,2],不等式f(x)解:由典例解析知当x=1时,f(1)=c-为极小值,
又f(-1)=+c>c-,
所以f(1)=c-为最小值.
因为存在x∈[-1,2],不等式f(x)所以只需c2>f(1)=c-,即2c2-2c+3>0,
解得c∈R.
2.[变条件,变设问]已知函数f(x)=x3+ax+b(a,b∈R)在x=2处取得极小值-.
(1)求f(x)的单调递增区间.
(2)若f(x)≤m2+m+在[-4,3]上恒成立,求实数m的取值范围.
解:(1)f′(x)=x2+a,由f′(2)=0,得a=-4;
再由f(2)=-,得b=4.
所以f(x)=x3-4x+4,f′(x)=x2-4.
令f′(x)=x2-4>0,得x>2或x<-2.
所以f(x)的单调递增区间为(-∞,-2),(2,+∞).
(2)因为f(-4)=-,f(-2)=,f(2)=-,
f(3)=1,
所以函数f(x)在[-4,3]上的最大值为.
要使f(x)≤m2+m+在[-4,3]上恒成立,
只需m2+m+≥,
解得m≥2或m≤-3.所以实数m的取值范围是(-∞,-3]∪[2,+∞).
恒成立问题向最值转化的方法
(1)要使不等式f(x)f(x)max,则上面的不等式恒成立.
(2)要使不等式f(x)>h在区间[m,n]上恒成立,可先在区间[m,n]上求出函数f(x)的最小值f(x)min,只要f(x)min>h,则不等式f(x)>h恒成立.    
层级一 学业水平达标
1.设M,m分别是函数f(x)在[a,b]上的最大值和最小值,若M=m,则f′(x)(  )
A.等于0         B.小于0
C.等于1 D.不确定
解析: 选A 因为M=m,所以f(x)为常数函数,故f′(x)=0,故选A.
2.函数y=2x3-3x2-12x+5在[-2,1]上的最大值、最小值分别是(  )
A.12,-8 B.1,-8
C.12,-15 D.5,-16
解析:选A y′=6x2-6x-12,
由y′=0 x=-1或x=2(舍去).
x=-2时,y=1;x=-1时,y=12;x=1时,y=-8.
∴ymax=12,ymin=-8.故选A.
3.函数f(x)=x4-4x(|x|<1)(  )
A.有最大值,无最小值
B.有最大值,也有最小值
C.无最大值,有最小值
D.既无最大值,也无最小值
解析:选D f′(x)=4x3-4=4(x-1)(x2+x+1).
令f′(x)=0,得x=1.又x∈(-1,1)且1 (-1,1),
∴该方程无解,故函数f(x)在(-1,1)上既无极值也无最值.故选D.
4.函数f(x)=2+,x∈(0,5]的最小值为(  )
A.2 B.3
C. D.2+
解析:选B 由f′(x)=-==0,得x=1,
且x∈(0,1)时,f′(x)<0,x∈(1,5]时,f′(x)>0,
∴x=1时,f(x)最小,最小值为f(1)=3.
5.函数y=的最大值为(  )
A.e-1 B.e
C.e2 D.10
解析:选A 令y′===0 x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y极大值=f(e)=e-1,在定义域内只有一个极值,所以ymax=e-1.
6.函数y=-x(x≥0)的最大值为__________.
解析:y′=-1=,令y′=0得x=.
∵0<x<时,y′>0;x>时,y′<0.
∴x=时,ymax=-=.
答案:
7.函数f(x)=xe-x,x∈[0,4]的最小值为________.
解析:f′(x)=e-x-xe-x=e-x(1-x).
令f′(x)=0,得x=1(e-x>0),
∴f(1)=>0,f(0)=0,f(4)=>0,
所以f(x)的最小值为0.
答案:0
8.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为m,n,则m-n=________.
解析:∵f′(x)=3x2-3,
∴当x>1或x<-1时,f′(x)>0;
当-1<x<1时,f′(x)<0.
∴f(x)在[0,1]上单调递减,在[1,3]上单调递增.
∴f(x)min=f(1)=1-3-a=-2-a=n.
又∵f(0)=-a,f(3)=18-a,∴f(0)<f(3).
∴f(x)max=f(3)=18-a=m,
∴m-n=18-a-(-2-a)=20.
答案:20
9.设函数f(x)=ex-x2-x.
(1)若k=0,求f(x)的最小值;
(2)若k=1,讨论函数f(x)的单调性.
解:(1)k=0时,f(x)=ex-x,f′(x)=ex-1.
当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f(x)的最小值为f(0)=1.
(2)若k=1,则f(x)=ex-x2-x,定义域为R.
∴f′(x)=ex-x-1,令g(x)=ex-x-1,
则g′(x)=ex-1,
由g′(x)≥0得x≥0,所以g(x)在[0,+∞)上单调递增,
由g′(x)<0得x<0,所以g(x)在(-∞,0)上单调递减,
∴g(x)min=g(0)=0,即f′(x)min=0,故f′(x)≥0.
所以f(x)在R上单调递增.
10.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在[-3,1]上的最大值.
解:(1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,
∴f(1)=1+a+b+5=4,即a+b=-2,
又由f(x)=x3+ax2+bx+5得,
又f′(x)=3x2+2ax+b,
而由切线y=3x+1的斜率可知f′(1)=3,
∴3+2a+b=3,即2a+b=0,
由解得
∴a=2,b=-4.
(2)由(1)知f(x)=x3+2x2-4x+5,
f′(x)=3x2+4x-4=(3x-2)(x+2),
令f′(x)=0,得x=或x=-2.
当x变化时,f(x),f′(x)的变化情况如下表:
x -3 (-3,-2) -2 1
f′(x) + 0 - 0 +
f(x) 8 ? 极大值 ? 极小值 ? 4
∴f(x)的极大值为f(-2)=13,极小值为f=,
又f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值为13.
层级二 应试能力达标
1.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为(  )
A.[0,1)        B.(0,1)
C.(-1,1) D.
解析:选B ∵f′(x)=3x2-3a,令f′(x)=0,可得a=x2,又∵x∈(0,1),∴0<a<1,故选B.
2.若函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为(  )
A.-10 B.-71
C.-15 D.-22
解析:选B f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0,得x=3或x=-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.
3.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小值时t的值为(  )
A.1 B.
C. D.
解析:选D 因为f(x)的图象始终在g(x)的上方,所以|MN|=f(x)-g(x)=x2-ln x,设h(x)=x2-ln x,则h′(x)=2x-=,令h′(x)==0,得x=,所以h(x)在上单调递减,在上单调递增,所以当x=时有最小值,故t=.
4.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是(  )
A.[3,+∞) B.[-3,+∞)
C.(-3,+∞) D.(-∞,-3)
解析:选B ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立,即a≥-3x2在[1,+∞)上恒成立,又∵在[1,+∞)上(-3x2)max=-3,∴a≥-3.
5.设函数f(x)=x2ex,若当x∈[-2,2]时,不等式f(x)>m恒成立,则实数m的取值范围是________.
解析:f′(x)=xex+x2ex=·x(x+2),
由f′(x)=0得x=0或x=-2.
当x∈[-2,2]时,f′(x),f(x)随x的变化情况如下表:
x -2 (-2,0) 0 (0,2) 2
f′(x) 0 - 0 +
f(x) 递减 递增
∴当x=0时,f(x)min=f(0)=0,要使f(x)>m对x∈[-2,2]恒成立,只需m<f(x)min,∴m<0.
答案:(-∞,0)
6.已知函数y=-x2-2x+3在区间[a,2]上的最大值为,则a=________.
解析:y′=-2x-2,令y′=0,得x=-1,∴函数在(-∞,- 1)上单调递增,在(-1,+∞)上单调递减.若a>-1,则最大值为f(a)=-a2-2a+3=,解之得a=-;若a≤-1,则最大值为f(-1)=-1+2+3=4≠.综上知,a=-.
答案:-
7.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.
(1)求f(x)的表达式;
(2)求g(x)在区间[1,2]上的最大值与最小值.
解:(1)∵f′(x)=3ax2+2x+b,
∴g(x)=f(x)+f′(x)
=ax3+(3a+1)x2+(b+2)x+b.
∵g(x)是奇函数,
∴g(-x)=-g(x),
从而3a+1=0,b=0,
解得a=-,b=0,
因此f(x)的表达式为f(x)=-x3+x2.
(2)由(1)知g(x)=-x3+2x,
∴g′(x)=-x2+2,令g′(x)=0.
解得x1=-(舍去),x2=,
而g(1)=,g()=,g(2)=,
因此g(x)在区间[1,2]上的最大值为g()=,最小值为g(2)=.
8.已知函数f(x)=ln x+.
(1)当a<0时,求函数f(x)的单调区间;
(2)若函数f(x)在[1,e]上的最小值是,求a的值.
解:函数f(x)=ln x+的定义域为(0,+∞),
f′(x)=-=,
(1)∵a<0,∴f′(x)>0,
故函数在其定义域(0,+∞)上单调递增.
(2)x∈[1,e]时,分如下情况讨论:
①当a<1时,f′(x)>0,函数f(x)单调递增,其最小值为f(1)=a<1,这与函数在[1,e]上的最小值是相矛盾;
②当a=1时,函数f(x)在[1,e]上单调递增,其最小值为f(1)=1,同样与最小值是相矛盾;
③当10,f(x)单调递增,
所以,函数f(x)的最小值为f(a)=ln a+1,由ln a+1=,得a=.
④当a=e时,函数f(x)在[1,e]上有f′(x)<0,f(x)单调递减,其最小值为f(e)=2,这与最小值是相矛盾;
⑤当a>e时,显然函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+>2,仍与最小值是相矛盾;
综上所述,a的值为.1.5.1&1.5.2 曲边梯形的面积 汽车行驶的路程
 预习课本P38~44,思考并完成下列问题
(1)连续函数与曲边梯形的概念分别是什么?
 
(2)曲边梯形的面积和汽车行驶路程的求解步骤是什么?
 
   
1.连续函数
如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.
2.曲边梯形的面积
(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①).
(2)求曲边梯形面积的方法与步骤:
①分割:把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形 (如图②);
②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②);
③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;
④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.
3.求变速直线运动的位移(路程)
如果物体作变速直线运动,速度函数为v=v(t),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a≤t≤b内所作的位移s.
[点睛] 当n→+∞时,所得梯形的面积不是近似值,而是真实值.
1.判断(正确的打“√”,错误的打“×”)
(1)求汽车行驶的路程时,分割的区间表示汽车行驶的路程.(  )
(2)当n很大时,函数f(x)=x2在区间上的值,只能用2近似代替.(  )
(3)mi=i2,i=30.(  )
答案:(1)× (2)× (3)√
2.将区间[1,3]进行10等分需插入________个分点,第三个区间是________.
答案:9 [1.4,1.6]
3.做直线运动的物体的速度v=2t(m/s),则物体在前3 s内行驶的路程为________ m.
答案:9
求曲边梯形的面积
[典例] 求直线x=0,x=2,y=0与曲线y=x2+1所围成的曲边梯形的面积[参考公式12+22+…+n2=n(n+1)(2n+1)].
[解] 令f(x)=x2+1.
(1)分割:将区间[0,2]n等分,分点依次为
x0=0,x1=,x2=,…,xn-1=,xn=2.
第i个区间为(i=1,2,…,n),
每个区间长度为Δx=-=.
(2)近似代替、求和:取ξi=(i=1,2,…,n),
Sn=·Δx=·
=2+2=(12+22+…+n2)+2
=·+2=+2.
(3)取极限:S= Sn=
=,即所求曲边梯形的面积为.
求曲边梯形面积
(1)思想:以直代曲.
(2)步骤:分割→近似代替→求和→取极限.
(3)关键:近似代替.
(4)结果:分割越细,面积越精确.      
[活学活用]
求由直线x=1,x=2,y=0及曲线y=x3所围成的图形的面积.
解:①分割.
如图所示,用分点,,…,,把区间[1,2]等分成n个小区间,,
…,,…,
,每个小区间的长度为Δx=-=(i=1,2,3,…,n).过各分点作x轴的垂线,把曲边梯形ABCD分割成n个小曲边梯形,它们的面积分别记作ΔS1,ΔS2,…,ΔSn.
②近似代替.
各小区间的左端点为ξi,取以点ξi的纵坐标ξ为一边,以小区间长Δx=为其邻边的小矩形面积,近似代替小曲边梯形面积.第i个小曲边梯形面积,可以近似地表示为ΔSi≈ξ·Δx=3·(i=1,2,3,…,n).
③求和.
因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n个小矩形面积的和就是曲边梯形ABCD面积S的近似值,
即S=Si≈.
④取极限.
当分点数目越多,即Δx越小时,和式的值就越接近曲边梯形ABCD的面积S.因此n→∞,即Δx→0时,和式的极限,就是所求的曲边梯形ABCD的面积.
因为
=(n+i-1)3
=(n-1)3+3(n-1)2i+3(n-1)i2+i3]
=[n(n-1)3+3(n-1)2·+3(n-1)··(n+1)·(2n+1)+n2(n+1)2],
所以S=3·
=1++1+=.
求变速运动的路程
[典例] 一辆汽车作变速直线运动,设汽车在时间t的速度v(t)=,求汽车在t=1到t=2这段时间内运动的路程s.
[解] (1)分割:把区间[1,2]等分成n个小区间(i=1,2,…,n),每个区间的长度Δt=,每个时间段行驶的路程记为Δsi(i=1,2,…,n).
故路程和sn=i.
(2)近似代替:ξi=(i=1,2,…,n),
Δsi≈v·Δt=6·2·

≈(i=1,2,3,…,n).
(3)求和:sn=
=6n
=6n.
(4)取极限:s=li sn=li 6n=3.
求变速直线运动路程的方法
求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.      
[活学活用]
已知一质点的运动速度为v(t)=6t2+4(单位:m/s),求质点开始运动后5 s内通过的路程.
解:(1)分割 
在时间区间[0,5]上等间隔地插入n-1个点,将区间等分成n个小区间,,…,,…,,
其中,第i(1≤i≤n)个小区间为,
其区间长度为-=,
每个小时间段内的路程记为s1,s2,…,sn.
(2)近似代替
根据题意可得第i(1≤i≤n)个小时间段内的路程为
Δsi=·=+.
(3)求和
每个小时间段内的路程之和为
Sn=
=[02+12+22+…+(n-1)2]+20
=·(n-1)n(2n-1)+20
=(2n2-3n+1)+20.
(4)取极限
当n→∞时,Sn的极限值就是所求质点运动的路程,
s=liSn=li =270,
即质点运动的路程为270 m.
层级一 学业水平达标
1.和式(xi+1)可表示为(  )
A.(x1+1)+(x5+1)
B.x1+x2+x3+x4+x5+1
C.x1+x2+x3+x4+x5+5
D.(x1+1)(x2+1)…(x5+1)
解析:选C (xi+1)=(x1+1)+(x2+1)+(x3+1)+(x4+1)+(x5+1)=x1+x2+x3+x4+x5+5.
2.在求由x=a,x=b(a①n个小曲边梯形的面积和等于S;
②n个小曲边梯形的面积和小于S;
③n个小曲边梯形的面积和大于S;
④n个小曲边梯形的面积和与S之间的大小关系无法确定
A.1个          B.2个
C.3个 D.4个
解析:选A n个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S.∴①正确,②③④错误,故应选A.
3.在“近似代替”中,函数f(x)在区间[xi,xi+1]上的近似值等于(  )
A.只能是左端点的函数值f(xi)
B.只能是右端点的函数值f(xi+1)
C.可以是该区间内任一点的函数值f(ξi)(ξi∈[xi,xi+1])
D.以上答案均不正确
解析:选C 由求曲边梯形面积的“近似代替”知,C正确,故应选C.
4.在求由函数y=与直线x=1,x=2,y=0所围成的平面图形的面积时,把区间[1,2]等分成n个小区间,则第i个小区间为(  )
A. B.
C.[i-1,i] D.
解析:选B 把区间[1,2]等分成n个小区间后,每个小区间的长度为,且第i个小区间的左端点不小于1,排除A、D;C显然错误;故选B.
5.函数f(x)=x2在区间上(  )
A.f(x)的值变化很小
B.f(x)的值变化很大
C.f(x)的值不变化
D.当n很大时,f(x)的值变化很小
解析:选D 当n很大时,区间的长度越来越小,f(x)的值变化很小,故选D.
6.求由抛物线f(x)=x2,直线x=0,x=1以及x轴所围成的平面图形的面积时,若将区间[0,1] 5等分,如图所示,以小区间中点的纵坐标为高,则所有矩形的面积之和为__________.
解析:S=×
=0.33.
答案:0.33
7.由直线x=0,x=1,y=0和曲线y=x2+2x围成的图形的面积为________________.
解析:将区间[0,1]n等分,每个区间长度为,区间右端点函数值y=2+2·=+.
作和Sn===2+=×n(n+1)(2n+1)+×=+=,
∴所求面积S= = =.
答案:
8.汽车以v=(3t+2)m/s做变速直线运动,在第1 s到第2 s间经过的路程是________.
解析:将[1,2]n等分,并取每个小区间的左端点的速度近似代替,则Δt=,
v(ξi)=v=3+2=(i-1)+5.
所以sn=·
=·
=·+5=+5,
所以s=sn=+5=6.5 (m).
答案:6.5 m
9. 求由抛物线y=x2与直线y=4所围成的图形的面积.
解:
如图,∵y=x2为偶函数,图象关于y轴对称,∴所求图形的面积应为y=x2(x≥0)与直线x=0,y=4所围成的图形面积S阴影的2倍,
下面求S阴影.
由得交点为(2,4).
先求由直线x=0,x=2,y=0和曲线y=x2围成的图形的面积.
(1)分割
将区间[0,2]n等分,
则Δx=,取ξi=(i=1,2,…,n).
(2)近似代替、求和
Sn=2·
=[02+12+22+32+…+(n-1)2]

(3)取极限
S= =.
∴S阴影=2×4-=.∴2S阴影=.
即抛物线y=x2与直线y=4所围成的图形的面积为.
10.汽车做变速直线运动,在时刻t的速度(单位:km/h)为v(t)=t2+2,那么它在1≤t≤2(单位:h)这段时间行驶的路程为多少?
解:将区间[1,2]等分成n个小区间,第i个小区间为(i=1,2,…,n).
第i个时间区间的路程的近似值为
Δξi≈Δξi′=v(t)·=v·
=++,
于是sn=ξi′=
=n·+·[0+1+2+…+(n-1)]+[02+12+22+…+(n-1)2]
=3+·+·
=3++.
所以s= sn= 3++=.
故这段时间行驶的路程为 km.
层级二 应试能力达标
1.设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<xi-1<xi<…<xn=b,把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi(i=1,2,…,n),作和式Sn=(ξi)Δx(其中Δx为小区间的长度),那么Sn的大小(  )
A.与f(x)和区间[a,b]有关,与分点的个数n和ξi的取法无关
B.与f(x)和区间[a,b]的分点的个数n有关,与ξi的取法无关
C.与f(x)和区间[a,b]的分点的个数n,ξi的取法都有关
D.与f(x)和区间[a,b]的ξi的取法有关,与分点的个数n无关
解析:选C 用分点a=x0<x1<…<xi-1<xi<…<xn=b把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上任取一点ξi (i=1,2,…,n),作和式Sn=(ξi)·Δx.若对和式求极限,则可以得到函数y=f(x)的图象与直线x=a,x=b,y=0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.
2.对于由直线x=1,y=0和曲线y=x3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值 (取每个区间的左端点)是(  )
A.           B.
C. D.
解析:选A 将区间[0,1]三等分为,,,各小矩形的面积和为s1=03·+3·+3·=.
3.li的含义可以是(  )
A.求由直线x=1,x=5,y=0,y=3x围成的图形的面积
B.求由直线x=0,x=1,y=0,y=15x围成的图形的面积
C.求由直线x=0,x=5,y=0,y=3x围成的图形的面积
D.求由直线x=0,x=5,y=0及曲线y=围成的图形的面积
解析:选C 将区间[0,5]n等分,则每一区间的长度为,各区间右端点对应函数值为y=,因此可以表示由直线x=0,x=5,y=0和y=3x围成的图形的面积的近似值.
4.若做变速直线运动的物体v(t)=t2,在0≤t≤a内经过的路程为9,则a的值为(  )
A.1 B.2
C.3 D.4
解析:选C 将区间[0,a]分为等长的n个小区间,第i个区间记为(i=1,2,…,n),取每个小区间的右端点的速度近似代替,则Δt=,所以v(ti)=2,sn=2·=(1+22+…+n2)==,于是s=sn= ==9,得a=3.故选C.
5.已知某物体运动的速度为v=t,t∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.
解析:∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n(n=1,2.…,10),每个小区间的长度为1.
∴物体运动的路程近似值S=1×(1+2+…+10)=55.
答案:55
6.如图,曲线C:y=2x(0≤x≤2)两端分别为M,N,且NA⊥x轴于点A,把线段OA分成n等份,以每一段为边作矩形,使其与x轴平行的边的一个端点在曲线C上,另一端点在曲线C的下方,设这n个矩形的面积之和为Sn,则 [(2n-3)(-1)Sn]=__________.
解析:依题意可知从原点开始,矩形的高成等比数列,首项为1,公比为2,则Sn=(1+2+2+…+2)=·=· .所以li[(2n-3)(-1)Sn]= =12.
答案:12
7.汽车行驶的速度为v=t2,求汽车在0≤t≤1这段时间内行驶的路程s.
解:(1)分割
将区间[0,1]等分为n个小区间
,,…,,…,,
每个小区间的长度为Δt=-=.
(2)近似代替
在区间(i=1,2,…,n)上,汽车近似地看作以时刻处的速度v=2作匀速行驶,
则在此区间上汽车行驶的路程为2·.
(3)求和
在所有小区间上,汽车行驶的路程和为
sn=02×+2×+2×+…+2×=[12+22+…+(n-1)2]=×=.
(4)取极限
汽车行驶的路程s=sn= =.
8.弹簧在拉伸的过程中,力与伸长量成正比,即力F(x)=kx(k为常数,x是伸长量),求将弹簧从平衡位置拉长b所做的功.
解:将物体用常力F沿力的方向拖动距离x,则所做的功W=F·x.
(1)分割
在区间[0,b]上等间隔地插入n-1个点,将区间[0,b]等分成n个小区间:
,…,
记第i个区间为(i=1,2,…,n),
其长度为Δx=-=.
把在分段,,…,上所做的功分别记作:ΔW1,ΔW2,…,ΔWn.
(2)近似代替
取各小区间的左端点函数值作为小矩形的高,由条件知:ΔWi≈F·Δx
=k··(i=1,2,…,n).
(3)求和
Wn=Wi≈··
=[0+1+2+…+(n-1)]
=×=.
从而得到W的近似值W≈Wn=.
(4)取极限
W=Wn=Wi= =.
所以将弹簧从平衡位置拉长b所做的功为.1.5.3 定积分的概念
预习课本P45~47,思考并完成下列问题
(1)定积分的概念是什么?几何意义又是什么?
 
(2)定积分的计算有哪些性质?
 
 
    
1.定积分的概念与几何意义
(1)定积分的概念:一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作f(x)dx,即f(x)dx=lif(ξ i),
这里,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式.
(2)定积分的几何意义:如果在区间[a,b]上函数连续且恒有f(x)≥0,那么定积分f(x)dx表示由直线x=a,x=b(a[点睛] 利用定积分的几何意义求定积分的关注点
(1)当f(x)≥0时,f(x)dx等于由直线x=a,x=b,y=0与曲线y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
(2)计算f(x)dx时,先明确积分区间[a,b],从而确定曲边梯形的三条直边x=a,x=b,y=0,再明确被积函数f(x),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S而得到定积分的值:
当f(x)≥0时,f (x)dx=S;当f(x)<0时,
f(x)dx=-S.
2.定积分的性质
(1)kf(x)dx=kf(x)dx(k为常数).
(2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx.
(3)f(x)dx=f(x)dx+f(x)dx(其中a1.判断(正确的打“√”,错误的打“×”)
(1)dx=1.(  )
(2)f(x)dx的值一定是一个正数.(  )
(3)(x2+2x)dx=x2dx+2xdx. (  )
答案:(1)√ (2)× (3)√
2.xdx的值为(  )
A.1    B.    C.2    D.-2
答案:C
3.已知f(x)dx=8,则(  )
A.f(x)dx=4
B.f(x)dx=4
C.f(x)dx+f(x)dx=8
D.以上答案都不对
答案:C
4.已知xdx=2,则xdx=________.
答案:-2
利用定义求定积分
[典例] 利用定义求定积分x2dx.
[解] 令f(x)=x2,
(1)分割:在区间[0,3]上等间隔地插入n-1个点,把区间[0,3]分成n等份,其分点为xi=(i=1,2,…,n-1),这样每个小区间[xi-1,xi]的长度Δx=(i=1,2,…,n).
(2)近似代替、求和:令ξi=xi=(i=1,2,…,n),于是有和式:(ξi)Δx=2·=2=·n(n+1)(2n+1)=.
(3)取极限:根据定积分的定义,有x2dx=(ξi)Δx
= =9.
用定义求定积分的一般步骤
(1)分割:n等分区间[a,b];
(2)近似代替:取点ξi∈[xi-1,xi],可取ξi=xi-1或ξi=xi;
(3)求和:(ξi)·;
(4)取极限:f(x)=li(ξi)·.      
[活学活用]
利用定积分的定义计算(-x2+2x)dx的值.
解:令f(x)=-x2+2x.
(1)分割
在区间[1,2]上等间隔地插入n-1个分点,把区间[1,2]等分为n个小区间(i=1,2,…,n),每个小区间的长度为Δx=.
(2)近似代替、求和
取ξi=1+(i=1,2,…,n),则
Sn=·Δx
=·
=-[(n+1)2+(n+2)2+(n+3)2+…+(2n)2]+[(n+1)+(n+2)+(n+3)+…+2n]
=-+·
=-++3+.
(3)取极限
(-x2+2x)dx=Sn= -++3+
=.
用定积分的性质求定积分
[典例] (1)f(x)=则f(x)dx=(  )
A.(x+1)dx
B.2x2dx
C.(x+1)dx+2x2dx
D.2xdx+(x+1)dx
(2)已知xdx=,x2dx=,求下列定积分的值:
①(2x+x2)dx;
②(2x2-x+1)dx.
[解析] (1)由定积分的几何性质得:
f(x)dx=(x+1)dx+2x2dx.
答案:C
(2)解:①(2x+x2)dx=2xdx+x2dx
=2×+=e2+.
②(2x2-x+1)dx=2x2dx-xdx+1dx,
因为已知xdx=,x2dx=,
又由定积分的几何意义知:
1dx等于直线x=0,x=e,y=0,y=1所围成的图形的面积,所以1dx=1×e=e,
故(2x2-x+1)dx=2×-+e=e3-e2+e.
利用定积分的性质计算定积分的步骤
(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.
(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.      
[活学活用]
若f(x)=且(2x-1)dx=-2,e-xdx=1-e-1,求f(x)dx.
解:对于分段函数的定积分,通常利用积分区间可加性来计算,即
f(x)dx=f(x)dx+f(x)dx
=(2x-1)dx+e-xdx=-2+1-e-1=-(e-1+1).
用定积分的几何意义求定积分
[典例] 求定积分:(-x)dx.
[解] dx表示圆心在(2,0),半径等于2的圆的面积的,即dx=×π×22=π.
xdx表示底和高都为2的直角三角形的面积,
即xdx=×22=2.
∴原式=dx-xdx=π-2.
当被积函数的几何意义明显时,可利用定积分的几何意义求定积分,但要注意定积分的符号.      
[活学活用]
计算(-x3)dx的值.
解:如图所示,
由定积分的几何意义得dx==,
x3dx=0,由定积分性质得
(-x3)dx=dx-x3dx=.
层级一 学业水平达标
1.定积分f(x)dx(f(x)>0)的积分区间是(  )
A.[-2,2]        B.[0,2]
C.[-2,0] D.不确定
解析:选A 由定积分的概念得定积分f(x)dx的积分区间是[-2,2].
2.定积分(-3)dx等于(  )
A.-6 B.6
C.-3 D.3
解析:选A 由定积分的几何意义知,(-3)dx表示由x=1,x=3,y=0及y=-3所围成的矩形面积的相反数,故(-3)dx=-6.
3.下列命题不正确的是(  )
A.若f(x)是连续的奇函数,则f(x)dx=0
B.若f(x)是连续的偶函数,则f(x)dx=2f(x)dx
C.若f(x)在[a,b]上连续且恒正,则f(x)dx>0
D.若f(x)在[a,b]上连续且f(x)dx>0,则f(x)在[a,b]上恒正
解析:选D A项,因为f(x)是奇函数,图象关于原点对称,所以x轴上方的面积和x轴下方的面积相等,故积分是0,所以A项正确;B项,因为f(x)是偶函数,图象关于y轴对称,故y轴两侧的图象都在x轴上方或下方且面积相等,故B项正确;由定积分的几何意义知,C项显然正确;D项,f(x)也可以小于0,但必须有大于0的部分,且f(x)>0的曲线围成的面积比f(x)<0的曲线围成的面积大.
4.设f(x)=则f(x)dx的值是(  )
A. x2dx B.2xdx
C.x2dx+2xdx D.2xdx+x2dx
解析:选D 由定积分性质(3)求f(x)在区间[-1,1]上的定积分,可以通过求f(x)在区间[-1,0]与[0,1]上的定积分来实现,显然D正确,故应选D.
5.下列各阴影部分的面积S不可以用S=[f(x)-g(x)]dx求出的是(  )
解析:选D 定积分S=[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图象要在g(x)的图象上方.对照各选项可知,D项中f(x)的图象不全在g(x)的图象上方.故选D.
6.若f(x)dx=3,g(x)dx=2,则[f(x)+g(x)]dx=__________.
解析:[f(x)+g(x)]dx=f(x)dx+g(x)dx=3+2=5.
答案:5
7.若f(x)dx=1,g(x)dx=-3,则[2f(x)+g(x)]dx=_______.
解析:[2f(x)+g(x)]dx=2f(x)dx+g(x)dx=2×1-3=-1.
答案:-1
8.计算:dx=____________.
解析:dx表示以原点为圆心,半径为4的圆的面积,∴dx=π·42=4π.
答案:4π
9.化简下列各式,并画出各题所表示的图形的面积.
(1)x2dx+x2dx;
(2)(1-x)dx+(x-1)dx.
解:(1)原式=x2dx,如图(1)所示.
(2)(1-x)dx+(x-1)dx=|1-x|dx,如图(2)所示.
10.已知函数f(x)=
求f(x)在区间[-1,3π]上的定积分.
解:由定积分的几何意义知:
∵f(x)=x5是奇函数,故x5dx=0;
sin xdx=0(如图(1)所示);
xdx=(1+π)(π-1)=(π2-1)(如图(2)所示).
∴f(x)dx=x5dx+xdx+sin xdx
=xdx=(π2-1).
层级二 应试能力达标
1.设f(x)是[a,b]上的连续函数,则f(x)dx-f(t)dt的值(  )
A.小于零         B.等于零
C.大于零 D.不能确定
解析:选B f(x)dx和f(t)dt都表示曲线y=f(x)与x=a,x=b及y=0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.
2.(陕西高考)如图所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是(  )
A.(x2-1)dx
B.(x2-1)dx
C.|x2-1|dx
D.(x2-1)dx+(x2-1)dx
解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=(1-x2)dx+(x2-1)dx=|x2-1|dx,故选C.
3.设a=xdx,b=x2dx,c=x3dx,则a,b,c的大小关系是(  )
A.c>a>b B.a>b>c
C.a=b>c D.a>c>b
解析:选B 根据定积分的几何意义,易知x3dx<x2dx<xdx,即a>b>c,故选B.
4.已知t>0,若(2x-2)dx=8,则t=(  )
A.1 B.-2
C.-2或4 D.4
解析:选D 作出函数f(x)=2x-2的图象与x轴交于点A(1,0),与y轴交于点B(0,-2),易求得S△OAB=1,
∵(2x-2)dx=8,且(2x-2)dx=-1,∴t>1,
∴S△AEF=|AE||EF|=×(t-1)(2t-2)=(t-1)2=9,∴t=4,故选D.
5.定积分(2+)dx=________.
解析:原式=2dx+dx.
因为2dx=2,dx=,
所以(2+)dx=2+.
答案:2+
6.已知f(x)是一次函数,其图象过点(3,4)且f(x)dx=1,则f(x)的解析式为______.
解析:设f(x)=ax+b(a≠0),
∵f(x)图象过(3,4)点,∴3a+b=4.
又f(x)dx=(ax+b)dx=axdx+bdx=a+b=1.
解方程组得∴f(x)=x+.
答案:f(x)=x+
7.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程.
解:依题意,汽车的速度v与时间t的函数关系式为
v(t)=
所以该汽车在这一分钟内所行驶的路程为
s=v(t)dt=tdt+(50-t)dt+10dt
=300+400+200=900(米).
8.求证:<dx<1.
证明:如图,dx表示阴影部分面积,△OAB的面积是,正方形OABC的面积是1,显然,△OAB的面积<阴影部分面积<正方形OABC的面积,即<dx<1. 
几何中的最值问题
[典例] 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截下的小正方形边长应为多少?
[解] 设截下的小正方形边长为x,容器容积为V(x),则做成的长方体形无盖容器底面边长为a-2x,高为x,
V(x)=(a-2x)2x,0即V(x)=4x3-4ax2+a2x,0实际问题归结为求V(x)在区间上的最大值点.
为此,先求V(x)的极值点.在开区间内,
V′(x)=12x2-8ax+a2.
令V′(x)=0,得12x2-8ax+a2=0.
解得x1=a,x2=a(舍去).
x1=a在区间内,x1可能是极值点.且
当00;
当x1因此x1是极大值点,且在区间内,x1是唯一的极值点,所以x=a是V(x)的最大值点.
即当截下的小正方形边长为a时,容积最大.
1.利用导数解决实际问题中的最值的一般步骤
(1)分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值;
(4)把所得数学结论回归到数学问题中,看是否符合实际情况并下结论.
2.几何中最值问题的求解思路
面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.      
[活学活用]
1.已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为________.
解析:设圆柱的底面半径为r,
则S圆柱底=2πr2,
S圆柱侧=2πrh,
∴圆柱的表面积S=2πr2+2πrh.
∴h=,
又圆柱的体积V=πr2h=(S-2πr2)=,
V′(r)=,
令V′(r)=0得S=6πr2,∴h=2r,因为V′(r)只有一个极值点,故当h=2r时圆柱的容积量大.
又r=,∴h=2=.
即当圆柱的容积V最大时,圆柱的高h为.
答案:
2.将一段长为100 cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截可使正方形与圆面积之和最小?
解:设弯成圆的一段长为x(0<x<100),另一段长为100-x,记正方形与圆的面积之和为S,则S=π2+2(0<x<100),则S′=-(100-x).
令S′=0,则x=.
由于在(0,100)内函数只有一个导数为零的点,问题中面积之和最小值显然存在,故当x= cm时,面积之和最小.
故当截得弯成圆的一段长为 cm时,两种图形面积之和最小.
用料、费用最少问题
[典例] 某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
[解]  (1)设需新建n个桥墩,则(n+1)x=m,
即n=-1.
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-=(x-512).令f′(x)=0,得x=512,所以x=64.
当0当640,f(x)在区间(64,640)内为增函数,
所以f(x)在x=64处取得最小值.
此时n=-1=-1=9.
故需新建9个桥墩才能使y最小.
费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际做答.      
[活学活用]
某工厂要围建一个面积为128 m2的矩形堆料场,一边可以用原有的墙壁,其它三边要砌新的墙壁,要使砌墙所用的材料最省,则堆料场的长、宽应分别是多少?
解:设场地宽为x m,则长为 m,
因此新墙总长度为y=2x+(x>0),
y′=2-,令y′=0,∵x>0,∴x=8.
因为当0<x<8时,y′<0;当x>8时,y′>0,
所以当x=8时,y取最小值,此时宽为8 m,长为16 m.
即当堆料场的长为16 m,宽为8 m时,可使砌墙所用材料最省.
利润最大问题
[典例] 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2.其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
[解]  (1)因为x=5时,y=11,
所以+10=11,a=2.
(2)由(1)可知,该商品每日的销售量y=+10(x-6)2,
所以商场每日销售该商品所获得的利润
f(x)=(x-3)=2+10(x-3)·(x-6)2,3<x<6.
从而f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x (3,4) 4 (4,6)
f′(x) + 0 -
f(x) 单调递增↗ 极大值42 单调递减↘
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以当x=4时,函数f(x)取得最大值,且最大值等于42.
即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
1.经济生活中优化问题的解法
经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.
2.关于利润问题常用的两个等量关系
(1)利润=收入-成本.
(2)利润=每件产品的利润×销售件数.    
[活学活用]
工厂生产某种产品,次品率p与日产量x(万件)间的关系为p=(c为常数,且0(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
解:(1)当x>c时,p=,y=·x·3-·x·=0;
当0∴y=·x·3-·x·=.
∴日盈利额y(万元)与日产量x(万件)的函数关系为
y=(c为常数,且0(2)由(1)知,当x>c时,日盈利额为0.
当0∴y′=·=,
令y′=0,得x=3或x=9(舍去),
∴①当00,∴y在区间(0,c]上单调递增,∴y最大值=f(c)=.
②当3≤c<6时,在(0,3)上,y′>0,在(3,c)上,y′<0,∴y在(0,3)上单调递增,在(3,c)上单调递减.
∴y最大值=f(3)=.
综上,若0层级一 学业水平达标
1.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是(  )
A.8            B.
C.-1 D.-8
解析:选C 瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.
2.把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
解析:选D 设一段为x,则另一段为12-x(0<x<12),
则S(x)=×2×+×2×=,∴S′(x)=.
令S′(x)=0,得x=6,
当x∈(0,6)时,S′(x)<0,
当x∈(6,12)时,S′(x)>0,
∴当x=6时,S(x)最小.
∴S==2(cm2).
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)=则总利润最大时,每年生产的产品是(  )
A.100 B.150
C.200 D.300
解析:选D 由题意,总成本为:C=20 000+100x,所以总利润为P=R-C=
P′=令P′=0,当0≤x≤400时,得x=300;当x>400时,P′<0恒成立,易知当x=300时,总利润最大.
4.设正三棱柱的体积为V,那么其表面积最小时,底面边长为(  )
A. B.2
C. D.V
解析:选C 设底面边长为x,则高为h=,
∴S表=3××x+2×x2=+x2,
∴S表′=-+x,
令S表′=0,得x=.
经检验知,当x=时,S表取得最小值.
5.内接于半径为R的球且体积最大的圆锥的高为(  )
A.R B.2R
C.R D.R
解析:选C 设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2,∴V=πr2h=h(2Rh-h2)=πRh2-h3,V′=πRh-πh2.令V′=0得h=R. 当00;当6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.
解析:设甲地销售x辆,则乙地销售(15-x)辆.
总利润L=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
令L′=-0.3x+3.06=0,得x=10.2.
∴当x=10时,L有最大值45.6.
答案:45.6
7.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.
解析:设CD=x,则点C坐标为,点B坐标为,
∴矩形ABCD的面积
S=f(x)=x·
=-+x,x∈(0,2).
由f′(x)=-x2+1=0,
得x1=-(舍),x2=,
∴x∈时,f′(x)>0,f(x)是递增的,
x∈时,f′(x)<0,f(x)是递减的,
当x=时,f(x)取最大值.
答案:
8.某厂生产某种产品x件的总成本:C(x)=1 200+x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.
解析:设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=.
总利润y=500-x3-1 200(x>0),
y′=-x2,由y′=0,得x=25,x∈(0,25)时,
y′>0,x∈(25,+∞)时,y′<0,所以x=25时,
y取最大值.
答案:25
9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=,再由C(0)=8,得k=40,
因此C(x)=.
而建造费用为C1(x)=6x.
最后得隔热层建造费用与20年的能源消耗费用之和为
f(x)=20C(x)+C1(x)=20×+6x
=+6x(0≤x≤10).
(2)f′(x)=6-,
令f′(x)=0,即=6,
解得x=5,x=-(舍去).
当00,
故x=5是f(x)的最小值点,对应的最小值为
f(5)=6×5+=70.
当隔热层修建5 cm厚时,总费用达到最小值70万元.
10.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=(x∈N*).
(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;
(2)为获最大日盈利,该厂的日产量应定为多少件?
解:(1)由题意可知次品率p=日产次品数/日产量,每天生产x件,次品数为xp,正品数为x(1-p).
因为次品率p=,当每天生产x件时,
有x·件次品,有x件正品.
所以T=200x-100x·
=25·(x∈N*).
(2)T′=-25·,
由T′=0得x=16或x=-32(舍去).
当0层级二 应试能力达标
1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为(  )
A.13万件         B.11万件
C.9万件 D.7万件
解析:选C y′=-x2+81,令y′=0,解得x=9或x=-9(舍去),当0<x<9时,y′>0;当x>9时,y′<0. 所以当x=9时,y取得最大值.
2.若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为(  )
A.2πr2 B.πr2
C.4πr2 D.πr2
解析:选A 设内接圆柱的底面半径为r1,高为t,
则S=2πr1t=2πr12=4πr1.
∴S=4π. 令(r2r-r)′=0得r1=r.
此时S=4π·r·=4π·r·r=2πr2.
3.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,要使利润最大每件定价为(  )
A.80元 B.85元
C.90元 D.95元
解析:选B 设每件商品定价x元,依题意可得
利润为L=x(200-x)-30x=-x2+170x(0<x<200).
L′=-2x+170,令-2x+170=0,解得x==85.
因为在(0,200)内L只有一个极值,所以以每件85元出售时利润最大.
4.内接于半径为R的半圆的周长最大的矩形的宽和长分别为(  )
A.和R B.R和R
C.R和R D.以上都不对
解析:选B 设矩形的宽为x,则长为2,
则l=2x+4(0令l′=0,解得x1=R,x2=-R(舍去).
当00,当R所以当x=R时,l取最大值,即周长最大的矩形的宽和长分别为R,R.
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x=________吨.
解析:设该公司一年内总共购买n次货物,则n=,
∴总运费与总存储费之和f(x)=4n+4x=+4x,令f′(x)=4-=0,解得x=20,x=-20(舍去),
x=20是函数f(x)的最小值点,故当x=20时,f(x)最小.
答案:20
6.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示).当帐篷的顶点O到底面中心O1的距离为__________ m时,帐篷的体积最大.
解析:设OO1为x m,底面正六边形的面积为S m2,帐篷的体积为V m3. 则由题设可得正六棱锥底面边长为=(m),于是底面正六边形的面积为S=6×()2=(8+2x-x2).
帐篷的体积为
V=×(8+2x-x2)(x-1)+(8+2x-x2)
=(8+2x-x2)
=(16+12x-x3),
V′=(12-3x2).
令V′=0,解得x=2或x=-2(不合题意,舍去).
当1<x<2时,V′>0;当2<x<4时,V′<0.
所以当x=2时,V最大.
答案:2
7.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤3).
(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?
(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)
解:(1)设投入t(百万元)的广告费后增加的收益为f(t),
则有f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3),
∴当t=2时,f(t)取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.
(2)设用于技术改造的资金为x(百万元),
则用于广告促销的资金为(3-x)(百万元),又设由此获得的收益是g(x)(百万元),
则g(x)=+[-(3-x)2+5(3-x)]-3=-x3+4x+3(0≤x≤3),
∴g′(x)=-x2+4,
令g′(x)=0,解得x=-2(舍去)或x=2.
又当0≤x<2时,g′(x)>0;当2∴当x=2时,g(x)取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.
8.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=x3-x+8(0(1)当x=64千米/小时时,行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?
解:(1)当x=64千米/小时时,要行驶100千米需要=小时,
要耗油×=11.95(升).
(2)设22.5升油能使该型号汽车行驶a千米,由题意得,
×=22.5,
∴a=,
设h(x)=x2+-,
则当h(x)最小时,a取最大值,
h′(x)=x-=,
令h′(x)=0 x=80,
当x∈(0,80)时,h′(x)<0,
当x∈(80,120)时,h′(x)>0,
故当x∈(0,80)时,函数h(x)为减函数,
当x∈(80,120)时,函数h(x)为增函数,
∴当x=80时,h(x)取得最小值,此时a取最大值为
a==200.
故若油箱有22.5升油,则该型号汽车最多行驶200千米. 
预习课本P51~54,思考并完成下列问题
(1)微积分基本定理的内容是什么?
 
(2)被积函数f(x)的原函数是否是唯一的?
 
 
    
1.微积分基本定理
如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么f(x)dx=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.
为了方便,我们常常把F(b)-F(a)记为F(x),即f(x)dx=F(x)=F(b)-F(a).
[点睛] 对微积分基本定理的理解
(1)微积分基本定理表明,计算定积分f(x)dx的关键是找到满足F′(x)=f(x)的函数F(x),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(x).
(2)牛顿-莱布尼茨公式指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数(F(x)叫做f(x)的原函数)的问题,提示了导数和定积分的内在联系,同时也提供计算定积分的一种有效方法.
2.定积分和曲边梯形面积的关系
设曲边梯形在x轴上方的面积为S上,在x轴下方的面积为S下.则
(1)当曲边梯形的面积在x轴上方时,如图①,则
f(x)dx=S上.
(2)当曲边梯形的面积在x轴下方时,如图②,则f(x)dx=-S下.
(3)当曲边梯形的面积在x轴上方、x轴下方均存在时,如图③,则f(x)dx=S上-S下,若S上=S下,则f(x)dx=0.
1.判断(正确的打“√”,错误的打“×”)
(1)微积分基本定理中,被积函数f(x)是原函数F(x)的导数.(  )
(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.(  )
(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.(  )
答案:(1)√ (2)√ (3)√
2.下列积分值等于1的是(  )
A.xdx         B.(x+1)dx
C.1dx D.dx
答案:C
3.计算:sin xdx=(  )
A.-2   B.0     C.2     D.1
答案:C
定积分的求法
[典例] (1)定积分(2x+ex)dx的值为(  )
A.e+2        B.e+1
C.e D.e-1
(2)f(x)=求f(x)dx.
[解析] (1)(2x+ex)dx=(x2+ex) =(1+e)-(0+e0)=e,因此选C.
答案:C
(2)解:f(x)dx=f(x)dx+f(x)dx
=(1+2x)dx+x2dx=(x+x2)+x3
=1+1+(8-1)=.
1.由微积分基本定理求定积分的步骤
当被积函数为两个函数的乘积时,一般要转化为和的形式,便于求得函数F(x),再计算定积分,具体步骤如下.
第一步:求被积函数f(x)的一个原函数F(x);
第二步:计算函数的增量F(b)-F(a).
2.分段函数的定积分的求法
(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.
(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.    
[活学活用]
计算下列定积分:
(1)(x3-2x)dx;(2) (x+cos x)dx;
(3)dx.
解:(1)(x3-2x)dx==-.
(2) (x+cos x)dx= =+1.
(3)f(x)==-.
取F(x)=ln x-ln(x+1)=ln,
则F′(x)=-,
所以dx=dx=ln=ln.
定积分的综合应用
[典例] (1)已知x∈(0,1],f(x)=(1-2x+2t)dt,则f(x)的值域是_________.
(2)已知[(3ax+1)(x+b)]dx=0,a,b∈R,试求ab的取值范围.
[解析] (1)(1-2x+2t)dt=[(1-2x)t+t2] =2-2x,即f(x)=-2x+2,
因为x∈(0,1],所以f(1)≤f(x)即0≤f(x)<2 ,所以函数f(x)的值域是[0,2).
答案:[0,2)
(2)解:[(3ax+1)(x+b)]dx
=[3ax2+(3ab+1)x+b]dx

=a+(3ab+1)+b=0,
即3ab+2(a+b)+1=0.
法一:由于(a+b)2=a2+b2+2ab≥4ab,
所以2≥4ab,即9(ab)2-10ab+1≥0,
得(ab-1)(9ab-1)≥0,解得ab≤或ab≥1.
所以ab的取值范围是∪[1,+∞).
法二:设ab=t,得a+b=-,
故a,b为方程x2+x+t=0的两个实数根,
所以Δ=-4t≥0,整理,得9t2-10t+1≥0,
即(t-1)(9t-1)≥0,解得t≤或t≥1.
所以ab的取值范围是∪[1,+∞).
含有参数的定积分问题的处理办法与注意点
(1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.
(2)计算含有参数的定积分,必须分清积分变量与被积函数f(x)、积分上限与积分下限、积分区间与函数F(x)等概念.     
 [活学活用]
已知f(x)=(12t+4a)dt,F(a)=[f(x)+3a2]dx,求函数F(a)的最小值.
解:∵f(x)=(12t+4a)dt
=(6t2+4at)
=6x2+4ax-(6a2-4a2)
=6x2+4ax-2a2,
∵F(a)=[f(x)+3a2]dx=(6x2+4ax+a2)dx
=(2x3+2ax2+a2x) =a2+2a+2=(a+1)2+1≥1,
∴当a=-1时,F(a)最小值=1.
层级一 学业水平达标
1.下列各式中,正确的是(  )
A.F′(x)dx=F′(b)-F′(a)
B.F′(x)dx=F′(a)-F′(b)
C.F′(x)dx=F(b)-F(a)
D.F′(x)dx=F(a)-F(b)
解析:选C 由牛顿-莱布尼茨公式知,C正确.
2.(cos x+1)dx等于(  )
A.1          B.0
C.π+1 D.π
解析:选D (cos x+1)dx=(sin x+x) =sin π+π-0=π.
3.已知积分(kx+1)dx=k,则实数k=(  )
A.2 B.-2
C.1 D.-1
解析:选A 因为(kx+1)dx=k,
所以=k.
所以k+1=k,所以k=2.
4. |56x|dx≤2 016,则正数a的最大值为(  )
A.6 B.56
C.36 D.2 016
解析:选A |56x|dx=256xdx=2×x2=56a2≤2 016,故a2≤36,即05.|x2-4|dx=(  )
A. B.
C. D.
解析:选C ∵|x2-4|=
∴|x2-4|dx=(x2-4)dx+(4-x2)dx
=+
=+
=-3-+8+8-=.
6.(x2-x)dx=__________.
解析:∵′=x2-x,∴原式==-0=.
答案:
7. 设f(x)=则f(x)dx=_________.
解析:f(x)dx=x2dx+ (cos x-1)dx
=x3+(sin x-x)
=+[(sin 1-1)-(sin 0-0)]
=sin 1-.
答案:sin 1-
8.已知等差数列{an}的前n项和为Sn,且S10=(1+2x)dx,则a5+a6=__________.
解析:S10=(1+2x)dx=(x+x2)=3+9=12.
因为{an}是等差数列,
所以S10==5(a5+a6)=12,所以a5+a6=.
答案:
9.已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,f(x)dx=-2,求a,b,c的值.
解:由f(-1)=2得a-b+c=2,  ①
又f′(x)=2ax+b,∴f′(0)=b=0, ②
而f(x)dx=(ax2+bx+c)dx
==a+b+c,
∴a+b+c=-2, ③
由①②③式得a=6,b=0,c=-4.
法二:设f(x)=|2x+3|+|3-2x|

如图,所求积分等于阴影部分面积,
即-3(|2x+3|+|3-2x|)dx=S=2××(6+12)×+3×6=45.
层级二 应试能力达标
1.函数F(x)=cos tdt的导数是(  )
A.F′(x)=cos x       B.F′(x)=sin x
C.F′(x)=-cos x D.F′(x)=-sin x
解析:选A F(x)=cos tdt=sin t=sin x-sin 0=sin x.
所以F′(x)=cos x,故应选A.
2.若函数f(x)=xm+nx的导函数是f′(x)=2x+1,则f(-x)dx=(  )
A. B.
C. D.
解析:选A ∵f(x)=xm+nx的导函数是f′(x)=2x+1,∴f(x)=x2+x,∴f(-x)dx=(x2-x)dx==.
3.若dx=3+ln 2,则a的值是(  )
A.6 B.4
C.3 D.2
解析:选D dx=(x2+ln x)=(a2+ln a)-(1+ln 1)=(a2-1)+ln a=3+ln 2.
∴∴a=2.
4.若f(x)=x2+2f(x)dx,则f(x)dx=(  )
A.-1 B.-
C. D.1
解析:选B 设f(x)dx=c,则c=(x2+2c)dx==+2c,解得c=-.
5.函数y=x2与y=kx(k>0)的图象所围成的阴影部分的面积为,则k=________________.
解析:由解得或
由题意得,(kx-x2)dx==k3-k3=k3=,∴k=3.
答案:3
6.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________
解析:长方形的面积为S1=3,S阴=3x2dx=x3=1,则P==.
答案:
7. 已知S1为直线x=0,y=4-t2及y=4-x2所围成图形的面积,S2为直线x=2,y=4-t2及y=4-x2所围成图形的面积(t为常数).
(1)若t=时,求S2.
(2)若t∈(0,2),求S1+S2的最小值.
解:(1)当t=时,
S2= ([2-(4-x2)]dx==(-1).
(2)t∈(0,2),S1=[(4-x2)-(4-t2)]dx
==t3,
S2=[(4-t2)-(4-x2)]dx=
=-2t2+t3,
所以S=S1+S2=t3-2t2+,
S′=4t2-4t=4t(t-1),
令S′=0得t=0(舍去)或t=1,
当0当10,S单调递增,
所以当t=1时,Smin=2.
8.如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k的值.
解:抛物线y=x-x2与x轴两交点的横坐标x1=0,x2=1,所以,抛物线与x轴所围图形的面积
S=(x-x2)dx==-=.
抛物线y=x-x2与直线y=kx两交点的横坐标为
x′1=0,x′2=1-k,
所以= (x-x2-kx)dx==(1-k)3,又知S=,所以(1-k)3=.
于是k=1-=1-. 
预习课本P56~59,思考并完成下列问题
(1)利用定积分求平面图形的面积时,需要知道哪些条件?
 
(2)两条曲线相交围成的平面图形能否用定积分求其面积?
 
    
1.定积分与平面图形面积的关系
(1)已知函数f(x)在[a,b]上是连续函数,由直线y=0,x=a,x=b与曲线y=f(x)围成的曲边梯形的面积为S.
f(x)的符号 平面图形的面积与定积分的关系
f(x)≥0 S=f(x)dx
f(x)<0 S=-f(x)dx
(2)一般地,如图,如果在公共的积分区间[a,b]上有f(x)>g(x),那么直线x=a,x=b与曲线y=f(x),y=g(x)围成的平面图形的面积为S=[f(x)-g(x)]dx.
[点睛]  对于不规则平面图形面积的处理原则
定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.
2.变速直线运动的路程
做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即s=v(t)dt.
3.力做功
(1)恒力做功:一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s,则力F所做的功为W=Fs.
(2)变力做功:如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a[点睛] 变速直线运动物体的路程、位移与定积分的关系
如果做变速直线运动物体的速度-时间函数为v=v(t),则物体在区间[a,b]上的位移为定积分v(t)dt;物体在区间[a,b]上的路程为|v(t)|dt.
1.判断(正确的打“√”,错误的打“×”)
(1)曲线y=x3与直线x+y=2,y=0围成的图形面积为x3dx+(2-x)dx.(  )
(2)曲线y=3-x2与直线y=-1围成的图形面积为 (4-x2)dx.(  )
(3)速度是路程与时间的函数关系的导数.(  )
(4)一个物体在2≤t≤4时,运动速度为v(t)=t2-4t,则它在这段时间内行驶的路程为(t2-4t)dt.(  )
答案:(1)√ (2)√ (3)√ (4)×
2.曲线y=cos x与坐标轴所围成的图形面积是(  )
A.2            B.3
C. D.4
答案:B
3.已知做自由落体运动的物体的速度为v=gt,则物体从t=0到t=t0所走过的路程为(  )
A.gt B. gt
C. gt D.gt
答案:C
4.一列车沿直线轨道前进,刹车后列车速度v(t)=27-0.9t,则列车从刹车到停车所前进的路程为________.
答案:405
利用定积分求平面图形的面积
[典例] 求抛物线y2=2x和直线y=-x+4所围成的图形的面积.
[解] 先求抛物线和直线的交点,解方程组求出交点坐标为A(2,2)和B(8,-4).
法一:选x为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为
S=S1+S2=2dx+dx
=x+=18.
法二:
选y作积分变量,则y的变化区间为[-4,2],如图得所求的面积为
S=-4dy
==18.
利用定积分求由两条曲线围成的平面图形的面积的解题步骤
(1)画出图形.
(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限.
(3)确定被积函数及积分变量,确定时可以综合考察下列因素:
①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单.
(4)写出平面图形的面积的定积分表达式.
(5)运用微积分基本定理计算定积分,求出平面图形的面积.      
[活学活用]
求曲线y=ex,y=e-x及直线x=1所围成的图形的面积.
解: 如图,由解得交点为(0,1),
所求面积为S=(ex-e-x)dx=(ex+e-x)=e+-2.
求变速直线运动的路程、位移
[典例] 有一动点P从原点出发沿x轴运动,在时刻为t时的速度为v(t)=8t-2t2(速度的正方向与x轴正方向一致).求
(1)t=6时,点P离开原点后运动的路程和点P的位移;
(2)经过时间t后又返回原点时的t值.
[解] (1)由v(t)=8t-2t2≥0得0≤t≤4,
即当0≤t≤4时,P点沿x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点后运动的路程
s1=(8t-2t2)dt-(8t-2t2)dt
=-=.
当t=6时,点P的位移为(8t-2t2)dt
==0.
(2)依题意,(8t-2t2)dt=0,
即4t2-t3=0,解得t=0或t=6,
因为t=0对应于点P刚开始从原点出发的情况,所以t=6为所求,
(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.
(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.      
[活学活用]
一质点在直线上从时刻t=0(s)开始以速度v=t2-4t+3(m/s)运动,求点在t=4 s时的位置及经过的路程.
解:在t=4 s时该点的位移为
(t2-4t+3)dt==(m).
即在t=4 s时该点距出发点 m.
又因为v(t)=t2-4t+3=(t-1)(t-3),
所以在区间[0,1]及[3,4]上的v(t)≥0,
在区间[1,3]上,v(t)≤0.
所以在t=4 s时的路程为s=(t2-4t+3)dt-(t2-4t+3)dt+(t2-4t+3)dt=-+=4(m).
求变力做功
[典例] 一物体在变力F(x)=
(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向从x=0运动到x=5处,求变力所做的功.
[解] 变力F(x)所做的功为
W=(2x+4)dx+(x2+2x)dx
=(x2+4x) +=12+60=72(J).
求变力做功的方法步骤
(1)要明确变力的函数式F(x),确定物体在力的方向上的位移.
(2)利用变力做功的公式W=F(x)dx计算.
(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳.    
[活学活用]
在弹性限度内,用力把弹簧从平衡位置拉长10 cm所用的力是200 N,求变力F做的功.
解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F(x)=kx(k>0),当x=10 cm=0.1 m时,F(x)=200 N,
即0.1k=200,得k=2 000,故F(x)=2 000x,
所以力F把弹簧从平衡位置拉长10 cm所做的功是
W=2 000xdx=1 000x2=10(J).
层级一 学业水平达标
1.在下面所给图形的面积S及相应的表达式中,正确的有(  )
A.①③        B.②③
C.①④ D.③④
解析:选D ①应是S=[f(x)-g(x)]dx,②应是S=2dx-(2x-8)dx,③和④正确.故选D.
2.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t=0 s到t=3 s时间段内的位移是(  )
A.31 m B.36 m
C.38 m D.40 m
解析:选B S=(3t2+2t)dt=(t3+t2)=33+32=36(m),故应选B.
3.如图所示,阴影部分的面积是(  )
A.2 B.2-
C. D.
解析:选C S= (3-x2-2x)dx,即F(x)=3x-x3-x2,则F(1)=3--1=,F(-3)=-9+9-9=-9.
∴S=F(1)-F(-3)=+9=.故应选C.
4.由y=x2,y=x2及x=1围成的图形的面积S=(  )
A. B.
C. D.1
解:选A 图形如图所示,
S=x2dx-x2dx
=x2dx
=x3=.
5.曲线y=x3-3x和y=x围成的图形面积为(  )
A.4 B.8
C.10 D.9
解析:选B 由解得或或∵两函数y=x3-3x与y=x均为奇函数,
∴S=2[x-(x3-3x)]dx=2·(4x-x3)dx
=2=8,故选B.
6.若某质点的初速度v(0)=1,其加速度a(t)=6t,做直线运动,则质点在t=2 s时的瞬时速度为________.
解析:v(2)-v(0)=a(t)dt=6tdt=3t2=12,
所以v(2)=v(0)+3×22=1+12=13.
答案:13
7.一物体沿直线以速度v= m/s运动,该物体运动开始后10 s内所经过的路程是______.
解析:S=dt=(1+t) =.
答案:
8.由y=,x=1,x=2,y=0所围成的平面图形的面积为________.
解析:画出曲线y=(x>0)及直线x=1,x=2,y=0,则所求面积S为如图所示的阴影部分面积.
∴S=dx=ln x=ln 2-ln 1=ln 2.
答案:ln 2
9.计算曲线y=x2-2x+3与直线y=x+3所围图形的面积.
解:由解得x=0及x=3.
从而所求图形的面积
S=[(x+3)-(x2-2x+3)]dx
=(-x2+3x)dx
==.
10. 设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.
解:(1)∵y=f(x)是二次函数且f′(x)=2x+2,
∴设f(x)=x2+2x+c.
又f(x)=0有两个等根,
∴4-4c=0,∴c=1,∴f(x)=x2+2x+1.
(2)y=f(x)的图象与两坐标所围成的图形的面积S= (x2+2x+1)dx=x3+x2+x=.
层级二 应试能力达标
1.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=3处(单位:m),则力F(x)所做的功为(  )
A.8 J          B.10 J
C.12 J D.14 J
解析:选D 由变力做功公式有:W=(4x-1)dx=(2x2-x) =14(J),故应选D.
2.若某产品一天内的产量(单位:百件)是时间t的函数,若已知产量的变化率为a=,那么从3小时到6小时期间内的产量为(  )
A. B.3-
C.6+3 D.6-3
解析:选D dt==6-3,故应选D.
3.以初速40 m/s竖直向上抛一物体,t s时刻的速度v=40-10t2,则此物体达到最高时的高度为(  )
A. m B. m
C. m D.m
解析:选A 由v=40-10t2=0,得t2=4,t=2.
∴h=(40-10t2)dt=
=80-=(m).故选A.
4.(山东高考)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为(  )
A.2 B.4
C.2 D.4
解析:选D 由4x=x3,解得x=0或x=2或x=-2(舍去),根据定积分的几何意义可知,直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为==4.
5.椭圆+=1所围区域的面积为________.
解析:由+=1,得y=± . 又由椭圆的对称性知,椭圆的面积为S=4 dx
=3dx.
由y= ,得x2+y2=16(y≥0).
由定积分的几何意义知dx表示由直线x=0,x=4和曲线x2+y2=16(y≥0)及x轴所围成图形的面积,
∴dx=×π×16=4π,∴S=3×4π=12π.
答案:12π
6.如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.
解析:∵S阴=2(e-ex)dx=2(ex-ex) =2,
S正方形=e2,∴P=.
答案:
7.求由曲线xy=1及直线x=y,y=3所围成平面图形的面积.
解:作出曲线xy=1,直线x=y,y=3的草图,所求面积为图中阴影部分的面积.
求交点坐标:由得
故A;由
得或(舍去),
故B(1,1);由
得故C(3,3),
8.函数f(x)=ax3+bx2-3x,若f(x)为实数集R上的单调函数,且a≥-1,设点P的坐标为(b,a),试求出点P的轨迹所形成的图形的面积S.
解:当a=0时,由f(x)在R上单调,知b=0.
当a≠0时,f(x)在R上单调 f′(x)≥0恒成立或f′(x)≤0恒成立.∵f′(x)=3ax2+2bx-3,
∴∴a≤-b2且a≥-1.
因此满足条件的点P(b,a)在直角坐标平面xOy的轨迹所围成的图形是由曲线y=-x2与直线y=-1所围成的封闭图形.
联立解得或如图,
其面积S=dx=
=(3-1)-(-3+1)=4.
(时间: 120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若f(x)=sin α-cos x,则f′(x)等于(  )
A.sin x          B.cos x
C.cos α+sin x D.2sin α+cos x
解析:选A 函数是关于x的函数,因此sin α是一个常数.
2.以正弦曲线y=sin x上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(  )
A.∪ B.[0,π)
C. D.∪
解析:选A y′=cos x,∵cos x∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是∪.
3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(   )
A.1个 B.2个
C.3个 D.4个
解析:选A 设极值点依次为x1,x2,x3且a<x1<x2<x3<b,则f(x)在(a,x1),(x2,x3)上递增,在(x1,x2),(x3,b)上递减,因此,x1,x3是极大值点,只有x2是极小值点.
4.函数f(x)=x2-ln x的单调递减区间是(  )
A.
B.
C. ,
D.,
解析:选A ∵f′(x)=2x-=,当0<x≤时,f′(x)≤0,故f(x)的单调递减区间为.
5.函数f(x)=3x-4x3(x∈[0,1])的最大值是(  )
A.1 B.
C.0 D.-1
解析:选A f′(x)=3-12x2,令f′(x)=0,
则x=-(舍去)或x=,f(0)=0,f(1)=-1,
f=-=1,∴f(x)在[0,1]上的最大值为1.
6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则a=(  )
A.2 B.3
C.4 D.5
解析:选D f′(x)=3x2+2ax+3,∵f′(-3)=0.
∴3×(-3)2+2a×(-3)+3=0,∴a=5.
7.函数f(x)=ax3+ax2-2ax+1的图象经过四个象限,则实数a的取值范围是(  )
A.
B.
C.
D.∪
解析:选D f′(x)=ax2+ax-2a=a(x+2)(x-1),
要使函数f(x)的图象经过四个象限,则f(-2)f(1)<0,即<0,解得a<-或a>.
故选D.
8.已知函数f(x)的导函数f′(x)=a(x-b)2+c的图象如图所示,则函数f(x)的图象可能是(  )
解析:选D 由导函数图象可知,当x<0时,函数f(x)递减,排除A、B;当00,函数f(x)递增.因此,当x=0时,f(x)取得极小值,故选D.
9.定义域为R的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>,则满足2f(x)A.{x|-1C.{x|x<-1或x>1} D.{x|x>1}
解析:选B 令g(x)=2f(x)-x-1,∵f′(x)>,
∴g′(x)=2f′(x)-1>0,∴g(x)为单调增函数,
∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x<1时,
g(x)<0,即2f(x)10.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2,生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产(  )
A.6千台 B.7千台
C.8千台 D.9千台
解析:选A 设利润为y,则y=y1-y2=17x2-(2x3-x2)=18x2-2x3,y′=36x-6x2,令y′=0得x=6或x=0(舍),f(x)在(0,6)上是增函数,在(6,+∞)上是减函数,∴x=6时y取得最大值.
11.已知定义在R上的函数f(x),f(x)+x·f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b) B.af(b)<bf(a)
C.af(a)>bf(b) D.af(b)>bf(a)
解析:选C [x·f(x)]′=x′f(x)+x·f′(x)=f(x)+x·f′(x)<0,
∴函数x·f(x)是R上的减函数,
∵a<b,∴af(a)>bf(b).
12.若函数f(x)=,且0A.a>b B.aC.a=b D.a,b的大小不能确定
解析:选A f′(x)=,令g(x)=xcos x-sin x,则g′(x)=-xsin x+cos x-cos x=-xsin x.
∵0b,故选A.
二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上)
13.若f(x)=x3-f′(1)x2+x+5,则f′(1)=________.
解析:f′(x)=x2-2f′(1)x+1,令x=1,得f′(1)=.
答案:
14.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.
解析:S=dx=x=a=a2,∴a=.
答案:
15.已知函数f(x)满足f(x)=f(π-x),且当x∈时,f(x)=x+sin x,设a=f(1),b=f(2),c=f(3),则a,b,c的大小关系是________.
解析:f(2)=f(π-2),f(3)=f(π-3),
因为f′(x)=1+cos x≥0,
故f(x)在上是增函数,
∵>π-2>1>π-3>0,
∴f(π-2)>f(1)>f(π-3),即c答案:c16.若函数f(x)=在区间(m,2m+1)上单调递增,则实数m的取值范围是__________.
解析:f′(x)=,令f′(x)>0,得-1<x<1,
即函数f(x)的增区间为(-1,1).
又f(x)在(m,2m+1)上单调递增,
所以解得-1<m≤0.
答案:(-1,0]
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分12分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
解:(1)由题设知f′(x)=3x2+2ax+b,
且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,
解得a=0,b=-3.
(2)由(1)知f(x)=x3-3x.
因为f(x)+2=(x-1)2(x+2),
所以g′(x)=0的根为x1=x2=1,x3=-2,
于是函数g(x)的极值点只可能是1或-2.
当x<-2时,g′(x)<0;当-2<x<1时,
g′(x)>0,故-2是g(x)的极值点.
当-2<x<1或x>1时,g′(x)>0,
故1不是g(x)的极值点.
所以g(x)的极值点为-2.
18. (本小题满分12分)(北京高考)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;
(2)求f(x)的单调区间.
解:(1)因为f(x)=xea-x+bx,
所以f′(x)=(1-x)ea-x+b.
依题设有即
解得
(2)由(1)知f(x)=xe2-x+ex.
由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,
f′(x)与1-x+ex-1同号.
令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.
所以当x∈(-∞,1)时,g′(x)<0,
g(x)在区间(-∞,1)上单调递减;
当x∈(1,+∞)时,g′(x)>0,
g(x)在区间(1,+∞)上单调递增.
故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,
从而g(x)>0,x∈(-∞,+∞).
综上可知,f′(x)>0,x∈(-∞,+∞),
故f(x)的单调递增区间为(-∞,+∞).
19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
解:(1)由投资额为零时收益为零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
设投入经销B商品的资金为x万元(0<x≤5),
则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,
则S(x)=2(5-x)+6ln(x+1)
=6ln(x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
所以当x=2时,函数S(x)取得最大值,
S(x)max=S(2)=6ln 3+6≈12.6万元.
所以,当投入经销A商品3万元,B商品2万元时,
他可获得最大收益,收益的最大值约为12.6万元.
20.(本小题满分12分)已知函数f(x)=ax2+2ln(1-x)(a为常数).
(1)若f(x)在x=-1处有极值,求a的值并判断x=-1是极大值点还是极小值点;
(2)若f(x)在[-3,-2]上是增函数,求a的取值范围.
解:(1)f′(x)=2ax-,x∈(-∞,1),
f′(-1)=-2a-1=0,
所以a=-.
f′(x)=-x-=.
∵x<1,∴1-x>0,x-2<0,
因此,当x<-1时f′(x)>0,
当-1∴x=-1是f(x)的极大值点.
(2)由题意f′(x)≥0在x∈[-3,-2]上恒成立,
即2ax-≥0在x∈[-3,-2]上恒成立
∴a≤在x∈[-3,-2]上恒成立,
∵-x2+x=-2+ ∈[-12,-6],
∴∈,
∴min=-,a≤-.
即a的取值范围为.
21.(本小题满分12分)已知函数f(x)=x2-mln x,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.
解:(1)由f(x)≥h(x),
得m≤在(1,+∞)上恒成立.
令g(x)=,则g′(x)=,
当x∈(1,e)时,g′(x)<0;
当x∈(e,+∞)时,g′(x)>0,
所以g(x)在(1,e)上递减,在(e,+∞)上递增.
故当x=e时,g(x)的最小值为g(e)=e.
所以m≤e.即m的取值范围是(-∞,e].
(2)由已知可得k(x)=x-2ln x-a.
函数k(x)在(1,3)上恰有两个不同零点,
相当于函数φ(x)=x-2ln x与直线y=a有两个不同的交点.
φ′(x)=1-=,
当x∈(1,2)时,φ′(x)<0,φ(x)递减,
当x∈(2,3)时,φ′(x)>0,φ(x)递增.
又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,
要使直线y=a与函数φ(x)=x-2ln x有两个交点,
则2-2ln 2<a<3-2ln 3.
即实数a的取值范围是(2-2ln 2,3-2ln 3).
22.(本小题满分12分)已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(1)求a的取值范围;
(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).
①设a=0,则f(x)=(x-2)ex,f(x)只有一个零点.
②设a>0,则当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0,
所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.
又f(1)=-e,f(2)=a,取b满足b<0且b则f(b)>(b-2)+a(b-1)2=a>0,
故f(x)存在两个零点.
③设a<0,由f′(x)=0得x=1或x=ln(-2a).
若a≥-,则l n(-2a)≤1,
故当x∈(1,+∞)时,
f′(x)>0,因此f(x)在(1,+∞)内单调递增.
又当x≤1时,f(x)<0,所以f(x)不存在两个零点.
若a<-,则ln(-2a)>1,
故当x∈(1,ln(-2a))时,f′(x)<0;
当x∈(ln(-2a),+∞)时,f′(x)>0.
因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.
又当x≤1时,f(x)<0,所以f(x)不存在两个零点.
综上,a的取值范围为(0,+∞).
(2)证明:不妨设x1所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.
由于f(2-x2)=-x2e2-x2+a(x2-1)2,
而f(x2)=(x2-2)ex2+a(x2-1)2=0,
所以f(2-x2)=-x2e2-x2-(x2-2)ex2.
设g(x)=-xe2-x-(x-2)ex,
则g′(x)=(x-1)(e2-x-ex).
所以当x>1时,g′(x)<0,而g(1)=0,
故当x>1时,g(x)<0.
从而g(x2)=f(2-x2)<0,故x1+x2<2.3.2.2 复数代数形式的乘除运算
预习课本P109~111,思考并完成下列问题
(1)复数乘法、除法的运算法则是什么?共轭复数概念的定义是什么?
 
 
(2)复数乘法的多项式运算与实数的多项式运算法则是否相同?如何应用共轭复数的性质解决问题?
 
 
    
1.复数代数形式的乘法法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.
2.复数乘法的运算律
对任意复数z1,z2,z3∈C,有
交换律 z1·z2=z2·z1
结合律 (z1·z2)·z3=z1·(z2·z3)
分配律 z1(z2+z3)=z1z2+z1z3
3.共轭复数
已知z1=a+bi,z2=c+di,a,b,c,d∈R,则
(1)z1,z2互为共轭复数的充要条件是a=c且b=-d.
(2)z1,z2互为共轭虚数的充要条件是a=c且b=-d≠0.
4.复数代数形式的除法法则:
(a+bi)÷(c+di)==+i(c+di≠0).
[点睛] 在进行复数除法时,分子、分母同乘以分母的共轭复数c-di,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.
1.判断(正确的打“√”,错误的打“×”)
(1)两个复数互为共轭复数是它们的模相等的必要条件.(  )
(2)若z1,z2∈C,且z+z=0,则z1=z2=0.(  )
(3)两个共轭虚数的差为纯虚数.(  )
答案:(1)× (2)× (3)√
2.(北京高考)复数i(2-i)=(  )
A.1+2i          B.1-2i
C.-1+2i D.-1-2i
答案:A
3.若复数z1=1+i,z2=3-i,则z1·z2= (  )
A.4+2i B.2+i
C.2+2i D.3+4i
答案:A
4.复数=________.
答案:-i
复数代数形式的乘法运算
[典例] (1)已知i是虚数单位,若复数(1+ai)(2+i)是纯虚数,则实数a等于(  )
A.2          B.
C.- D.-2
(2)(江苏高考)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是________.
[解析] (1)(1+ai)(2+i)=2-a+(1+2a)i,要使复数为纯虚数,所以有2-a=0,1+2a≠0,解得a=2.
(2)(1+2i)(3-i)=3-i+6i-2i2=5+5i,
所以z的实部是5.
[答案] (1)A (2)5
1.两个复数代数形式乘法的一般方法
(1)首先按多项式的乘法展开.
(2)再将i2换成-1.
(3)然后再进行复数的加、减运算,化简为复数的代数形式.
2.常用公式
(1)(a+bi)2=a2-b2+2abi(a,b∈R).
(2)(a+bi)(a-bi)=a2+b2(a,b∈R).
(3)(1±i)2=±2i. 
[活学活用]
1.已知x,y∈R,i为虚数单位,且xi-y=-1+i,则(1+i)x+y的值为(  )
A.2 B.-2i
C.-4 D.2i
解析:选D 由xi-y=-1+i得x=1,y=1,所以(1+i)x+y=(1+i)2=2i.
2.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=________.
解析:因为(a+i)(1+i)=a-1+(a+1)i=bi,所以a-1=0,a+1=b,即a=1,b=2,所以a+bi=1+2i.
答案:1+2i
复数代数形式的除法运算
[典例] (1)若复数z满足z(2-i)=11+7i(i是虚数单位),则z为(  )
A.3+5i B.3-5i
C.-3+5i D.-3-5i
(2)设i是虚数单位,复数为纯虚数,则实数a为(  )
A.2 B.-2
C.- D.
[解析] (1)∵z(2-i)=11+7i,
∴z====3+5i.
(2)==+i,由是纯虚数,则=0,≠0,所以a=2.
[答案] (1)A (2)A
1.两个复数代数形式的除法运算步骤
(1)首先将除式写为分式;
(2)再将分子、分母同乘以分母的共轭复数;
(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.
2.常用公式
(1)=-i;(2)=i;(3)=-i.      
[活学活用]
1.(天津高考)i是虚数单位,计算的结果为________.
解析:===-i.
答案:-i
2.计算:=________.
解析:法一:==
=-2+i.
法二:=
==
==-2+i.
答案:-2+i
i的乘方的周期性及应用
[典例] (1)(湖北高考)i为虚数单位,i607的共轭复数为(  )
A.i B.-i
C.1 D.-1
(2)计算i1+i2+i3+…+i2 016=________.
[解析] (1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.
(2)法一:原式====0.
法二:∵i1+i2+i3+i4=0,
∴in+in+1+in+2+in+3=0(n∈N),
∴i1+i2+i3+…+i2 016,
=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0.
[答案] (1)A (2)0
虚数单位i的周期性
(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*).
(2)in+in+1+in+2+in+3=0(n∈N).     
[活学活用]
 计算·2·3·…·10=______.
解析:∵=i,∴原式=i·i2·i3·…·i10=i1+2+3+…+10=i55=i3=-i.
答案:-i
复数综合应用
[典例] 设z是虚数,ω=z+是实数,且-1<ω<2,求|z|的值及z的实部的取值范围.
[解] 因为z是虚数,所以可设z=x+yi,x,y∈R,且y≠0.
所以ω=z+=x+yi+
=x+yi+=x++i.
因为ω是实数且y≠0,
所以y-=0,所以x2+y2=1,
即|z|=1.此时ω=2x.
因为-1<ω<2,所以-1<2x<2,
从而有-<x<1,
即z的实部的取值范围是.
[一题多变]
1.[变设问]若本例中条件不变,设u=,证明u为纯虚数.
证明:设z=x+yi,x,y∈R,且y≠0,
由典例解析知,x2+y2=1,
∴u===
==-i.
因为x∈,y≠0,所以≠0,
所以u为纯虚数.
2.[变设问]若本例条件不变,求ω-2的最小值.
解:设z=x+yi,x,y∈R,且y≠0,
由典例解析知x2+y2=1.
则ω-2=2x-2=2x+2
=2x+=2x+
=2x-1+=2(x+1)+-3.
因为-<x<1,
所以1+x>0.
于是ω-2=2(x+1)+-3≥
2-3=1.
当且仅当2(x+1)=,
即x=0时等号成立.
所以ω-2的最小值为1,此时z=±i.
复数运算的综合问题解决方法
在有关复数运算的综合问题中,常与集合、数列、不等式、三角函数、函数、解析几何等内容结合在一起,要解决此类问题常将复数设为x+yi(x,y∈R)的形式,利用有关条件及复数相等转化为实数问题或利用复数的几何意义转化为点的坐标及向量问题进行解决.
层级一 学业水平达标
1.复数(1+i)2(2+3i)的值为(  )
A.6-4i       B.-6-4i
C.6+4i D.-6+4i
解析:选D (1+i)2(2+3i)=2i(2+3i)=-6+4i.
2.(全国卷Ⅰ)已知复数z满足(z-1)i=1+i,则z=(  )
A.-2-i B.-2+i
C.2-i D.2+i
解析:选C z-1==1-i,所以z=2-i,故选C.
3.(广东高考)若复数z=i(3-2i)(i是虚数单位),则=(  )
A.2-3i B.2+3i
C.3+2i D.3-2i
解析:选A ∵z=i(3-2i)=3i-2i2=2+3i,∴=2-3i.
4.(1+i)20-(1-i)20的值是(  )
A.-1 024 B. 1 024
C.0 D.512
解析:选C (1+i)20-(1-i)20=[(1+i)2]10-[(1-i)2]10=(2i)10-(-2i)10=(2i)10-(2i)10=0.
5.(全国卷Ⅱ)若a为实数,且=3+i,则a=(  )
A.-4 B.-3
C.3 D.4
解析:选D ==+i=3+i,
所以解得a=4,故选D.
6.(天津高考)已知a,b∈R,i是虚数单位,若(1+i)(1-bi)=a,则的值为________.
解析:因为(1+i)(1-bi)=1+b+(1-b)i=a,
又a,b∈R,所以1+b=a且1-b=0,得a=2,b=1,
所以=2.
答案:2
7.设复数z=1+i,则z2-2z=________.
解析:∵z=1+i,
∴z2-2z=z(z-2)=(1+i)(1+i-2)=(1+i)(-1+i)=-3.
答案:-3
8.若=1-bi,其中a,b都是实数,i是虚数单位,则|a+bi|=________.
解析:∵a,b∈R,且=1-bi,
则a=(1-bi)(1-i)=(1-b)-(1+b)i,


∴|a+bi|=|2-i|==.
答案:
9.计算:+.
解:因为===i-1,===-i,
所以+=i-1+(-i)=-1.
10.已知为z的共轭复数,若z·-3i=1+3i,求z.
解:设z=a+bi(a,b∈R),
则=a-bi(a,b∈R),
由题意得(a+bi)(a-bi)-3i(a-bi)=1+3i,
即a2+b2-3b-3ai=1+3i,
则有
解得或
所以z=-1或z=-1+3i.
层级二 应试能力达标
1.如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是(  )
A.A          B.B
C.C D.D
解析:选B 设z=a+bi(a,b∈R),且a<0,b>0,则z的共轭复数为a-bi,其中a<0,-b<0,故应为B点.
2.设a是实数,且∈R,则实数a=(  )
A.-1 B.1
C.2 D.-2
解析:选B 因为∈R,所以不妨设=x,x∈R,则1+ai=(1+i)x=x+xi,所以有所以a=1.
3.若a为正实数,i为虚数单位,=2,则a=(  )
A.2 B.
C. D.1
解析:选B ∵=(a+i)(-i)=1-ai,∴=|1-ai|==2,解得a=或a=-(舍).
4.计算+的值是(  )
A.0 B.1
C.i D.2i
解析:选D 原式=+=+=+i=+i=+i=2i.
5.若z1=a+2i,z2=3-4i,且为纯虚数,则实数a的值为________.
解析:===
=,
∵为纯虚数,

∴a=.
答案:
6.设复数z满足z2=3+4i(i是虚数单位),则z的模为________.
解析:设z=a+bi(a,b∈R),
则z2=a2-b2+2abi=3+4i,

解得或
∴|z|==.
答案:
7.设复数z=,若z2+<0,求纯虚数a.
解:由z2+<0可知z2+是实数且为负数.
z====1-i.
∵a为纯虚数,∴设a=mi(m∈R且m≠0),则
z2+=(1-i)2+=-2i+
=-+i<0,

∴m=4,∴a=4i.
8.复数z=且|z|=4,z对应的点在第一象限,若复数0,z,对应的点是正三角形的三个顶点,求实数a,b的值.
解:z=(a+bi)
=2i·i(a+bi)=-2a-2bi.
由|z|=4,得a2+b2=4,①
∵复数0,z,对应的点构成正三角形,
∴|z-|=|z|.
把z=-2a-2bi代入化简得|b|=1.②
又∵z对应的点在第一象限,
∴a<0,b<0.
由①②得
故所求值为a=-,b=-1.
(时间: 120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.i是虚数单位,复数=(  )
A.2+i         B.2-i
C.-2+i D.-2-i
解析:选B ===2-i.
2.(全国卷Ⅱ)若a为实数,且(2+ai)(a-2i)=-4i,则a=(  )
A.-1 B.0
C.1 D.2
解析:选B ∵(2+ai)(a-2i)=-4i,
∴4a+(a2-4)i=-4i.
∴解得a=0.故选B.
3.若复数z满足=i,其中i是虚数单位,则z=(  )
A.1-i B.1+i
C.-1-i D.-1+i
解析:选A =(1-i)i=-i2+i=1+i,z=1-i,故选A.
4.设i是虚数单位,则复数在复平面内所对应的点位于(  )
A.第一象限        B.第二象限
C.第三象限 D.第四象限
解析:选B ===-1+i,由复数的几何意义知-1+i在复平面内的对应点为(-1,1),该点位于第二象限,故选B.
5.已知=1+i(i为虚数单位),则复数z=(  )
A.1+i          B.1-i
C.-1+i D.-1-i
解析:选D 由=1+i,得z====-1-i,故选D.
6.设复数z=-1-i(i为虚数单位),z的共轭复数是,则等于(  )
A.-1-2i B.-2+i
C.-1+2i D.1+2i
解析:选C 由题意可得=
==-1+2i,故选C.
7.已知复数z=-+i,则+|z|=(  )
A.--i B.-+i
C.+i D.-i
解析:选D 因为z=-+i,所以+|z|=--i+ =-i.
8.已知复数z满足(1-i)z=i2 016(其中i为虚数单位),则的虚部为(  )
A. B.-
C.i D.-i
解析:选B ∵2 016=4×504,∴i2 016=i4=1.∴z==+i,∴=-i,∴的虚部为-.故选B.
9.A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是(  )
A.等腰三角形 B.直角三角形
C.等边三角形 D.等腰直角三角形
解析:选B 根据复数加(减)法的几何意义,知以,为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB为直角三角形.
10.设z=(2t2+5t-3)+(t2+2t+2)i,t∈R,则以下结论正确的是(  )
A.z对应的点在第一象限
B.z一定不为纯虚数
C.对应的点在实轴的下方
D.z一定为实数
解析:选C ∵t2+2t+2=(t+1)2+1>0,∴z对应的点在实轴的上方.又∵z与对应的点关于实轴对称.
∴C项正确.
11.设z的共轭复数为,若z+=4,z·=8,则等于(  )
A.1 B.-i
C.±1 D.±i
解析:选D 设z=a+bi(a,b∈R),则=a-bi,由条件可得解得因此或所以=====-i,或=====i,所以=±i.
12.已知复数z=(x-2)+yi(x,y∈R)在复平面内对应的向量的模为,则的最大值是(  )
A. B.
C. D.
解析:选D 因为|(x-2)+yi|=,所以(x-2)2+y2=3,所以点(x,y)在以C(2,0)为圆心,以为半径的圆上,如图,由平面几何知识-≤≤.
二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上)
13.已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.
解析:复数z=(5+2i)2=21+20i,其实部是21.
答案:21
14.i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.
解析:由(1-2i)(a+i)=(a+2)+(1-2a)i是纯虚数可得a+2=0,1-2a≠0,解得a=-2.
答案:-2
15.设复数a+bi(a,b∈R)的模为,则(a+bi)(a-bi)=________.
解析:∵|a+bi|==,
∴(a+bi)(a-bi)=a2+b2=3.
答案:3
16.若关于x的方程x2+(2-i)x+(2m-4)i=0有实数根,则纯虚数m=________.
解析:设m=bi(b∈R且b≠0),则x2+(2-i)x+(2bi-4)i=0,化简得(x2+2x-2b)+(-x-4)i=0,即解得∴m=4i.
答案:4i
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)设复数z=lg(m2-2m-2)+(m2+3m+2)i(m∈R),试求m取何值时?
(1)z是实数.
(2)z是纯虚数.
(3)z对应的点位于复平面的第一象限.
解:(1)由m2+3m+2=0且m2-2m-2>0,解得m=-1或m=-2,复数表示实数.
(2)当实部等于零且虚部不等于零时,复数表示纯虚数.
由lg(m2-2m-2)=0,且m2+3m+2≠0,
求得m=3,故当m=3时,复数z为纯虚数.
(3)由lg(m2-2m-2)>0,且m2+3m+2>0,解得m<-2或m>3,故当m<-2或m>3时,复数z对应的点位于复平面的第一象限.
18.(本小题满分12分)已知(1+2i)=4+3i,求z及.
解:设z=a+bi(a,b∈R),则=a-bi.
∴(1+2i)(a-bi)=4+3i,
∴(a+2b)+(2a-b)i=4+3i.
由复数相等,解得
解得
∴z=2+i.
∴====+i.
19.(本小题满分12分)已知z=1+i,a,b为实数.
(1)若ω=z2+3-4,求|ω|;
(2)若=1-i,求a,b的值.
解:(1)ω=(1+i)2+3(1-i)-4=-1-i,
所以|ω|=.
(2)由条件,得=1-i,
所以(a+b)+(a+2)i=1+i,
所以解得
20.(本小题满分12分)虚数z满足|z|=1,z2+2z+<0,求z.
解:设z=x+yi(x,y∈R,y≠0),∴x2+y2=1.
则z2+2z+=(x+yi)2+2(x+yi)+
=(x2-y2+3x)+y(2x+1)i.
∵y≠0,z2+2z+<0,

又x2+y2=1.    ③
由①②③得
∴z=-±i.
21.(本小题满分12分)已知复数z满足|z|=,z2的虚部是2.
(1)求复数z;
(2)设z,z2,z-z2在复平面上的对应点分别为A,B,C,求△ABC的面积.
解:(1)设z=a+bi(a,b∈R),则z2=a2-b2+2abi,由题意得a2+b2=2且2ab=2,解得a=b=1或a=b=-1,所以z=1+i或z=-1-i.
(2)当z=1+i时,z2=2i,z-z2=1-i,所以A(1,1),B(0,2),C(1,-1),所以S△ABC=1.
当z=-1-i时,z2=2i,z-z2=-1-3i,
所以A(-1,-1),B(0,2),C(-1,-3),
所以S△ABC=1.
22.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.
解:∵(z1-2)(1+i)=1-i,
∴z1-2====-i,
∴z1=2-i.
设z2=a+2i(a∈R),
则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.
又∵z1·z2∈R,∴a=4.∴z2=4+2i.3.1.1 数系的扩充和复数的概念
预习课本P102~103,思考并完成下列问题
(1)实数系经过扩充后得到的新数集是什么?复数集如何分类?
 
 
(2)复数能否比较大小?复数相等的充要条件是什么?纯虚数、虚数、实数、复数关系如何?
 
 
 
 
[新知初探]
1.复数的有关概念
我们把集合C=中的数,即形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位.
全体复数所成的集合C叫做复数集.
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式.
对于复数z=a+bi,以后不作特殊说明都有a,b∈R,其中的a与b分别叫做复数z的实部与虚部.
[点睛] 复数概念的三点说明
(1)复数集是最大的数集,任何一个数都可以写成a+bi(a,b∈R)的形式,其中0=0+0i.
(2)复数的虚部是实数b而非bi.
(3)复数z=a+bi只有在a,b∈R时才是复数的代数形式,否则不是代数形式.
2.复数相等
在复数集C=中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等的充要条件是a=c且b=d.
3.复数的分类
对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数.这样,复数z=a+bi可以分类如下:
复数z
[点睛] 复数集、实数集、虚数集、纯虚数集之间的关系
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)若a,b为实数,则z=a+bi为虚数.(  )
(2)若a为实数,则z=a一定不是虚数.(  )
(3)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.(  )
答案:(1)× (2)√ (3)√
2.(1+)i的实部与虚部分别是(  )
A.1,          B.1+,0
C.0,1+ D.0,(1+)i
答案:C
3.复数z=(m2-1)+(m-1)i(m∈R)是纯虚数,则有(  )
A.m=±1 B.m=-1
C.m=1 D.m≠1
答案:B
复数的概念及分类
[典例] 实数x分别取什么值时,复数z=+(x2-2x-15)i是(1)实数?(2)虚数?(3)纯虚数?
[解] (1)当x满足
即x=5时,z是实数.
(2)当x满足
即x≠-3且x≠5时,z是虚数.
(3)当x满足
即x=-2或x=3时,z是纯虚数.
复数分类的关键
(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z=a+bi(a,b∈R)时应先转化形式.
(2)注意分清复数分类中的条件
设复数z=a+bi(a,b∈R),则①z为实数 b=0,②z为虚数 b≠0,③z为纯虚数 a=0,b≠0.④z=0 a=0,且b=0.    
[活学活用]
当m为何值时,复数z=m2(1+i)-m(3+i)-6i,m∈R,是实数?是虚数?是纯虚数?
解:∵z=(m2-3m)+(m2-m-6)i,
∴(1)当m满足m2-m-6=0,即m=-2或m=3时,z为实数.
(2)当m满足m2-m-6≠0,即m≠-2且m≠3时,z为虚数.
(3)当m满足
即m=0时,z为纯虚数.
复数相等
[典例] 已知关于x的方程x2+(1-2i)x+(3m-i)=0有实数根,则实数m的值为________,方程的实根x为________.
[解析] 设a是原方程的实根,
则a2+(1-2i)a+(3m-i)=0,
即(a2+a+3m)-(2a+1)i=0+0i,
所以a2+a+3m=0且2a+1=0,
所以a=-且2-+3m=0,
所以m=.
[答案]  -
[一题多变]
1.[变条件]若将本例中的方程改为:x2+mx+2xi=-1-mi如何求解?
解:设实根为x0,代入方程,由复数相等定义,得
解得或
因此,当m=-2时,原方程的实根为x=1,当m=2时,原方程的实根为x=-1.
2.[变条件]若将本例中的方程改为:3x2-x-1=(10-x-2x2)i,如何求解?
解:设方程实根为x0,则原方程可变为3x-x0-1=(10-x0-2x)i,由复数相等定义,得:
解得或
因此,当m=11时,原方程的实根为x=2;
当m=-时,原方程的实根为x=-.
复数相等问题的解题技巧
(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.
(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.
(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.
层级一 学业水平达标
1.以3i-的虚部为实部,以3i2+i的实部为虚部的复数是(  )
A.3-3i         B.3+i
C.-+i D.+i
解析:选A 3i-的虚部为3,3i2+i=-3+i的实部为-3,故选A.
2.4-3a-a2i=a2+4ai,则实数a的值为(  )
A.1 B.1或-4
C.-4 D.0或-4
解析:选C 由题意知解得a=-4.
3.下列命题中:①若x,y∈C,则x+yi=1+i的充要条件是x=y=1;②纯虚数集相对于复数集的补集是虚数集;③若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;④若实数a与ai对应,则实数集与复数集一一对应.正确的命题的个数是(  )
A.0 B.1
C.2 D.3
解析:选A ①取x=i,y=-i,则x+yi=1+i,但不满足x=y=1,故①错; ②③错;对于④,a=0时,ai=0,④错,故选A.
4.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是(  )
A.|a|=|b| B.a<0且a=-b
C.a>0且a≠b D.a≤0
解析:选D 复数z为实数的充要条件是a+|a|=0,故a≤0.
5.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为(  )
A. B.或π
C.2kπ+(k∈Z) D.kπ+(k∈Z)
解析:选D 由复数相等定义得
∴tan θ=1,∴θ=kπ+(k∈Z),故选D.
6.下列命题中:①若a∈R,则ai为纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③两个虚数不能比较大小;④x+yi的实部、虚部分别为x,y.其中正确命题的序号是________.
解析:①当a=0时,0i=0,故①不正确;②虚数不能比较大小,故②不正确;③正确;④x+yi中未标注x,y∈R,故若x,y为复数,则x+yi的实部、虚部未必是x,y.
答案:③
7.如果(m2-1)+(m2-2m)i>1则实数m的值为______.
解析:由题意得解得m=2.
答案:2
8.已知z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=________,n=________.
解析:由复数相等的充要条件有

答案:2 ±2
9.设复数z=log2(m2-3m-3)+log2(3-m)i,m∈R,如果z是纯虚数,求m的值.
解:由题意得解得m=-1.
10.求适合等式(2x-1)+i=y+(y-3)i的x,y的值.其中x∈R,y是纯虚数.
解:设y=bi(b∈R且b≠0),代入等式得(2x-1)+i=bi+(bi-3)i,
即(2x-1)+i=-b+(b-3)i,

解得
即x=-,y=4i.
层级二 应试能力达标
1.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则(  )
A.a=-1        B.a≠-1且a≠2
C.a≠-1 D.a≠2
解析:选C 若复数(a2-a-2)+(|a-1|-1)i不是纯虚数,则有a2-a-2≠0或|a-1|-1=0,解得a≠-1.故应选C.
2.已知集合M={1,(m2-3m-1)+(m2-5m-6)i},N={1,3},M∩N={1,3},则实数m的值为(  )
A.4 B.-1
C.4或-1 D.1或6
解析:选B 由题意知∴m=-1.
3.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实数根n,且z=m+ni,则复数z等于(  )
A.3+i B.3-i
C.-3-i D.-3+i
解析:选B 由题意知n2+(m+2i)n+2+2i=0,
即解得
∴z=3-i,故应选B.
4.若复数z1=sin 2θ+icos θ,z2=cos θ+isin θ (θ∈R),z1=z2,则θ等于(  )
A.kπ(k∈Z) B.2kπ+(k∈Z)
C.2kπ±(k∈Z) D.2kπ+(k∈Z)
解析:选D 由复数相等的定义可知,
∴cos θ=,sin θ=.∴θ=+2kπ,k∈Z,故选D.
5.已知z1=(-4a+1)+(2a2+3a)i,z2=2a+(a2+a)i,其中a∈R.若z1>z2,则a的取值集合为________.
解析:∵z1>z2,∴
∴a=0,故所求a的取值集合为{0}.
答案:{0}
6.若a-2i=bi+1(a,b∈R),则b+ai=________.
解析:根据复数相等的充要条件,得
∴b+ai=-2+i.
答案:-2+i
7.定义运算=ad-bc,如果(x+y)+(x+3)i=,求实数x,y的值.
解:由定义运算=ad-bc,
得=3x+2y+yi,
故有(x+y)+(x+3)i=3x+2y+yi.
因为x,y为实数,所以有

得x=-1,y=2.
8.已知集合M={(a+3)+(b2-1)i,8},集合N={3i,(a2-1)+(b+2)i}满足M∩N M,求实数a,b的值.
解:依题意,得(a+3)+(b2-1)i=3i,①
或8=(a2-1)+(b+2)i.②
由①,得a=-3,b=±2,
由②,得a=±3,b=-2.
综上,a=-3,b=2,或a=-3,b=-2或a=3,b=-2.3.1.2 复数的几何意义
预习课本P104~105,思考并完成下列问题
(1)复平面是如何定义的,复数的模如何求出?
  
 
 
(2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数?
 
 
    
1.复平面
2.复数的几何意义
(1)复数z=a+bi(a,b∈R) 复平面内的点Z(a,b)
(2)复数z=a+bi(a,b∈R) 平面向量.
3.复数的模
(1)定义:向量OZ的模r叫做复数z=a+bi(a,b∈R)的模.
(2)记法:复数z=a+bi的模记为|z|或|a+bi|.
(3)公式:|z|=|a+bi|=r=(r≥0,r∈R).
[点睛] 实轴、虚轴上的点与复数的对应关系
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0,表示的是实数.
1.判断(正确的打“√”,错误的打“×”)
(1)在复平面内,对应于实数的点都在实轴上.(  )
(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.(  )
(3)复数的模一定是正实数.(  )
答案:(1)√ (2)× (3)×
2.已知复数z=i,复平面内对应点Z的坐标为(  )
A.(0,1)  B.(1,0)  C.(0,0)  D.(1,1)
答案:A
3.向量a=(1,-2)所对应的复数是(  )
A.z=1+2i B.z=1-2i
C.z=-1+2i D.z=-2+i
答案:B
4.已知复数z的实部为-1,虚部为2,则|z|=________.
答案:
复数与点的对应关系
[典例] 求实数a分别取何值时,复数z=+(a2-2a-15)i(a∈R)对应的点Z满足下列条件:
(1)在复平面的第二象限内.
(2)在复平面内的x轴上方.
[解] (1)点Z在复平面的第二象限内,

解得a<-3.
(2)点Z在x轴上方,

即(a+3)(a-5)>0,解得a>5或a<-3.
[一题多变]
1.[变设问]本例中题设条件不变,求复数z表示的点在x轴上时,实数a的值.
解:点Z在x轴上,所以a2-2a-15=0且a+3≠0,
所以a=5.
故a=5时,点Z在x轴上.
2.[变设问]本例中条件不变,如果点Z在直线x+y+7=0上,求实数a的值.
解:因为点Z在直线x+y+7=0上,
所以+a2-2a-15+7=0,
即a3+2a2-15a-30=0,
所以(a+2)(a2-15)=0,故a=-2或a=±.
所以a=-2或a=±时,点Z在直线x+y+7=0上.
利用复数与点的对应解题的步骤
(1)找对应关系:复数的几何表示法即复数z=a+bi(a,b∈R)可以用复平面内的点Z(a,b)来表示,是解决此类问题的根据.
(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.    
复数的模
[典例] (1)若复数z对应的点在直线y=2x上,且|z|=,则复数z=(  )
A.1+2i          B.-1-2i
C.±1±2i D.1+2i或-1-2i
(2)设复数z1=a+2i,z2=-2+i,且|z1|<|z2|,则实数a的取值范围是(  )
A.(-∞,-1)∪(1,+∞) B.(-1,1)
C.(1,+∞) D.(0,+∞)
[解析] (1)依题意可设复数z=a+2ai(a∈R),
由|z|=得 =,
解得a=±1,故z=1+2i或z=-1-2i.
(2)因为|z1|= ,|z2|==,
所以<,即a2+4<5,所以a2<1,
即-1<a<1.
[答案] (1)D (2)B
复数模的计算
(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.
(2)设出复数的代数形式,利用模的定义转化为实数问题求解.
[活学活用]
1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值范围是(  )
A.(-2,2) B.(-2,2)
C.(-1,1) D.(-,)
解析:选D 因为|z|<2,所以<2,则1+a2<4,a2<3,解得-<a<.
2.求复数z1=6+8i与z2=--i的模,并比较它们的模的大小.
解:∵z1=6+8i,z2=--i,
∴|z1|==10,
|z2|= =.
∵10>,∴|z1|>|z2|.
复数与复平面内向量的关系
[典例] 向量对应的复数是5-4i,向量对应的复数是-5+4i,则+对应的复数是(  )
A.-10+8i B.10-8i
C.0 D.10+8i
[解析] 因为向量对应的复数是5-4i,向量对应的复数是-5+4i,所以=(-5, 4), =(5, -4),所以=(5,-4)+(-5,4)=(0,0),所以+对应的复数是0.
[答案] C
(1)以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.
(2)复数的模从几何意义上来讲,表示复数对应的点到原点的距离,类比向量的模,可以进一步引申|z-z1|表示点Z到点Z1之间的距离.如|z-i|=1表示点Z到点(0,1)之间的距离为1. 
[活学活用]
在复平面内画出下列复数对应的向量,并求出各复数的模.
z1=1-i;z2=-+i;z3=-2;z4=2+2i.
解:在复平面内分别画出点Z1(1,-1),Z2-,,
Z3(-2,0),Z4(2,2),则向量,, ,分别为复数z1,z2,z3,z4对应的向量,如图所示.
各复数的模分别为:|z1|==;
|z2|= =1;
|z3|==2;|z4|==2.
层级一 学业水平达标
1.与x轴同方向的单位向量e1与y轴同方向的单位向量e2,它们对应的复数分别是(  )
A.e1对应实数1,e2对应虚数i
B.e1对应虚数i,e2对应虚数i
C.e1对应实数1,e2对应虚数-i
D.e1对应实数1或-1,e2对应虚数i或-i
解析:选A e1=(1,0),e2=(0,1).
2.当<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于(  )
A.第一象限       B.第二象限
C.第三象限 D.第四象限
解析:选D ∵<m<1,∴3m-2>0,m-1<0,∴点(3m-2,m-1)在第四象限.
3.已知0<a<2,复数z=a+i(i是虚数单位),则|z|的取值范围是(  )
A.(1,) B.(1,)
C.(1,3) D.(1,5)
解析:选B |z|=,∵0<a<2,∴1<a2+1<5,∴|z|∈(1,).
5.复数z=1+cos α+isin α(π<α<2π)的模为(  )
A.2cos B.-2cos
C.2sin D.-2sin
解析:选B |z|====2|cos|.∵π<α<2π,∴<<π,cos<0,于是|z|=-2cos.
6.复数3-5i,1-i和-2+ai在复平面上对应的点在同一条直线上,则实数a的值为________.
解析:由点(3,-5),(1,-1),(-2,a)共线可知a=5.
答案:5
7.过原点和-i对应点的直线的倾斜角是________.
解析:∵-i在复平面上的对应点是(,-1),
∴tan α==-(0≤α<π),∴α=.
答案:
9.设z为纯虚数,且|z-1|=|-1+i|,求复数z.
解:∵z为纯虚数,∴设z=ai(a∈R且a≠0),
又|-1+i|=,由|z-1|=|-1+i|,
得 =,解得a=±1,∴z=±i.
10.已知复数z=m(m-1)+(m2+2m-3)i(m∈R).
(1)若z是实数,求m的值;
(2)若z是纯虚数,求m的值;
(3)若在复平面内,z所对应的点在第四象限,求m的取值范围.
解:(1)∵z为实数,∴m2+2m-3=0,
解得m=-3或m=1.
(2)∵z为纯虚数,
∴ 解得m=0.
(3)∵z所对应的点在第四象限,
∴ 解得-3<m<0.
故m的取值范围为(-3,0).
层级二 应试能力达标
1.已知复数z1=2-ai(a∈R)对应的点在直线x-3y+4=0上,则复数z2=a+2i对应的点在(  )
A.第一象限       B.第二象限
C.第三象限 D.第四象限
解析:选B 复数z1=2-ai对应的点为(2,-a),它在直线x-3y+4=0上,故2+3a+4=0,解得a=-2,于是复数z2=-2+2i,它对应点的点在第二象限,故选B.
2.复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,则(  )
A.a≠2或a≠1 B.a≠2且a≠1
C.a=0 D.a=2或a=0
解析:选D ∵z在复平面内对应的点在虚轴上,
∴a2-2a=0,解得a=2或a=0.
3.若x,y∈R,i为虚数单位,且x+y+(x-y)i=3-i,则复数x+yi在复平面内所对应的点在(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选A ∵x+y+(x-y)i=3-i,∴
解得∴复数1+2i所对应的点在第一象限.
4.在复平面内,复数z1,z2对应点分别为A,B.已知A(1,2),|AB|=2,|z2|=,则z2=(  )
A.4+5i B.5+4i
C.3+4i D.5+4i或+i
解析:选D 设z2=x+yi(x,y∈R),由条件得, ∴ 或
故选D.
5.若复数z=(m2-9)+(m2+2m-3)i是纯虚数,其中m∈R,则|z|=________.
解析:由条件知∴m=3,∴z=12i,∴|z|=12.
答案:12
6.已知复数z=x-2+yi的模是2,则点(x,y)的轨迹方程是________.
解析:由模的计算公式得 =2,
∴(x-2)2+y2=8.
答案:(x-2)2+y2=8
7.已知复数z0=a+bi(a,b∈R),z=(a+3)+(b-2)i,若|z0|=2,求复数z对应点的轨迹.
解:设z=x+yi(x,y∈R),则复数z的对应点为P(x,y),由题意知
∴  ①
∵z0=a+bi,|z0|=2,∴a2+b2=4.
将①代入得(x-3)2+(y+2)2=4.
∴点P的轨迹是以(3,-2)为圆心,2为半径的圆.
8.已知复数z1=+i,z2=-+i.
(1)求|z1|及|z2|并比较大小;
(2)设z∈C,满足条件|z2|≤|z|≤|z1|的点Z的轨迹是什么图形?
解:(1)|z1|= =2,
|z2|= =1,∴|z1|>|z2|.
(2)由|z2|≤|z|≤|z1|及(1)知1≤|z|≤2.
因为|z|的几何意义就是复数z对应的点到原点的距离,所以|z|≥1表示|z|=1所表示的圆外部所有点组成的集合,|z|≤2表示|z|=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.3.2.1 复数代数形式的加、减运算及其几何意义
预习课本P107~108,思考并完成下列问题
(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?
 
  
(2)复数的加、减法与向量间的加减运算是否相同?
 
 
 
    
1.复数的加、减法法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),
则z1+z2=(a+c)+(b+d)i,
z1-z2=(a-c)+(b-d)i.
2.复数加法运算律
设z1,z2,z3∈C,有z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
3.复数加、减法的几何意义
设复数z1,z2对应的向量为,,则复数z1+z2是以,为邻边的平行四边形的对角线 所对应的复数,z1-z2是连接向量与的终点并指向的向量所对应的复数.
[点睛] 对复数加、减法几何意义的理解
它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.
1.判断(正确的打“√”,错误的打“×”)
(1)复数与向量一一对应.(  )
(2)复数与复数相加减后结果只能是实数.(  )
(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.(  )
答案:(1)× (2)× (3)×
2.已知复数z1=3+4i,z2=3-4i,则z1+z2等于(  )
A.8i          B.6
C.6+8i D.6-8i
答案:B
3.已知复数z满足z+i-3=3-i,则z等于(  )
A.0 B.2i
C.6 D.6-2i
答案:D
4.在复平面内,复数1+i与1+3i分别对应向量和,其中O为坐标原点,则||等于(  )
A. B.2
C. D.4
答案:B
复数代数形式的加、减运算
[典例] (1)计算:(2-3i)+(-4+2i)=________.
(2)已知z1=(3x-4y)+(y-2x)i,z2=(-2x+y)+(x-3y)i,x,y为实数,若z1-z2=5-3i,则|z1+z2|=________.
[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i=-2-i.
(2)z1-z2=[(3x-4y)+(y-2x)i]-[(-2x+y)+(x-3y)i]=[(3x-4y)-(-2x+y)]+[(y-2x)-(x-3y)]i=(5x-5y)+(-3x+4y)i=5-3i,
所以解得x=1,y=0,
所以z1=3-2i,z2=-2+i,则z1+z2=1-i,
所以|z1+z2|=.
[答案] (1)-2-i (2)
复数代数形式的加、减法运算技巧
(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.
(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.
(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算.     
[活学活用]
已知复数z1=a2-3-i,z2=-2a+a2i,若z1+z2是纯虚数,则实数a=________.
解析:由条件知z1+z2=a2-2a-3+(a2-1)i,又z1+z2是纯虚数,所以解得a=3.
答案:3
复数加减运算的几何意义
[典例] 如图所示,平行四边形OABC的顶点O,A,C分别表示0,3+2i,-2+4i.求:
(1) 表示的复数;
(2)对角线表示的复数;
(3)对角线表示的复数.
[解] (1)因为=,所以表示的复数为-3-2i.
(2)因为=-,所以对角线表示的复数为(3+2i)-(-2+4i)=5-2i.
(3)因为对角线=+,所以对角线表示的复数为(3+2i)+(-2+4i)=1+6i.
复数与向量的对应关系的两个关注点
(1)复数z=a+bi(a,b∈R)是与以原点为起点,Z(a,b)为终点的向量一一对应的.
(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.
[活学活用]
 复平面内三点A,B,C,A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i,求点C对应的复数.
解:∵对应的复数为1+2i,对应的复数为3-i.
∴=-对应的复数为(3-i)-(1+2i)=2-3i.
又∵=+,
∴C点对应的复数为(2+i)+(2-3i)=4-2i.
复数模的最值问题
[典例] (1)如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是(  )
A.1          B.
C.2 D.
(2)若复数z满足|z++i|≤1,求|z|的最大值和最小值.
[解析] (1)设复数-i,i,-1-i在复平面内对应的点分别为Z1,Z2,Z3,
因为|z+i|+|z-i|=2,
|Z1Z2|=2,所以点Z的集合为线段Z1Z2.
问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3|的最小值,因为|Z1Z3|=1.
所以|z+i+1|min=1.
[答案] A
(2)解:如图所示, ||==2.
所以|z|max=2+1=3,|z|min=2-1=1.
[一题多变]
1.[变条件、变设问]若本例题(2)条件改为已知|z|=1且z∈C,求|z-2-2i|(i为虚数单位)的最小值.
解:因为|z|=1且z∈C,作图如图:
所以|z-2-2i|的几何意义为单位圆上的点M到复平面上的点P(2,2)的距离,所以|z-2-2i|的最小值为|OP|-1=2-1.
2.[变条件]若题(2)中条件不变,求|z-|2+|z-2i|2的最大值和最小值.
解:如图所示,在圆面上任取一点P,与复数zA=,zB=2i对应点A,B相连,得向量,,再以,为邻边作平行四边形.
P为圆面上任一点,zP=z,
则2||2+2||2=||2+(2||)2=7+4||2,(平行四边形四条边的平方和等于对角线的平方和),
所以|z-|2+|z-2i|2=.
而max=|O′M|+1=1+,
min=|O′M|-1=-1.
所以|z-|2+|z-2i|2的最大值为27+2,最小值为27-2.
层级一 学业水平达标
1.已知z=11-20i,则1-2i-z等于(  )
A.z-1         B.z+1
C.-10+18i D.10-18i
解析:选C 1-2i-z=1-2i-(11-20i)=-10+18i.
2.若复数z满足z+(3-4i)=1,则z的虚部是(  )
A.-2 B.4
C.3 D.-4
解析:选B z=1-(3-4i)=-2+4i,故选B.
3.已知z1=2+i,z2=1+2i,则复数z=z2-z1对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:选B z=z2-z1=(1+2i)-(2+i)=-1+i,实部小于零,虚部大于零,故位于第二象限.
4.若z1=2+i,z2=3+ai(a∈R),且z1+z2所对应的点在实轴上,则a的值为(  )
A.3 B.2
C.1 D.-1
解析:选D z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+a)i.∵z1+z2所对应的点在实轴上,∴1+a=0,∴a=-1.
5.设向量,,对应的复数分别为z1,z2,z3,那么(  )
A.z1+z2+z3=0 B.z1-z2-z3=0
C.z1-z2+z3=0 D.z1+z2-z3=0
解析:选D ∵+=,∴z1+z2=z3,即z1+z2-z3=0.
6.已知x∈R,y∈R,(xi+x)+(yi+4)=(y-i)-(1-3xi),则x=__________,y=__________.
解析:x+4+(x+y)i=(y-1)+(3x-1)i
∴解得
答案:6 11
7.计算|(3-i)+(-1+2i)-(-1-3i)|=________.
解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|= =5.
答案:5
8.已知z1=a+(a+1)i,z2=-3b+(b+2)i(a,b∈R),若z1-z2=4,则a+b=________.
解析:∵z1-z2=a+(a+1)i-[-3b+(b+2)i]=+(a-b-1)i=4,
由复数相等的条件知
解得∴a+b=3.
答案:3
9.计算下列各式.
(1)(3-2i)-(10-5i)+(2+17i);
(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).
解:(1)原式=(3-10+2)+(-2+5+17)i=-5+20i.
(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i=1 008-1 009i.
10.设z1=x+2i,z2=3-yi(x,y∈R),且z1+z2=5-6i,求z1-z2.
解:∵z1=x+2i,z2=3-yi,
∴z1+z2=x+3+(2-y)i=5-6i,
∴解得
∴z1=2+2i,z2=3-8i,
∴z1-z2=(2+2i)-(3-8i)=-1+10i.
层级二 应试能力达标
1.设z∈C,且|z+1|-|z-i|=0,则|z+i|的最小值为(  )
A.0          B.1
C. D.
解析:选C 由|z+1|=|z-i|知,在复平面内,复数z对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y=-x,而|z+i|表示直线y=-x上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y=-x的距离即为.
2.复平面内两点Z1和Z2分别对应于复数3+4i和5-2i,那么向量对应的复数为(  )
A.3+4i B.5-2i
C.-2+6i D.2-6i
解析:选D =-,即终点的复数减去起点的复数,∴(5-2i)-(3+4i)=2-6i.
3.△ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的(  )
A.外心 B.内心
C.重心 D.垂心
解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z的对应点P到△ABC的顶点A,B,C距离相等,∴P为△ABC的外心.
4.在平行四边形ABCD中,对角线AC与BD相交于点O,若向量,对应的复数分别是3+i,-1+3i,则对应的复数是(  )
A.2+4i B.-2+4i
C.-4+2i D.4-2i
解析:选D 依题意有==-.而(3+i)-(-1+3i)=4-2i,故对应的复数为4-2i,故选D.
5.设复数z满足z+|z|=2+i,则z=________.
解析:设z=x+yi(x,y∈R),则|z|= .
∴x+yi+=2+i.
∴解得∴z=+i.
答案:+i
6.在复平面内,O是原点,,,对应的复数分别为-2+i,3+2i,1+5i,那么对应的复数为________.
解析:=-=-(+)=3+2i-(-2+i+1+5i)=(3+2-1)+(2-1-5)i=4-4i.
答案:4-4i
7.在复平面内,A,B,C三点对应的复数分别为1,2+i,-1+2i.
(1)求向量,,对应的复数;
(2)判断△ABC的形状.
(3)求△ABC的面积.
解:(1)对应的复数为2+i-1=1+i,
对应的复数为-1+2i-(2+i)=-3+i,
对应的复数为-1+2i-1=-2+2i.
(2)∵||=,||=,||==2,
∴||2+||2=||2,∴△ABC为直角三角形.
(3)S△ABC=××2=2.
8.设z=a+bi(a,b∈R),且4(a+bi)+2(a-bi)=3+i,又ω=sin θ-icos θ,求z的值和|z-ω|的取值范围.
解:∵4(a+bi)+2(a-bi)=3+i,∴6a+2bi=3+i,
∴∴∴z=+i,
∴z-ω=-(sin θ-icos θ)
=+i
∴|z-ω|=

= = ,
∵-1≤sin≤1,
∴0≤2-2sin≤4,∴0≤|z-ω|≤2,
故所求得z=+i,|z-ω|的取值范围是[0,2]. 合情推理与演绎推理
2.1.1 合情推理
 预习课本P70~77,思考并完成下列问题
(1)归纳推理的含义是什么?有怎样的特征?
 
 
(2)类比推理的含义是什么?有怎样的特征?
(3)合情推理的含义是什么?
 
 
1.归纳推理和类比推理
[点睛] (1)归纳推理与类比推理的共同点:都是从具体事实出发,推断猜想新的结论.
(2)归纳推理的前提和结论之间的联系不是必然的,结论不一定正确;而类比推理的结果具有猜测性,不一定可靠,因此不一定正确.
2.合情推理
1.判断(正确的打“√”,错误的打“×”)
(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理.(  )
(2)类比推理得到的结论可以作为定理应用.(  )
(3)由个别到一般的推理为归纳推理.(  )
答案:(1)√ (2)× (3)√
2.由“若a>b,则a+c>b+c”得到“若a>b,则ac>bc”采用的是(  )
A.归纳推理       B.演绎推理
C.类比推理 D.数学证明
答案:C
3.数列5,9,17,33,x,…中的x等于________.
答案:65
归纳推理在数、式中的应用
[典例] (1)观察下列各式:
a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=(  )
A.28        B.76
C.123 D.199
(2)已知f(x)=,设f1(x)=f(x),fn(x)=fn-1(fn-1(x))(n>1,且n∈N*),则f3(x)的表达式为________,猜想fn(x)(n∈N*)的表达式为________.
[解析] (1)利用归纳法:a+b=1,a2+b2=3,a3+b3=3+1=4,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.
(2)∵f(x)=,∴f1(x)=.
又∵fn(x)=fn-1(fn-1(x)),
∴f2(x)=f1(f1(x))==,
f3(x)=f2(f2(x))==,
f4(x)=f3(f3(x))==,
f5(x)=f4(f4(x))==,
∴根据前几项可以猜想fn(x)=.
[答案] (1)C (2)f3(x)= fn(x)=
1.已知等式或不等式进行归纳推理的方法
(1)要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;
(2)要特别注意所给几个等式(或不等式)中结构形式的特征;
(3)提炼出等式(或不等式)的综合特点;
(4)运用归纳推理得出一般结论.
2.数列中的归纳推理
在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.
(1)通过已知条件求出数列的前几项或前n项和;
(2)根据数列中的前几项或前n项和与对应序号之间的关系求解;
(3)运用归纳推理写出数列的通项公式或前n项和公式.    
  [活学活用]
1.观察下列等式:
-2+-2=×1×2;
-2+-2+-2+-2=×2×3;
-2+-2+-2+…+-2=×3×4;
-2+-2+-2+…+-2=×4×5;
……
照此规律,
-2+-2+-2+…+-2=________.
解析:通过观察已给出等式的特点,可知等式右边的是个固定数,后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,后面第二个数是第一个数的下一个自然数,所以,所求结果为×n×(n+1),即n(n+1).
答案:n(n+1)
2.已知数列{an}的前n项和为Sn,a1=3,满足Sn=6-2an+1(n∈N*).
(1)求a2,a3,a4的值.
(2)猜想an的表达式.
解:(1)因为a1=3,且Sn=6-2an+1(n∈N*),
所以S1=6-2a2=a1=3,解得a2=,
又S2=6-2a3=a1+a2=3+,解得a3=,
又S3=6-2a4=a1+a2+a3=3++,
解得a4=.
(2)由(1)知a1=3=,a2==,a3==,
a4==,…,猜想an=(n∈N*).
归纳推理在几何中的应用
[典例] 有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是(  )
A.26 B.31
C.32 D.36
[解析] 有菱形纹的正六边形个数如下表:
图案 1 2 3 …
个数 6 11 16 …
由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.
[答案] B
利用归纳推理解决几何问题的两个策略
(1)通项公式法:数清所给图形中研究对象的个数,列成数列,观察所得数列的前几项,探讨其变化规律,归纳猜想通项公式.
(2)递推公式法:探究后一个图形与前一个图形中研究对象的个数之间的关系,把各图形中研究对象的个数看成数列,列出递推公式,再求通项公式.     
[活学活用]
1.用火柴棒摆“金鱼”,如图所示:
按照上面的规律,第n个“金鱼”图需要火柴棒的根数为(  )
A.6n-2          B.8n-2
C.6n+2 D.8n+2
解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,所以第n个“金鱼”图需要的火柴棒的根数为an=6n+2.
2.(陕西高考)观察分析下表中的数据:
多面体 面数(F) 顶点数(V) 棱数(E)
三棱柱 5 6 9
五棱锥 6 6 10
立方体 6 8 12
猜想一般凸多面体中F,V,E所满足的等式是________.
解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.
答案:F+V-E=2
类比推理的应用
[典例] 如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.
[解] 如图所示,在四面体P ABC中,S1,S2, S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.
我们猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.
1.类比推理的步骤
(1)找出两类对象之间可以确切表述的相似性(或一致性).
(2)用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.
(3)检验这个猜想.
2.平面图形与空间图形类比如下
平面图形 空间图形
点 线
线 面
圆 球
三角形 四面体
线线角 二面角
边长 面积
周长 表面积
面积 体积
… …
    
[活学活用]
1.在△ABC中,D为BC的中点,则=(+),将命题类比到四面体中去,得到一个命题为:______________________________________.
解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.
答案:在四面体A BCD中,G是△BCD的重心,则AG―→=(++)
2.在Rt△ABC中,若∠C=90°,则cos2A+cos2B=1,在空间中,给出四面体性质的猜想.
解:如图,在Rt△ABC中,
cos2A+cos2 B=2+2==1.
于是把结论类比到四面体P A′B′C′中,我们猜想,三棱锥P A′B′C′中,若三个侧面PA′B′,PB′C′,PC′A′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.
层级一 学业水平达标
1.观察图形规律,在其右下角的空格内画上合适的图形为(  )
A.         B.△
C. D.○
解析:选A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.
2.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).
A.①② B.①③④
C.①②④ D.②④
解析:选C ①是类比推理;②④是归纳推理,∴①②④都是合情推理.
3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为(  )
A.1∶2 B.1∶4
C.1∶8 D.1∶16
解析:选C 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.
4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:
①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是(  )
A.①② B.②③
C.③④ D.①④
解析:选B 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论.
5.观察下列各等式:+=2,+=2,+=2,+=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.+=2
B.+=2
C.+=2
D.+=2
解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.
6.观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第n个等式为________.
解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n-1,故第n行等式左边的数依次是n,n+1,n+2,…,(3n-2);每一个等式右边的数为等式左边加数个数的平方,从而第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
答案:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
7.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.
解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.
答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大
8.如图(甲)是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,…,OAn,…的长度构成数列{an},则此数列{an}的通项公式为an=__________.
解析:根据OA1=A1A2=A2A3=…=A7A8=1和图(乙)中的各直角三角形,由勾股定理,可得a1=OA1=1,a2=OA2===,a3=OA3===,…,故可归纳推测出an=.
答案:
9.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n边形有几条对角线?
解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n边形的对角线条数比凸(n-1)边形多(n-2)条对角线,由此凸n边形的对角线条数为2+3+4+5+…+(n-2),由等差数列求和公式可得n(n-3)(n≥4,n∈N*).
所以凸n边形的对角线条数为n(n-3)(n≥4,n∈N*).
10.已知f(x)=,分别求f(0)+f(1) ,f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论.
解:f(x)=,
所以f(0)+f(1)=+=,
f(-1)+f(2)=+=,
f(-2)+f(3)=+=.
归纳猜想一般性结论;f(-x)+f(x+1)=.
证明如下:f(-x)+f(x+1)=+
=+=+
===.
层级二 应试能力达标
1.由代数式的乘法法则类比得到向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt m=x”类比得到“p≠0,a·p=x·p a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
其中类比结论正确的个数是(  )
A.1            B.2
C.3 D.4
解析:选B 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B.
2.类比三角形中的性质:
(1)两边之和大于第三边;
(2)中位线长等于底边长的一半;
(3)三内角平分线交于一点.
可得四面体的对应性质:
(1)任意三个面的面积之和大于第四个面的面积;
(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的;
(3)四面体的六个二面角的平分面交于一点.
其中类比推理方法正确的有(  )
A.(1) B.(1)(2)
C.(1)(2)(3) D.都不对
解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.
3.观察下列式子:1+<,1++<,1+++<,…,根据以上式子可以猜想:1+++…+<(  )
A. B.
C. D.
解析:选C 观察可以发现,第n(n≥2)个不等式左端有n+1项,分子为1,分母依次为12,22,32,…,(n+1)2;右端分母为n+1,分子成等差数列,首项为3,公差为2,因此第n个不等式为1+++…+<,所以当n=2 016时不等式为:1+++…+<.
4.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体P ABC的体积为V,则r=(  )
A. B.
C. D.
解析:选C 将△ABC的三条边长a,b,c类比到四面体P ABC的四个面面积S1,S2,S3,S4,将三角形面积公式中系数,类比到三棱锥体积公式中系数,从而可知选C.证明如下:以四面体各面为底,内切球心O为顶点的各三棱锥体积的和为V,∴V=S1r+S2r+S3r+S4r,∴r=.
5.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为____________.
解析:每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).
答案:S=4(n-1)(n≥2)
6.可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k,那么甲的面积是乙的面积的k倍.你可以从给出的简单图形①、②中体会这个原理.现在图③中的两个曲线的方程分别是+=1(a>b>0)与x2+y2=a2,运用上面的原理,图③中椭圆的面积为______________.
解析:由于椭圆与圆截y轴所得线段之比为,
即k=,∴椭圆面积S=πa2·=πab.
答案:πab
7.观察下列两个等式:
①sin210°+cos240°+sin 10°cos 40°=①;
②sin26°+cos236°+sin 6°cos 36°=②.
由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想.
解:由①②知若两角差为30°,则它们的相关形式的函数运算式的值均为.
猜想:若β-α=30°,则β=30°+α,sin2α+cos2(α+30°)+sin αcos(α+30°)=.下面进行证明:
左边=sin2α+cos(α+30°)[cos(α+30°)+sin α]
=sin2α+
=sin2α+cos2α-sin2α==右边.
所以,猜想是正确的.
故sin2α+cos2(α+30°)+sin αcos(α+30°)=.
8.已知在Rt△ABC中,AB⊥AC,AD⊥BC于点D,有=+成立.那么在四面体A BCD中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.
解:猜想:类比AB⊥AC,AD⊥BC,可以猜想四面体A BCD中,AB,AC,AD两两垂直,AE⊥平面BCD.则=++.
下面证明上述猜想成立
如图所示,连接BE,并延长交CD于点F,连接AF.
∵AB⊥AC,AB⊥AD,
AC∩AD=A,
∴AB⊥平面ACD.
而AF 平面ACD,∴AB⊥AF.
在Rt△ABF中,AE⊥BF,
∴=+.
在Rt△ACD中,AF⊥CD,
∴=+.
∴=++,故猜想正确.2.1.2 演绎推理
预习课本P78~81,思考并完成下列问题
(1)什么是演绎推理?它有什么特点?
 
 
 
(2)什么是三段论?一般模式是什么?
 
 
 
 
(3)合情推理与演绎推理有什么区别与联系?
 
[新知初探]
1.演绎推理
(1)概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
(2)特点:演绎推理是从一般到特殊的推理.
(3)模式:三段论.
2.三段论
“三段论”是演绎推理的一般模式,包括:
“三段论”的结论 ①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断
“三段论”的表示 ①大前提:M是P;②小前提:S是M;③结论:S是P
[点睛] 用集合的观点理解三段论
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)“三段论”就是演绎推理.(  )
(2)演绎推理的结论是一定正确的.(  )
(3)演绎推理是由特殊到一般再到特殊的推理.(  )
答案:(1)× (2)× (3)×
2.平行于同一直线的两直线平行,因为a∥b,b∥c,所以a∥c,这个推理称为(  )
A.合情推理  B.归纳推理 
C.类比推理  D.演绎推理
答案:D
3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理中“三段论”中的__________是错误的.
答案:小前提
把演绎推理写成三段论的形式
[典例] 将下列推理写成“三段论”的形式:
(1)向量是既有大小又有方向的量,故零向量也有大小和方向;
(2)0.33是有理数;
(3)y=sin x(x∈R)是周期函数.
[解] (1)大前提:向量是既有大小又有方向的量.
小前提:零向量是向量.
结论:零向量也有大小和方向.
(2)大前提:所有的循环小数都是有理数.
小前提:0.33是循环小数.
结论:0.33是有理数.
(3)大前提:三角函数是周期函数.
小前提:y=sin x(x∈R)是三角函数.
结论:y=sin x(x∈R)是周期函数.
用三段论写推理过程的技巧
(1)关键:用三段论写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般原理,小前提提供了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.
(2)何时省略:有时可省略小前提,有时甚至也可将大前提、小前提都省略.
(3)如何寻找:在寻找大前提时可找一个使结论成立的充分条件作大前提. 
 [活学活用]
下面四个推导过程符合演绎推理三段论形式且推理正确的是(  )
A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数
B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数
C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数
D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数
解析:选B 对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于C,大小前提颠倒,不符合演绎推理三段论形式;对于D,大小前提及结论颠倒,不符合演绎推理三段论形式.
演绎推理在几何中的应用
[典例] 如图所示,D,E,F分别是BC,CA,AB边上的点,∠BFD=∠A,DE∥BA,求证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提)
∠BFD和∠A是同位角,且∠BFD=∠A,(小前提)
所以DF∥AE.(结论)
(2)两组对边分别平行的四边形是平行四边形,(大前提)
DE∥BA且DF∥EA,(小前提)
所以四边形AFDE为平行四边形.(结论)
(3)平行四边形的对边相等,(大前提)
DE和AF为平行四边形的对边,(小前提)
所以ED=AF.(结论)
几何证明中应用演绎推理的两个关注点
(1)大前提的正确性:几何证明往往采用演绎推理,它往往不是经过一次推理就能完成的,常需要几次使用演绎推理,每一个推理都暗含着大、小前提,前一个推理的结论往往是下一个推理的前提,在使用时不仅要推理的形式正确,还要前提正确,才能得到正确的结论.
(2)大前提可省略:在几何证明问题中,每一步都包含着一般原理,都可以分析出大前提和小前提,将一般原理应用于特殊情况,就能得出相应结论.
提醒:在应用“三段论”进行推理的过程中,大前提、小前提或推理形式之一错误,都可能导致结论错误. 
[活学活用]
如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.
证明:三角形的中位线平行于底边,大前提
点E,F分别是AB,AD的中点,小前提
所以EF∥BD.结论
若平面外一条直线平行于平面内一条直线,
则这条直线与此平面平行,大前提
EF 平面BCD,BD 平面BCD,EF∥BD,小前提
所以EF∥平面BCD.结论
演绎推理在代数中的应用
[典例] 已知函数f(x)=ax+(a>1),求证:函数f(x)在(-1,+∞)上为增函数.
[证明] 对于任意x1,x2∈(-1,+∞),且x1<x2,若f(x1)<f(x2),则y=f(x)在(-1,+∞)上是增函数.(大前提)
设x1,x2∈(-1,+∞),且x1<x2,
则f(x1)-f(x2)=ax1+-ax2-
=ax1-ax2+-
=ax1-ax2+,
∵a>1,且x1<x2,∴ax1<ax2,x1-x2<0.
又∵x1>-1,x2>-1,∴(x1+1)(x2+1)>0.
∴f(x1)-f(x2)<0,即f(x1)<f(x2).(小前提)
∴函数f(x)在(-1,+∞)上为增函数.(结论)
应用演绎推理解决的代数问题
(1)函数类问题:比如函数的单调性、奇偶性、周期性和对称性等.
(2)导数的应用:利用导数研究函数的单调区间,求函数的极值和最值,证明与函数有关的不等式等.
(3)三角函数的图象与性质.
(4)数列的通项公式、递推公式以及求和,数列的性质.
(5)不等式的证明. 
[活学活用]
已知函数f(x)=x2-aln x在区间[1,2]内是增函数,g(x)=x-a在区间(0,1]内是减函数,则a=______.
解析:f′(x)=2x-,依题意f′(x)≥0,x∈[1,2],
即a≤2x2,x∈[1,2].
因为上式恒成立,所以a≤2.①
又g′(x)=1-,
依题意g′(x)≤0,x∈(0,1],
即a≥2,x∈(0,1].
因为上式恒成立,所以a≥2.②
由①②得a=2.
答案:2
层级一 学业水平达标
1.下面说法:
①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.
其中正确的有(  )
A.1个           B.2个
C.3个 D.4个
解析:选C ①③④都正确.
2.若三角形两边相等,则该两边所对的内角相等,在△ABC中,AB=AC,所以在△ABC中,∠B=∠C,以上推理运用的规则是(  )
A.三段论推理 B.假言推理
C.关系推理 D.完全归纳推理
解析:选A ∵三角形两边相等,则该两边所对的内角相等(大前提),在△ABC中,AB=AC,(小前提),∴在△ABC中,∠B=∠C(结论),符合三段论推理规则,故选A.
3.推理过程“大前提:__________,小前提:四边形ABCD是矩形.结论:四边形ABCD的对角线相等.”应补充的大前提是(  )
A.正方形的对角线相等
B.矩形的对角线相等
C.等腰梯形的对角线相等
D.矩形的对边平行且相等
解析:选B 由三段论的一般模式知应选B.
4.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在(  )
A.大前提 B.小前提
C.推理过程 D.没有出错
解析:选A 要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确.因为任何实数的平方都大于0,又因为a是实数,所以a2>0,其中大前提是:任何实数的平方都大于0,它是不正确的.
5.在证明f(x)=2x+1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f(x)=2x+1满足增函数的定义是大前提;④函数f(x)=2x+1满足增函数的定义是小前提.其中正确的命题是(  )
A.①④ B.②④
C.①③ D.②③
解析:选A 根据三段论特点,过程应为:大前提是增函数的定义;小前提是f(x)=2x+1满足增函数的定义;结论是f(x)=2x+1为增函数,故①④正确.
6.求函数y= 的定义域时,第一步推理中大前提是有意义时,a≥0,小前提是 有意义,结论是____________.
解析:由三段论方法知应为log2x-2≥0.
答案:log2x-2≥0
7.某一三段论推理,其前提之一为肯定判断,结论为否定判断,由此可以推断,该三段论的另一前提必为________判断.
解析:根据三段论的特点,三段论的另一前提必为否定判断.
答案:否定
8.函数y=2x+5的图象是一条直线,用三段论表示为:
大前提:_______________________________________________________________.
小前提:___________________________________________________________________.
结论:_____________________________________________________________.
解析:本题忽略了大前提和小前提.大前提为:一次函数的图象是一条直线.小前提为:函数y=2x+5为一次函数.结论为:函数y=2x+5的图象是一条直线.
答案:①一次函数的图象是一条直线 ②y=2x+5是一次函数 ③函数y=2x+5的图象是一条直线
9.将下列演绎推理写成三段论的形式.
(1)菱形的对角线互相平分.
(2)奇数不能被2整除,75是奇数,所以75不能被2整除.
解:(1)平行四边形的对角线互相平分(大前提);
菱形是平行四边形(小前提);
菱形的对角线互相平分(结论).
(2)一切奇数都不能被2整除(大前提);
75是奇数(小前提);
75不能被2整除(结论).
10.下面给出判断函数f(x)=的奇偶性的解题过程:
解:由于x∈R,且=·
===-1.
∴f(-x)=-f(x),故函数f(x)为奇函数.
试用三段论加以分析.
解:判断奇偶性的大前提“若x∈R,且f(-x)=-f(x),则函数f(x)是奇函数;若x∈R,且f(-x)=f(x),则函数f(x)是偶函数”.在解题过程中往往不用写出来,上述证明过程就省略了大前提.解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(-x)=-f(x).层级二 应试能力达标
1.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是(  )
A.类比推理       B.归纳推理
C.演绎推理 D.一次三段论
解析:选C 这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.
2.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为(  )
A.大前提错误 B.小前提错误
C.推理形式错误 D.非以上错误
解析:选C 用小前提“S是M”,判断得到结论“S是P”时,大前提 “M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.
3.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是点B,D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的(  )
A.AC⊥β
B.AC⊥EF
C.AC与BD在β内的射影在同一条直线上
D.AC与α,β所成的角相等
解析:选D 只要能推出EF⊥AC即可说明BD⊥EF.当AC与α,β所成的角相等时,推不出EF⊥AC,故选D.
4.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,则必有(  )
A.bf(a)<af(b) B.af(b)<bf(a)
C.af(a)<f(b) D.bf(b)<f(a)
解析:选B 构造函数F(x)=xf(x),
则F′(x)=xf′(x)+f(x).
由题设条件知F(x)=xf(x)在(0,+∞)上单调递减.
若a<b,则F(a)>F(b),即af(a)>bf(b).
又f(x)是定义在(0,+∞)上的非负可导函数,
所以bf(a)>af(a)>bf(b)>af(b).故选B.
5.已知函数f(x)=a-,若f(x)为奇函数,则a=________.
解析:因为奇函数f(x)在x=0处有定义且f(0)=0(大前提),而奇函数f(x)=a-的定义域为R(小前提),所以f(0)=a-=0(结论).解得a=.
答案:
6.已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*都有:
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1)给出以下三个结论:
(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.
其中正确结论为________.
解析:由条件可知,
因为f(m,n+1)=f(m,n)+2,且f(1,1)=1,
所以f(1,5)=f(1,4)+2=f(1,3)+4=f(1,2)+6=
f(1,1)+8=9.
又因为f(m+1, 1)=2f(m,1),
所以f(5,1)=2f(4,1)=22f(3,1)=23f(2,1)
=24f(1,1)=16,
所以f(5,6)=f(5,1)+10=24f(1,1)+10=26.
故(1)(2)(3)均正确.
答案:(1)(2)(3)
7.已知y=f(x)在(0,+∞)上有意义、单调递增且满足f(2)=1,f(xy)=f(x)+f(y).
(1)求证:f(x2)=2f(x);
(2)求f(1)的值;
(3)若f(x)+f(x+3)≤2,求x的取值范围.
解:(1)证明:∵f(xy)=f(x)+f(y),(大前提)
∴f(x2)=f(x·x)=f(x)+f(x)=2f(x).(结论)
(2)∵f(1)=f(12)=2f(1),(小前提)
∴f(1)=0.(结论)
(3)∵f(x)+f(x+3)=f(x(x+3))≤2=2f(2)
=f(4),(小前提)
函数f(x)在(0,+∞)上单调递增,(大前提)

解得0<x≤1.(结论)
8.已知a,b,m均为正实数,b<a,用三段论形式证明<.
证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)
b<a,m>0,(小前提)
所以mb<ma.(结论)
因为不等式两边同加上一个数,不等号不改变方向,(大前提)
mb<ma,(小前提)
所以mb+ab<ma+ab,即b(a+m)<a(b+m).(结论)
因为不等式两边同除以一个正数,不等号不改变方向,(大前提)
b(a+m)<a(b+m),a(a+m)>0,(小前提)
所以<,即<.(结论)2.2.1 综合法和分析法
预习课本P85~89,思考并完成下列问题
(1)综合法的定义是什么?有什么特点?
 
 
(2)综合法的推证过程是什么?
 
 
(3)分析法的定义是什么?有什么特点?
 
 
(4)分析法与综合法有什么区别和联系?
 
 
[新知初探]
1.综合法
定义 推证过程 特点
利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法 →→→…→(P表示已知条件,已有的定义、公理、定理等,Q表示所要证明的结论). 顺推证法或由因导果法
2.分析法
定义 框图表示 特点
从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法 →→→…→ 逆推证法或执果索因法
3.综合法、分析法的区别
综合法 分析法
推理方向 顺推,由因导果 倒溯,执果索因
解题思路 探路较难,易生枝节 容易探路,利于思考
表述形式 形式简洁,条理清晰 叙述繁琐,易出错
思考的侧重点 侧重于已知条件提供的信息 侧重于结论提供的信息
[点睛] 一般来说,分析法解题方向明确,利于寻求解题思路;而综合法解题条理清晰,宜于表述.因此在解决问题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)综合法是执果索因的逆推证法.(  )
(2)分析法就是从结论推向已知.(  )
(3)所有证明的题目均可使用分析法证明.(  )
答案:(1)× (2)× (3)×
2.若a>b>0,则下列不等式中不正确的是(  )
A.a2>ab       B.ab>b2
C.> D.a2>b2
答案:C
3.欲证-<-成立,只需证(  )
A.(-)2<(-)2
B.(-)2<(-)2
C.(+)2<(+)2
D.(--)2<(-)2
答案:C
4.如果a>b,则实数a,b应满足的条件是________.
答案:a>b>0
综合法的应用
[典例] 在△ABC中,三边a,b,c成等比数列.求证:acos2 +ccos2 ≥b.
[证明] ∵a,b,c成等比数列,∴b2=ac.
∵左边=+
=(a+c)+(acos C+ccos A)
=(a+c)+
=(a+c)+b≥+=b+=b=右边,
∴acos2+ccos2 ≥b.
当且仅当a=c时等号成立.
综合法的解题步骤
[活学活用]
1.已知a,b,c,d∈R,求证:(ac+bd)2≤(a2+b2)(c2+d2).
证明:∵左边=a2c2+2abcd+b2d2
≤a2c2+(a2d2+b2c2)+b2d2
=(a2+b2)(c2+d2)=右边,
∴(ac+bd)2≤(a2+b2)(c2+d2).
2.设数列{an}满足a1=0,-=1.
(1)求{an}的通项公式;
(2)设bn=,Sn=b1+b2+…+bn,证明:Sn<1.
解:(1)∵-=1,
∴是公差为1的等差数列.
又∵=1,∴=n,an=1-.
(2)证明:由(1)得
bn===-,
∴Sn=b1+b2+…+bn=1-+-+…+-=1-<1.
∴Sn<1.
分析法的应用
[典例] 设a,b为实数,求证: ≥(a+b).
[证明] 当a+b≤0时,∵ ≥0,
∴≥(a+b)成立.
当a+b>0时,
用分析法证明如下:要证 ≥(a+b),
只需证()2≥2.
即证a2+b2≥(a2+b2+2ab),即证a2+b2≥2ab.
∵a2+b2≥2ab对一切实数恒成立,
∴ ≥(a+b)成立.综上所述,不等式得证.
分析法证明不等式的依据、方法与技巧
(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;
(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;
(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;
(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.
[活学活用]
已知a,b,c都为正实数,求证: ≥.
证明:要证 ≥,
只需证≥2,
只需证3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac,
只需证2(a2+b2+c2)≥2ab+2bc+2ac,
只需证(a-b)2+(b-c)2+(c-a)2≥0,而这是显然成立的,所以 ≥成立.
分析法与综合法的综合应用
[典例] 已知a,b,c是不全相等的正数,且0<x<1.
求证:logx+logx+logx<logxa+logxb+logxc.
[证明] 要证明logx+logx+logx
<logxa+logxb+logxc,
只需要证明logx<logx(abc),
由已知0<x<1,只需证明··>abc,
由公式≥>0,≥>0,
≥>0.又∵a,b,c是不全相等的正数,
∴··> =abc.
即··>abc成立.
∴logx+logx+logx<logxa+logxb+logxc成立.
分析综合法的应用
综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.
[活学活用]
已知△ABC的三个内角A,B,C成等差数列,a,b,c为三个内角对应的边长,求证:+=.
证明:要证+=,
即证+=3,即证+=1.
即证c(b+c)+a(a+b)=(a+b)(b+c),
即证c2+a2=ac+b2.
∵△ABC三个内角A,B,C成等差数列.
∴B=60°.
由余弦定理,有b2=c2+a2-2cacos 60°,
即b2=c2+a2-ac.
∴c2+a2=ac+b2成立,命题得证.
层级一 学业水平达标
1.要证明+<+(a≥0)可选择的方法有多种,其中最合理的是(  )
A.综合法       B.类比法
C.分析法 D.归纳法
解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.
2.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ ”,其过程应用了(  )
A.分析法
B.综合法
C.综合法、分析法综合使用
D.间接证法
解析:选B 结合分析法及综合法的定义可知B正确.
3.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足什么条件(  )
A.a2<b2+c2 B.a2=b2+c2
C.a2>b2+c2 D.a2≤b2+c2
解析:选C 由cos A=<0,得b2+c2<a2.
4.若a=,b=,c=,则(  )
A.a<b<c B.c<b<a
C.c<a<b D.b<a<c
解析:选C 利用函数单调性.设f(x)=,则f′(x)=,∴0<x<e时,f′(x)>0,f(x)单调递增;x>e时,f′(x)<0,f(x)单调递减.又a=,∴b>a>c.
5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
解析:选A 由f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
可知f(x)是R上的单调递减函数,
由x1+x2>0,可知x1>-x2,f(x1)6.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x取导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.
解析:该证明过程符合综合法的特点.
答案:综合法
7.如果a+b>a+b,则正数a,b应满足的条件是________.
解析:∵a+b-(a+b)
=a(-)+b(-)=(-)(a-b)
=(-)2(+).
∴只要a≠b,就有a+b>a+b.
答案:a≠b
8.若不等式(-1)na<2+对任意正整数n恒成立,则实数a的取值范围是________.
解析:当n为偶数时,a<2-,而2-≥2-=,所以a<,当n为奇数时,a>-2-,而-2-<-2,所以a≥-2.综上可得,-2≤a<.
答案:
9.求证:2cos(α-β)-=.
证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,①
因为①左边=2cos(α-β)sin α-sin[(α-β)+α]
=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α
=cos(α-β)sin α-sin(α-β)cos α
=sin β.
所以①成立,所以原等式成立.
10.已知数列{an}的首项a1=5,Sn+1=2Sn+n+5,(n∈N*).
(1)证明数列{an+1}是等比数列.
(2)求an.
解:(1)证明:由条件得Sn=2Sn-1+(n-1)+5(n≥2)①
又Sn+1=2Sn+n+5,②
②-①得an+1=2an+1(n≥2),
所以===2.
又n=1时,S2=2S1+1+5,且a1=5,
所以a2=11,
所以==2,
所以数列{an+1}是以2为公比的等比数列.
(2)因为a1+1=6,
所以an+1=6×2n-1=3×2n,
所以an=3×2n-1.
层级二 应试能力达标
1.使不等式<成立的条件是(  )
A.a>b       B.a<b
C.a>b且ab<0 D.a>b且ab>0
解析:选D 要使<,须使-<0,即<0.
若a>b,则b-a<0,ab>0;若a<b,则b-a>0,ab<0.
2.对任意的锐角α,β,下列不等式中正确的是(  )
A.sin(α+β)>sin α+sin β
B.sin(α+β)>cos α+cos β
C.cos(α+β)>sin α+sin β
D.cos(α+β)<cos α+cos β
解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).
3.若两个正实数x,y满足+=1,且不等式x+<m2-3m有解,则实数m的取值范围是(  )
A.(-1,4) B.(-∞,-1)∪(4,+∞)
C.(-4,1) D.(-∞,0)∪(3,+∞)
解析:选B ∵x>0,y>0,+=1,∴x+==2++≥2+2=4,等号在y=4x,即x=2,y=8时成立,∴x+的最小值为4,要使不等式m2-3m>x+有解,应有m2-3m>4,∴m<-1或m>4,故选B.
4.下列不等式不成立的是(  )
A.a2+b2+c2≥ab+bc+ca
B.+>(a>0,b>0)
C.-<-(a≥3)
D.+>2
解析:选D 对A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab+bc+ca;对B,∵(+)2=a+b+2,()2=a+b,∴+>;对C,要证 -<-(a≥3)成立,只需证明+<+,两边平方得2a-3+2<2a-3+2,即<,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(+)2-(2)2=12+4-24=4(-3)<0,∴+<2,故D错误.
5.已知函数f(x)=2x,a,b为正实数,A=f,B=f(),C=f,则A,B,C的大小关系是________.
解析:∵≥(a,b为正实数),≤,且f(x)=2x是增函数,∴f≤f()≤f,即C≤B≤A.
答案:C≤B≤A
6.如图所示,四棱柱ABCD A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).
解析:要证BD⊥A1C,只需证BD⊥平面AA1C.
因为AA1⊥BD,只要再添加条件AC⊥BD,
即可证明BD⊥平面AA1C,从而有BD⊥A1C.
答案:AC⊥BD(答案不唯一)
7.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+cos C.
证明:在锐角三角形ABC中,∵A+B>,∴A>-B.
∴0<-B<A<,
又∵在内正弦函数y=sin x是单调递增函数,
∴sin A>sin=cos B,
即sin A>cos B.①
同理sin B>cos C,②
sin C>cos A.③
由①+②+③,得:
sin A+sin B+sin C>cos A+cos B+cos C.
8.已知n∈N,且n>1,求证:logn(n+1)>logn+1(n+2).
证明:要证明logn(n+1)>logn+1(n+2),
即证明logn(n+1)-logn+1(n+2)>0.(*)
∵logn(n+1)-logn+1(n+2)=-logn+1(n+2)
=.
又∵当n>1时,logn+1n>0,
且logn+1(n+2)>0,logn+1n≠logn+1(n+2),
∴logn+1n·logn+1(n+2)<[logn+1n+logn+1(n+2)]2=log[n(n+2)]=log(n2+2n)<log(n+1)2=1,
故1-logn+1n·logn+1(n+2)>0,
∴>0.
这说明(*)式成立,∴logn(n+1)>logn+1(n+2).2.2.2 反证法
预习课本P89~91,思考并完成下列问题
(1)反证法的定义是什么?有什么特点?
 
 
(2)利用反证法证题的关键是什么?步骤是什么?
 
 
    [新知初探]
反证法的定义及证题的关键
[点睛] 对反证法概念的理解
(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.
(2)反证法属“间接解题方法”.
2.“反证法”和“证逆否命题”的区别与联系
(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.
(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)反证法属于间接证明问题的方法.(  )
(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.(  )
(3)反证法的实质是否定结论导出矛盾.(  )
答案:(1)√ (2)× (3)√
2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用(  )
①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论
A.①②         B.①②④
C.①②③ D.②③
答案:C
3.如果两个实数之和为正数,则这两个数(  )
A.一个是正数,一个是负数
B.两个都是正数
C.至少有一个正数
D.两个都是负数
答案:C
4.用反证法证明“如果a>b,那么> ”,假设的内容应是________.
答案:≤
用反证法证明否定性命题
[典例] 已知三个正数a,b,c成等比数列,但不成等差数列.求证:,,不成等差数列.
[证明] 假设,,成等差数列,则+=2,
即a+c+2=4b.
∵a,b,c成等比数列,∴b2=ac,即b=,
∴a+c+2=4,∴(-)2=0,即=.
从而a=b=c,与a,b,c不成等差数列矛盾,
故,,不成等差数列.
1.用反证法证明否定性命题的适用类型
结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.
2.用反证法证明数学命题的步骤
    
[活学活用]
已知f(x)=ax+(a>1),证明方程f(x)=0没有负数根.
证明:假设x0是f(x)=0的负数根,
则x0<0且x0≠-1,且ax0=-,
由0<ax0<1 0<-<1,
解得<x0<2,这与x0<0矛盾,所以假设不成立,
故方程f(x)=0没有负数根.
用反证法证明“至多”“至少”问题
[典例] 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.
[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:

这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.
[一题多变]
1.[变条件,变设问]将本题改为:已知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围?
解:若方程没有一个有实根,则
解得
故三个方程至少有一个方程有实根,实数a的取值范围是.
2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围.
解:假设三个方程都有实数根,则

解得
即a∈ .
所以实数a的取值范围为实数R.
3.[变条件,变设问]已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
证明:假设a≥0,b≥0,c≥0,d≥0.
∵a+b=c+d=1,
∴(a+b)(c+d)=1,
∴ac+bd+bc+ad=1.
而ac+bd+bc+ad>ac+bd>1,与上式矛盾,
∴假设不成立,
∴a,b,c,d中至少有一个是负数.
用反证法证明“至多”“至少”等问题的两个关注点
(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.
(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.    
用反证法证明唯一性命题
[典例] 求证:两条相交直线有且只有一个交点.
[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.
若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.
若直线a,b不只有一个交点,则至少有两个交点A和B,
这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.
综上所述,两条相交直线有且只有一个交点.
巧用反证法证明唯一性命题
(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.
(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.
(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性. 
[活学活用]
求证:过直线外一点只有一条直线与它平行.
证明:已知:直线b∥a,A a,A∈b,
求证:直线b唯一.
假设过点A还有一条直线b′∥a.
根据平行公理,∵b∥a,∴b∥b′,
与b∩b′=A矛盾,∴假设不成立,原命题成立.
层级一 学业水平达标
1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.
则正确的序号顺序为(  )
A.①②③         B.③①②
C.①③② D.②③①
解析:选B 根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.
2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为(  )
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不都能被5整除
D.a不能被5整除
解析:选B “至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.
3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是(  )
A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角
解析:选B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.
4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为(  )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.
5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a>b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.
6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.
答案:自然数a,b,c中至少有两个偶数或都是奇数
7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.
解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.
答案:a≠1或b≠1
8.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.
解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB α,CD α,这与AB,CD异面相矛盾,故AC与BD异面.
答案:异面
9.求证:1,,2不能为同一等差数列的三项.
证明:假设1,,2是某一等差数列的三项,设这一等差数列的公差为d,
则1=-md,2=+nd,其中m,n为两个正整数,
由上面两式消去d,得n+2m=(n+m).
因为n+2m为有理数,而(n+m)为无理数,
所以n+2m≠(n+m),矛盾,因此假设不成立,
即1,,2不能为同一等差数列的三项.
10.已知函数f(x)在R上是增函数,a,b∈R.
(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.
解:(1)证明:当a+b≥0时,a≥-b且b≥-a.
∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a),
∴f(a)+f(b)≥f(-a)+f(-b).
(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.
用反证法证明如下:
假设a+b<0,则a<-b,∴f(a)<f(-b).
同理可得f(b)<f(-a).
∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,
∴a+b≥0成立,即(1)中命题的逆命题成立.
层级二 应试能力达标
1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x的方程ax=b(a≠0)(  )
A.无解           B.有两解
C.至少有两解 D.无解或至少有两解
解析:选D “唯一”的否定是“至少两解或无解”.
2.下列四个命题中错误的是(  )
A.在△ABC中,若∠A=90°,则∠B一定是锐角
B.,,不可能成等差数列
C.在△ABC中,若a>b>c,则∠C>60°
D.若n为整数且n2为偶数,则n是偶数
解析:选C 显然A、B、D命题均真,C项中若a>b>c,则∠A>∠B>∠C,若∠C>60°,则∠A>60°,∠B>60°,∴∠A+∠B+∠C>180°与∠A+∠B+∠C=180°矛盾,故选C.
3.设a,b,c∈(-∞,0),则a+,b+,c+(  )
A.都不大于-2
B.都不小于-2
C.至少有一个不大于-2
D.至少有一个不小于-2
解析:选C 假设都大于-2,则a++b++c+>-6,但++=++≤-2+(-2)+(-2)=-6,矛盾.
4.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是(  )
A.钝角三角形 B.直角三角形
C.锐角三角形 D.不能确定
解析:选B 分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,若∠ADB为钝角,则∠ADC为锐角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,只有当∠ADB=∠ADC=∠BAC=时,才符合题意.
5.已知数列{an},{bn}的通项公式分别为an=an+2,bn=bn+1(a,b是常数,且a>b),那么这两个数列中序号与数值均对应相同的项有________个.
解析:假设存在序号和数值均相等的项,即存在n使得an=bn,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,所以不存在n使an=bn.
答案:0
6.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有
奇数=________=________=0.
但0≠奇数,这一矛盾说明p为偶数.
解析:据题目要求及解题步骤,
∵a1-1,a2-2,…,a7-7均为奇数,
∴ (a1-1)+(a2-2)+…+(a7-7)也为奇数.
即(a1+a2+…+a7)-(1+2+…+7)为奇数.
又∵a1,a2,…,a7是1,2,…,7的一个排列,
∴a1+a2+…+a7=1+2+…+7,故上式为0,
所以奇数=(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=0.
答案:(a1-1)+(a2-2)+…+(a7-7)
(a1+a2+…+a7)-(1+2+…+7)
7.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于.
证明:假设(1-a)b,(1-b)c,(1-c)a都大于.
因为0<a<1,0<b<1,0<c<1,
所以1-a>0.由基本不等式,
得≥>=.
同理,>,>.
将这三个不等式两边分别相加,得
++>++,
即>,这是不成立的,
故(1-a)b,(1-b)c,(1-c)a不能都大于.
8.已知数列{an}满足:a1=,=,anan+1<0(n≥1);数列{bn}满足:bn=a-a(n≥1).
(1)求数列{an},{bn}的通项公式;
(2)证明:数列{bn}中的任意三项不可能成等差数列.
解:(1)由题意可知,1-a=(1-a).
令cn=1-a,则cn+1=cn.
又c1=1-a=,则数列{cn}是首项为c1=,公比为的等比数列,即cn=·n-1,
故1-a=·n-1 a=1-·n-1.
又a1=>0,anan+1<0,
故an=(-1)n-1 .
bn=a-a=-1-·n-1=·n-1.
(2)用反证法证明.
假设数列{bn}存在三项br,bs,bt(r<s<t)按某种顺序成等差数列,由于数列{bn}是首项为,公比为的等比数列,于是有br>bs>bt,则只可能有2bs=br+bt成立.
∴2··s-1=·r-1+·t-1,
两边同乘以3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.
由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{bn}中任意三项不可能成等差数列. 数学归纳法
预习课本P92~95,思考并完成下列问题
(1)数学归纳法的概念是什么?适用范围是什么?
 
 
 
(2)数学归纳法的证题步骤是什么?
 
 
[新知初探]
1.数学归纳法的定义
一般地,证明一个与正整数n有关的命题,可按下列步骤进行
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.
2.数学归纳法的框图表示
[点睛] 数学归纳法证题的三个关键点
(1)验证是基础
数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点.
(2)递推是关键
数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
(3)利用假设是核心
在第二步证明n=k+1成立时,一定要利用归纳假设,即必须把归纳假设“n=k时命题成立”作为条件来导出“n=k+1”,在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)与正整数n有关的数学命题的证明只能用数学归纳法.(  )
(2)数学归纳法的第一步n0的初始值一定为1.(  )
(3)数学归纳法的两个步骤缺一不可.(  )
答案:(1)× (2)× (3)√
2.如果命题p(n)对所有正偶数n都成立,则用数学归纳法证明时须先证n=________成立.
答案:2
3.已知f(n)=1+++…+(n∈N*),计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,由此推测,当n>2时,有______________.
答案:f(2n)>
用数学归纳法证明等式
[典例] 用数学归纳法证明:
++…+=(n∈N*).
[证明] (1)当n=1时,=成立.
(2)假设当n=k(n∈N*)时等式成立,即有
++…+=,
则当n=k+1时,++…++
=+
=,
即当n=k+1时等式也成立.
由(1)( 2)可得对于任意的n∈N*等式都成立.
用数学归纳法证明恒等式应注意的三点
用数学归纳法证明恒等式时,一是弄清n取第一个值n0时等式两端项的情况;二是弄清从n=k到n=k+1等式两端增加了哪些项,减少了哪些项;三是证明n=k+1时结论也成立,要设法将待证式与归纳假设建立联系,并朝n=k+1证明目标的表达式变形. 
[活学活用]
求证:1-+-+…+-=++…+(n∈N*).
证明:(1)当n=1时,左边=1-=,
右边==,左边=右边.
(2)假设n=k(k∈N*)时等式成立,即1-+-+…+-=++…+,
则当n=k+1时,

=+
=++…++.
即当n=k+1时,等式也成立.
综合(1),(2)可知,对一切n∈N*,等式成立.
用数学归纳法证明不等式
[典例] 已知n∈N*,n>2,
求证:1+++…+ >.
[证明] (1)当n=3时,左边=1++,右边==2,左边>右边,不等式成立.
(2)假设当n=k(k∈N*,k≥3)时,不等式成立,
即1+++…+>.
当n=k+1时,
1+++…++ >+
== .
因为 >==,
所以1+++…++ >.
所以当n=k+1时,不等式也成立.
由(1),(2)知对一切n∈N*,n>2,不等式恒成立.
[一题多变]
1.[变条件,变设问]将本题中所要证明的不等式改为:
+++…+>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,+++>,不等式成立.
(2)假设当n=k(k≥2,k∈N*)时,命题成立.
即++…+>.
则当n=k+1时,++…++++=++…++++->+++->+3×-=.
所以当n=k+1时,不等式也成立.
由(1),(2)可知,原不等式对一切n≥2,n∈N*都成立.
2.[变条件,变设问]将本题中所要证明的不等式改为:
…>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,左边=1+=,右边=.
左边>右边,所以原不等式成立.
(2)假设当n=k(k≥2,k∈N*)时不等式成立,
即…>.
则当n=k+1时,
左边=…
>·
==>
==.
所以,当n=k+1时不等式也成立.
由(1)和(2)可知,对一切n≥2,n∈N*不等式都成立.
用数学归纳法证明不等式的四个关键
(1)验证第一个n的值时,要注意n0不一定为1,若n>k(k为正整数),则n0=k+1.
(2)证明不等式的第二步中,从n=k到n=k+1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设.
(3)用数学归纳法证明与n有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n取前n个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n值开始都成立的结论,常用数学归纳法证明.
(4)用数学归纳法证明不等式的关键是由n=k时成立得n=k+1时成立,主要方法有比较法、分析法、综合法、放缩法等.
归纳—猜想—证明
[典例] 考察下列各式
2=2×1
3×4=4×1×3
4×5×6=8×1×3×5
5×6×7×8=16×1×3×5×7
你能做出什么一般性的猜想?能证明你的猜想吗?
[解] 由题意得,2=2×1,3×4=4×1×3,4×5×6=8×1×3×5,5×6×7×8=16×1×3×5×7,…
猜想:(n+1)(n+2)(n+3)…2n=2n·1·3·5·…·(2n-1),
下面利用数学归纳法进行证明:
证明:(1)当n=1时,显然成立;
(2)假设当n=k时等式成立,即(k+1)(k+2)(k+3)…2k=2k·1·3·5·…·(2k-1),
那么当n=k+1时,
(k+1+1)(k+1+2)(k+1+3)·…·2(k+1)
=(k+1)(k+2)·…·2k·(2k+1)·2
=2k·1·3·5·…·(2k-1)(2k+1)·2
=2k+1·1·3·5·…·(2k+1)
=2k+1·1·3·5·…·[2(k+1)-1]
所以当n=k+1时等式成立.
根据(1)(2)可知对任意正整数等式均成立.
(1)“归纳—猜想—证明”的一般环节
(2)“归纳—猜想—证明”的主要题型
①已知数列的递推公式,求通项或前n项和.
②由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.
③给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n都成立的一般性命题.      
[活学活用]
数列{an}中,a1=1,a2=,且an+1=(n≥2),求a3,a4,猜想an的表达式,并加以证明.
解:∵a2=,且an+1=(n≥2),
∴a3===,a4===.
猜想:an=(n∈N*).
下面用数学归纳法证明猜想正确.
(1)当n=1,2易知猜想正确.
(2)假设当n=k(k≥2,k∈N*)时猜想正确,
即ak=.
当n=k+1时,
ak+1=






∴n=k+1时猜想也正确.
由(1)(2)可知,猜想对任意n∈N*都正确.
层级一 学业水平达标
1.设Sk=+++…+,则Sk+1为(  )
A.Sk+        B.Sk++
C.Sk+- D.Sk+-
解析:选C 因式子右边各分数的分母是连续正整数,则由Sk=++…+,①
得Sk+1=++…+++.②
由②-①,得Sk+1-Sk=+-
=-.故Sk+1=Sk+-.
2.利用数学归纳法证明不等式1+++…+<n(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了(  )
A.1项 B.k项
C.2k-1项 D.2k项
解析:选D 当n=k时,不等式左边的最后一项为,而当n=k+1时,最后一项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.
3.一个与正整数n有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则(  )
A.该命题对于n>2的自然数n都成立
B.该命题对于所有的正偶数都成立
C.该命题何时成立与k取值无关
D.以上答案都不对
解析:选B 由n=k时命题成立可推出n=k+2时命题也成立,又n=2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.
4.对于不等式 <n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时, <1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即 <k+1,则当n=k+1时,=<==(k+1)+1,
∴n=k+1时,不等式成立,则上述证法(  )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D.
5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为(  )
A.2 B.4
C.8 D.16
解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8.
6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.
解析:∵210=1 024>103,29=512<93,∴n0最小应为10.
答案:10
7.用数学归纳法证明++…+>-,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________________________.
解析:观察不等式中分母的变化便知.
答案:++…++>-
8.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.
解析:当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.
答案:5
9.已知n∈N*,求证1·22-2·32+…+(2n-1)·(2n)2-2n·(2n+1)2=-n(n+1)(4n+3).
证明:(1)当n=1时,左边=4-18=-14=-1×2×7=右边.
(2)假设当n=k(k∈N*,k≥1)时成立,即1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2=-k(k+1)(4k+3).
则当n=k+1时,
1·22-2·32+…+(2k-1)·(2k)2-2k·(2k+1)2+(2k+1)·(2k+2)2-(2k+2)·(2k+3)2
=-k(k+1)(4k+3)+(2k+2)[(2k+1)(2k+2)-(2k+3)2]
=-k(k+1)(4k+3)+2(k+1)·(-6k-7)=-(k+1)(k+2) (4k+7)
=-(k+1)·[(k+1)+1][4(k+1)+3],
即当n=k+1时成立.
由(1)(2)可知,对一切n∈N*结论成立.
10.用数学归纳法证明1+≤1+++…+≤+n(n∈N*).
证明:(1)当n=1时,≤1+≤,命题成立.
(2)假设当n=k(k∈N*)时命题成立,即1+≤1+++…+≤+k,
则当n=k+1时,
1+++…++++…+>1++2k·=1+.
又1+++…++++…+<+k+2k·=+(k+1),
即n=k+1时,命题成立.
由(1)和(2)可知,命题对所有n∈N*都成立.
层级二 应试能力达标1.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为(  )
A.f(n)+n+1     B.f(n)+n
C.f(n)+n-1 D.f(n)+n-2
解析:选C 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.
2.设f(n)=1+++…+(n∈N*),那么f(n+1)-f(n)等于(  )
A. B.+
C.+ D.++
解析:选D f(n+1)-f(n)=++.
3.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k+1)与f(k)的关系是(  )
A.f(k+1)=f(k)+k+1
B.f(k+1)=f(k)+k-1
C.f(k+1)=f(k)+k
D.f(k+1)=f(k)+k+2
解析:选C 当n=k+1时,任取其中1条直线记为l,则除l外的其他k条直线的交点的个数为f(k),因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交(有k个交点);又因为任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的f(k)个交点也两两不相同,从而n=k+1时交点的个数是f(k)+k=f(k+1).
4.若命题A(n)(n∈N*)n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有(  )
A.命题对所有正整数都成立
B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立
C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立
D.以上说法都不正确
解析:选C 由题意知n=n0时命题成立能推出n=n0+1时命题成立,由n=n0+1时命题成立,又推出n=n0+2时命题也成立…,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定.
5.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1成立时,左边所得的项为____________.
解析:当n=1时,n+1=2,所以左边=1+a+a2.
答案:1+a+a2
6.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:
①当n=1时,左边=20=1,右边=21-1=1,等式成立.
②假设n=k(k≥1,且k∈N*)时,等式成立,即
1+2+22+…+2k-1=2k-1.
则当n=k+1时,1+2+22+…+2k-1+2k==2k+1-1,
所以当n=k+1时,等式也成立.
由①②知,对任意n∈N*,等式成立.
上述证明中的错误是________.
解析:由证明过程知,在证从n=k到n=k+1时,直接用的等比数列前n项和公式,没有用上归纳假设,因此证明是错误的.
答案:没有用归纳假设
7.平面内有n(n∈N*)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2-n+2部分.
证明:(1)当n=1时,n2-n+2=2,即一个圆把平面分成两部分,故结论成立.
(2)假设当n=k(k≥1,k∈N*)时命题成立,即k个圆把平面分成k2-k+2部分.
则当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,这2k条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k个部分,故k+1个圆把平面分成k2-k+2+2k=(k+1)2-(k+1)+2部分,
即n=k+1时命题也成立.综上所述,对一切n∈N*,命题都成立.
8.已知某数列的第一项为1,并且对所有的自然数n≥2,数列的前n项之积为n2.
(1)写出这个数列的前5项;
(2)写出这个数列的通项公式并加以证明.
解:(1)已知a1=1,由题意,得a1·a2=22,∴a2=22.
∵a1·a2·a3=32,∴a3=.
同理,可得a4=,a5=.
因此这个数列的前5项分别为1,4,,,.
(2)观察这个数列的前5项,猜测数列的通项公式应为:
an=
下面用数学归纳法证明当n≥2时,an=.
①当n=2时,a2==22,结论成立.
②假设当n=k(k≥2,k∈N*)时,结论成立,
即ak=.
∵a1·a2·…·ak-1=(k-1)2,
a1·a2·…·ak-1·ak·ak+1=(k+1)2,
∴ak+1==·==.
这就是说当n=k+1时,结论也成立.
根据①②可知,当n≥2时,这个数列的通项公式是
an=.
∴这个数列的通项公式为an=
(时间: 120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是(  )
A.归纳推理      B.类比推理
C.演绎推理 D.非以上答案
解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C.
2.自然数是整数,4是自然数,所以4是整数.以上三段论推理(  )
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.“两个整数”概念不一致
解析:选A 三段论中的大前提、小前提及推理形式都是正确的.
3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:
①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.
则说法中正确的个数有(  )
A.0 B.1
C.2 D.3
解析:选B 可用反证法推出①,②不正确,因此③正确.
4.下列推理正确的是(  )
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin y
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)
解析:选D (xy)z=x(yz)是乘法的结合律,正确.
5.已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表达式为(  )
A.f(x)= B.f(x)=
C.f(x)= D.f(x)=
解析:选B f(2)=,f(3)=,f(4)=,猜想f(x)=.
6.求证:+>.
证明:因为+和都是正数,
所以为了证明+>,
只需证明(+)2>()2,展开得5+2>5,
即2>0,此式显然成立,所以不等式+>成立.
上述证明过程应用了(  )
A.综合法
B.分析法
C.综合法、分析法配合使用
D.间接证法
解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.
7.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为(  )
A.a1a2a3…a9=29 B.a1+a2+…+a9=29
C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9
解析:选D 由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.
8.若数列{an}是等比数列,则数列{an+an+1}(  )
A.一定是等比数列
B.一定是等差数列
C.可能是等比数列也可能是等差数列
D.一定不是等比数列
解析:选C 设等比数列{an}的公比为q,则an+an+1=an(1+q).∴当q≠-1时,{an+an+1}一定是等比数列;
当q=-1时,an+an+1=0,此时为等差数列.
9.已知a+b+c=0,则ab+bc+ca的值(  )
A.大于0 B.小于0
C.不小于0 D.不大于0
解析:选D 法一:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-≤0.
法二:令c=0,若b=0,则ab+bc+ac=0,否则a,b异号,∴ab+bc+ac=ab<0,排除A、B、C,选D.
10.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么a,b,c的值为(  )
A.a=,b=c= B.a=b=c=
C.a=0,b=c= D.不存在这样的a,b,c
解析:选A 令n=1,2,3,

所以a=,b=c=.
11.已知数列{an}的前n项和Sn,且a1=1,Sn=n2an(n∈N*),可归纳猜想出Sn的表达式为(  )
A.Sn= B.Sn=
C.Sn= D.Sn=
解析:选A 由a1=1,得a1+a2=22a2,∴a2=,S2=;又1++a3=32a3,∴a3=,S3==;
又1+++a4=16a4,得a4=,S4=.
由S1=,S2=,S3=,S4=可以猜想Sn=.
12.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2 016=(  )
x 1 2 3 4 5
f(x) 4 1 3 5 2
A.1 B.2
C.4 D.5
解析:选D x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{xn}是周期为4的数列,所以x2 016=x4=5,故应选D.
二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上)
13.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1,在用反证法证明时,假设应为________.
解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x,y都大于1”.
答案:x,y都大于1
14.已知a>0,b>0,m=lg,n=lg,则m,n的大小关系是________.
解析:ab>0 >0 a+b+2>a+b
(+)2>()2 +>
> lg>lg .
答案:m>n
15.已知 =2, =3, =
4,…, =6,a,b均为正实数,由以上规律可推测出a,b的值,则a+b=________.
解析:由题意归纳推理得 =6,b=62-1
=35,a=6.∴a+b=6+35=41.
答案:41
16.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为.
答案:
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)用综合法或分析法证明:
(1)如果a,b>0,则lg ≥;
(2)6+>2+2.
证明:(1)当a,b>0时,有≥,
∴lg≥lg,
∴lg≥lg ab=.
(2)要证 +>2+2,
只要证(+)2>(2+2)2,
即2>2,这是显然成立的,
所以,原不等式成立.
18.(本小题满分12分)若a1>0,a1≠1,an+1=(n=1,2,…).
(1)求证:an+1≠an;
(2)令a1=,写出a2,a3,a4,a5的值,观察并归纳出这个数列的通项公式an(不要求证明).
解:(1)证明:若an+1=an,即=an,
解得an=0或1.
从而an=an-1=…=a2=a1=0或1,
这与题设a1>0,a1≠1相矛盾,
所以an+1=an不成立.
故an+1≠an成立.
(2)由题意得a1=,a2=,a3=,a4=,a5=,由此猜想:an=.
19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.
(2)已知 和 都是无理数,试证:+也是无理数.
证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以+必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-,而关于x的方程x2+2x+5-m2=0的判别式Δ=4(m2-4),∵-2解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.
(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.
(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.
20.(本小题满分12分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),
求证:数列{bn}中任意不同的三项都不可能成为等比数列.
解:(1)由已知得
∴d=2.
故an=2n-1+,Sn=n(n+).
(2)由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0,
∵p,q,r∈N*,∴
∴2=pr,(p-r)2=0.
∴p=r,与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成等比数列.
21.(本小题满分12分)设f(n)=1+++…+(n∈N*).
求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
证明:当n=2时,左边=f(1)=1,
右边=2=1,左边=右边,等式成立.
假设n=k(k≥2,k∈N*)时,结论成立,即
f(1)+f(2)+…+f(k-1)=k[f(k)-1],
那么,当n=k+1时,
f(1)+f(2)+…+f(k-1)+f(k)
=k[f(k)-1]+f(k)
=(k+1)f(k)-k
=(k+1)-k
=(k+1)f(k+1)-(k+1)
=(k+1)[f(k+1)-1],
∴当n=k+1时结论仍然成立.
∴f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
22.(本小题满分12分)已知f(x)=,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)已知数列{xn}的项满足xn=(1-f(1))(1-f(2))…(1-f(n)),试求x1,x2,x3,x4;
(3)猜想{xn}的通项公式,并用数学归纳法证明.
解:(1)把f(1)=log162=,f(-2)=1,代入函数表达式得

解得(舍去a=-),
∴f(x)=(x≠-1).
(2)x1=1-f(1)=1-=,
x2=(1-f(2))=×=,
x3=(1-f(3))=×=,
x4=×=.
(3)由(2)知,x1=,x2==,x3=,x4==,…,由此可以猜想xn=.
证明:①当n=1时,∵x1=,而=,
∴猜想成立.
②假设当n=k(k∈N*)时,xn=成立,
即xk=,
则n=k+1时,
xk+1=(1-f(1))(1-f(2))…(1-f(k))·(1-f(k+1))
=xk·(1-f(k+1))=·
=·=·
=.
∴当n=k+1时,猜想也成立,根据①②可知,对一切n∈N*,猜想xn=都成立.