2017_2018版高中数学第三章数系的扩充与复数学案(打包6套)新人教B版选修2_2

文档属性

名称 2017_2018版高中数学第三章数系的扩充与复数学案(打包6套)新人教B版选修2_2
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2018-03-15 20:37:43

文档简介

3.1.1 实数系
3.1.2 复数的概念
明目标、知重点 1.了解引入虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件.www.21-cn-jy.com
1.复数的有关概念
(1)复数
①定义:设a,b都是实数,形如a+bi的数叫做复数,i叫做虚数单位.a叫做复数的实部,b叫做复数的虚部.2·1·c·n·j·y
②表示方法:复数通常用字母z表示,即z=a+bi(a,b∈R).
(2)复数集
①定义:全体复数所构成的集合叫做复数集.
②表示:通常用大写字母C表示.
2.复数的分类及包含关系
(1)复数(a+bi,a,b∈R)
(2)集合表示:
3.复数相等的充要条件
设a,b,c,d都是实数,那么a+bi=c+di?a=c且b=d.
[情境导学]
为解决方程x2=2,数系从有理数扩充到实数.数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,x2=-1这个方程在实数范围内就无解,那么怎样解决方程x2=-1在实数系中无根的问题呢?我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?本节我们就来研究这个问题.
探究点一 复数的概念
思考1 为解决方程x2=2,数系从有理数扩充到实数;那么怎样解决方程x2+1=0在实数系中无根的问题呢?21·世纪*教育网
答 设想引入新数i,使i是方程x2+1=0的根,即i·i=-1,方程x2+1=0有解,同时得到一些新数.www-2-1-cnjy-com
思考2 如何理解虚数单位i?
答 (1)i2=-1.
(2)i与实数之间可以运算,亦适合加、减、乘的运算律.
(3)由于i2<0与实数集中a2≥0(a∈R)矛盾,所以实数集中很多结论在复数集中,不再成立.
(4)若i2=-1,那么i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i.
思考3 什么叫复数?怎样表示一个复数?什么叫虚数?什么叫纯虚数?
答 形如a+bi(a,b∈R)的数叫做复数,复数通常用字母z表示,即z=a+bi,这一表示形式叫做复数的代数形式,其中a、b分别叫做复数z的实部与虚部.
对于复数z=a+bi(a,b∈R),当b≠0时叫做虚数;当a=0且b≠0时,叫做纯虚数.
例1 请说出下列复数的实部和虚部,并判断它们是实数、虚数还是纯虚数.
①2+3i;②-3+i;③+i;④π;⑤-i;⑥0.
解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为,是虚数;③的实部为,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-,是纯虚数;⑥的实部为0,虚部为0,是实数. 21·cn·jy·com
反思与感悟 复数a+bi中,实数a和b分别叫做复数的实部和虚部.特别注意,b为复数的虚部而不是虚部的系数,b连同它的符号叫做复数的虚部.2-1-c-n-j-y
跟踪训练1 符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.
(1)实部为-的虚数;
(2)虚部为-的虚数;
(3)虚部为-的纯虚数;
(4)实部为-的纯虚数.
解 (1)存在且有无数个,如-+i等;(2)存在且不唯一,如1-i等;(3)存在且唯一,即-i;(4)不存在,因为纯虚数的实部为0.21世纪教育网版权所有
例2 求当实数m为何值时,z=+(m2+5m+6)i分别是:(1)实数;(2)虚数;(3)纯虚数.21*cnjy*com
解 由已知得复数z的实部为,虚部为m2+5m+6.
(1)复数z是实数的充要条件是
??m=-2.
∴当m=-2时,复数z是实数.
(2)复数z是虚数的充要条件是
?m≠-3且m≠-2.
∴当m≠-3且m≠-2时,复数z是虚数.
(3)复数z是纯虚数的充要条件是
??m=3.
∴当m=3时,复数z是纯虚数.
反思与感悟 利用复数的概念对复数分类时,主要依据实部、虚部满足的条件,可列方程或不等式求参数.
跟踪训练2 实数m为何值时,复数z=+(m2+2m-3)i是(1)实数;(2)虚数;(3)纯虚数.21教育网
解 (1)要使z是实数,m需满足m2+2m-3=0,且有意义即m-1≠0,解得m=-3.
(2)要使z是虚数,m需满足m2+2m-3≠0,且有意义即m-1≠0,解得m≠1且m≠-3.
(3)要使z是纯虚数,m需满足=0,m-1≠0,
且m2+2m-3≠0,解得m=0或m=-2.
探究点二 两个复数相等
思考1 两个复数能否比较大小?
答 如果两个复数不全是实数,那么它们不能比较大小.
思考2 两个复数相等的充要条件是什么?
答 复数a+bi与c+di相等的充要条件是a=c且b=d(a,b,c,d∈R).
例3 已知x,y均是实数,且满足(2x-1)+i=-y-(3-y)i,求x与y.
解 由复数相等的充要条件得
解得
反思与感悟 两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.21cnjy.com
跟踪训练3 已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.【来源:21·世纪·教育·网】
解 ∵M∪P=P,∴M?P,
∴(m2-2m)+(m2+m-2)i=-1或
(m2-2m)+(m2+m-2)i=4i.
由(m2-2m)+(m2+m-2)i=-1,
得解得m=1;
由(m2-2m)+(m2+m-2)i=4i,
得解得m=2.
综上可知m=1或m=2.
1.已知复数z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是(  )
A.,1 B.,5
C.±,5 D.±,1
答案 C
解析 令,得a=±,b=5.
2.下列复数中,满足方程x2+2=0的是(  )
A.±1 B.±i
C.±i D.±2i
答案 C
3.如果z=m(m+1)+(m2-1)i为纯虚数,则实数m的值为(  )
A.1 B.0
C.-1 D.-1或1
答案 B
解析 由题意知,
∴m=0.
4.下列几个命题:
①两个复数相等的一个必要条件是它们的实部相等;
②两个复数不相等的一个充分条件是它们的虚部不相等;
③1-ai(a∈R)是一个复数;
④虚数的平方不小于0;
⑤-1的平方根只有一个,即为-i;
⑥i是方程x4-1=0的一个根;
⑦i是一个无理数.
其中正确命题的个数为(  )
A.3 B.4 C.5 D.6
答案 B
解析 命题①②③⑥正确,④⑤⑦错误.
[呈重点、现规律]
1.对于复数z=a+bi(a,b∈R),可以限制a,b的值得到复数z的不同情况;
2.两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.
3.1.3 复数的几何意义
明目标、知重点 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.4.理解共轭复数的概念.21cnjy.com
1.复数的几何意义
(1)复平面的定义
建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.21·cn·jy·com
(2)复数与点、向量间的对应
①复数z=a+bi(a,b∈R)一一,对应,复平面内的点Z(a,b);
②复数z=a+bi(a,b∈R)一一,平面向量=(a,b).
2.复数的模
复数z=a+bi(a,b∈R)对应的向量为,则的模叫做复数z的模,记作|z|,且|z|=.
3.共轭复数
当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z的共轭复数用表示,即z=a+bi,那么=a-bi,当复数z=a+bi的虚部b=0时,有z=,也就是说,任一实数的共轭复数仍是它本身.www.21-cn-jy.com
[情境导学]
我们知道实数的几何意义,实数与数轴上的点一一对应,实数可用数轴上的点来表示,那么复数的几何意义是什么呢?2·1·c·n·j·y
探究点一 复数与复平面内的点
思考1 实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?
答 任何一个复数z=a+bi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集可以建立一一对应.【来源:21·世纪·教育·网】
小结 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
思考2 判断下列命题的真假:
①在复平面内,对应于实数的点都在实轴上;
②在复平面内,对应于纯虚数的点都在虚轴上;
③在复平面内,实轴上的点所对应的复数都是实数;
④在复平面内,虚轴上的点所对应的复数都是纯虚数;
⑤在复平面内,对应于非纯虚数的点都分布在四个象限.
答 根据实轴的定义,x轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2,因此①③是真命题;根据虚轴的定义,y轴叫虚轴,显然所有纯虚数对应的点都在虚轴上,如纯虚数5i对应点(0,5),但虚轴上的点却不都是纯虚数,这是因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示的是实数,故除了原点外,虚轴上的点都表示纯虚数,所以②是真命题,④是假命题;对于非纯虚数z=a+bi,由于a≠0,所以它对应的点Z(a,b)不会落在虚轴上,但当b=0时,z所对应的点在实轴上,故⑤是假命题.21·世纪*教育网
例1 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应的点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围.www-2-1-cnjy-com
解 复数z=(m2-m-2)+(m2-3m+2)i的实部为m2-m-2,虚部为m2-3m+2.
(1)由题意得m2-m-2=0.
解得m=2或m=-1.
(2)由题意得,
∴,
∴-1(3)由已知得m2-m-2=m2-3m+2,
故m=2.
反思与感悟 按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.2-1-c-n-j-y
跟踪训练1 实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i
(1)对应的点在x轴上方;
(2)对应的点在直线x+y+4=0上.
解 (1)由m2-2m-15>0,得m<-3或m>5,
所以当m<-3或m>5时,复数z对应的点在x轴上方.
(2)由(m2+5m+6)+(m2-2m-15)+4=0,
得m=1或m=-,所以当m=1或m=-时,
复数z对应的点在直线x+y+4=0上.
探究点二 复数与向量
思考1 复数与复平面内的向量怎样建立对应关系?
答 当向量的起点在原点时,该向量可由终点唯一确定,从而可与该终点对应的复数建立一一对应关系.
思考2 怎样定义复数z的模?它有什么意义?
答 复数z=a+bi(a,b∈R)的模就是向量=(a,b)的模,记作|z|或|a+bi|.
|z|=|a+bi|=可以表示点Z(a,b)到原点的距离.
例2 已知复数z=3+ai,且|z|<4,求实数a的取值范围.
解 方法一 ∵z=3+ai(a∈R),
∴|z|=,
由已知得32+a2<42,∴a2<7,∴a∈(-,).
方法二 利用复数的几何意义,由|z|<4知,z在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z=3+ai知z对应的点在直线x=3上,
所以线段AB(除去端点)为动点Z的集合.
由图可知:-反思与感悟 利用模的定义将复数模的条件转化为其实虚部满足的条件,是一种复数问题实数化思想;根据复数模的意义,结合图形,可利用平面几何知识解答本题.
跟踪训练2 求复数z1=3+4i,z2=--i的模,并比较它们的大小.
解 |z1|==5,|z2|= =.
∵5>,∴|z1|>|z2|.
跟踪训练3 (1)当复数z1=sin -icos ,z2=2+3i,试比较|z1|与|z2|的大小;
(2)求满足条件2≤|z|<3的复数z在复平面上表示的图形.
解 (1)∵|z1|=|sin -icos |
= = =,
|z2|=|2+3i|==,
且=<,∴|z1|<|z2|.
(2)如图是以原点O为圆心,半径分别为2个单位长和3个单位长的两个圆所夹的圆环,但不包括大圆圆周.
1.在复平面内,复数z=i+2i2对应的点位于(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 B
解析 ∵z=i+2i2=-2+i,
∴实部小于0,虚部大于0,
故复数z对应的点位于第二象限.
2.当A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 D
解析 复数z在复平面内对应的点为Z(3m-2,m-1).
0,m-1<0.
所以点Z位于第四象限.故选D.
3.在复平面内,O为原点,向量对应的复数为-1+2i,若点A关于直线y=-x的对称点为B,则向量对应的复数为(  )21世纪教育网版权所有
A.-2-i B.-2+i
C.1+2i D.-1+2i
答案 B
解析 ∵A(-1,2)关于直线y=-x的对称点B(-2,1),∴向量对应的复数为-2+i.
4.在复平面内表示复数z=(m-3)+2i的点在直线y=x上,则实数m的值为________.
答案 9
解析 ∵z=(m-3)+2i表示的点在直线y=x上,
∴m-3=2,解之得m=9.
[呈重点、现规律]
1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应;
2.研究复数的问题可利用复数问题实数化思想转化为复数的实虚部的问题,也可以结合图形利用几何关系考虑.21教育网
3.2.1 复数的加法与减法
明目标、知重点1.熟练掌握复数的代数形式的加、减运算法则.2.理解复数加减法的几何意义,能够利用“数形结合”的思想解题.2-1-c-n-j-y
1.复数加法与减法的运算法则
(1)设z1=a+bi,z2=c+di是任意两个复数,则z1+z2=(a+c)+(b+d)i,z1-z2=(a-c)+(b-d)i.2·1·c·n·j·y
(2)对任意z1,z2,z3∈C,有z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
2.复数加减法的几何意义
如图:设复数z1,z2对应向量分别为1,2,四边形OZ1ZZ2为平行四边形,则与z1+z2对应的向量是,与z1-z2对应的向量是.21*cnjy*com
[情境导学]
我们学习过实数的加减运算,复数如何进行加减运算?我们知道向量加法的几何意义,那么复数加法的几何意义是什么呢?【来源:21cnj*y.co*m】
探究点一 复数加减法的运算
思考1 我们规定复数的加法法则如下:设z1=a+bi,z2=c+di是任意两个复数,那么(a+bi)+(c+di)=(a+c)+(b+d)i.那么两个复数的和是个什么数,它的值唯一确定吗?
答 仍然是个复数,且是一个确定的复数.
思考2 复数加法的实质是什么?类似于实数的哪种运算方法?类比于复数的加法法则,试着给出复数的减法法则.【出处:21教育名师】
答 实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.
(a+bi)-(c+di)=(a-c)+(b-d)i.
思考3 实数的加法有交换律、结合律,复数的加法满足这些运算律吗?并试着证明.
答 满足,对任意的z1,z2,z3∈C,有交换律:z1+z2=z2+z1.
结合律:(z1+z2)+z3=z1+(z2+z3).
证明:设z1=a+bi,z2=c+di,z1+z2=(a+c)+(b+d)i,z2+z1=(c+a)+(d+b)i,
显然,z1+z2=z2+z1,同理可得(z1+z2)+z3=z1+(z2+z3).
例1 计算:
(1)(1+2i)+(-2+i)+(-2-i)+(1-2i);
(2)1+(i+i2)+(-1+2i)+(-1-2i).
解 (1)原式=(1-2-2+1)+(2+1-1-2)i=-2.
(2)原式=1+(i-1)+(-1+2i)+(-1-2i)
=(1-1-1-1)+(1+2-2)i=-2+i.
反思与感悟 复数的加减法运算,就是实部与实部相加减做实部,虚部与虚部相加减作虚部,同时也把i看作字母,类比多项式加减中的合并同类项.www-2-1-cnjy-com
跟踪训练1 计算:(1)2i-[(3+2i)+3(-1+3i)];
(2)(a+2bi)-(3a-4bi)-5i(a,b∈R).
解 (1)原式=2i-(3+2i-3+9i)=2i-11i=-9i.
(2)原式=-2a+6bi-5i=-2a+(6b-5)i.
探究点二 复数加减法的几何意义
思考1 复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗?
答 如图,设,分别与复数a+bi,c+di对应,则有=(a,b),=(c,d),由向量加法的几何意义+=(a+c,b+d),所以+与复数(a+c)+(b+d)i对应,复数的加法可以按照向量的加法来进行.21cnjy.com
思考2 怎样作出与复数z1-z2对应的向量?
答 z1-z2可以看作z1+(-z2).因为复数的加法可以按照向量的加法来进行.所以可以按照平行四边形法则或三角形法则作出与z1-z2对应的向量(如图).图中对应复数z1,对应复数z2,则对应复数z1-z2.www.21-cn-jy.com
例2 
如图所示,平行四边形OABC的顶点O,A,C分别表示0,3+2i,-2+4i.求:
(1)表示的复数;
(2)表示的复数;
(3)表示的复数.
解 (1)因为=-,
所以表示的复数为-3-2i.
(2)因为=-,
所以表示的复数为(3+2i)-(-2+4i)=5-2i.
(3)因为=+,所以表示的复数为(3+2i)+(-2+4i)=1+6i.
反思与感悟 复数的加减法可以转化为向量的加减法,体现了数形结合思想在复数中的运用.
跟踪训练2 复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.21·cn·jy·com
解 设复数z1,z2,z3在复平面内所对应的点分别为A,B,C,正方形的第四个顶点D对应的复数为x+yi(x,y∈R),如图.21·世纪*教育网
则=-=(x+yi)-(1+2i)
=(x-1)+(y-2)i,
=-=(-1-2i)-(-2+i)=1-3i.
∵=,∴(x-1)+(y-2)i=1-3i.
∴,解得,
故点D对应的复数为2-i.
探究点三 复数加减法的综合应用
例3 已知|z1|=|z2|=|z1-z2|=1,求|z1+z2|.
解 方法一 设z1=a+bi,z2=c+di(a,b,c,d∈R),
∵|z1|=|z2|=|z1-z2|=1,
∴a2+b2=c2+d2=1,①
(a-c)2+(b-d)2=1②
由①②得2ac+2bd=1,
∴|z1+z2|=
==.
方法二 设O为坐标原点,
z1,z2,z1+z2对应的点分别为A,B,C.
∵|z1|=|z2|=|z1-z2|=1,
∴△OAB是边长为1的正三角形,
∴四边形OACB是一个内角为60°,边长为1的菱形,
且|z1+z2|是菱形的较长的对角线OC的长,
∴|z1+z2|=||
==.
反思与感悟 (1)设出复数z=x+yi(x,y∈R),利用复数相等或模的概念,可把条件转化为x,y满足的关系式,利用方程思想求解,这是本章“复数问题实数化”思想的应用.
(2)在复平面内,z1,z2对应的点为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB①为平行四边形;②若|z1+z2|=|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.
跟踪训练3 例3中,若条件变成|z1|=|z2|=1,|z1+z2|=.求|z1-z2|.
解 由|z1|=|z2|=1,|z1+z2|=,
知z1,z2,z1+z2对应的点是一个边长为1的正方形的三个顶点,所求|z1-z2|是这个正方形的一条对角线长,21世纪教育网版权所有
所以|z1-z2|=.
1.复数z1=2-i,z2=-2i,则z1+z2等于(  )
A.0 B.+i
C.-i D.-i
答案 C
解析 z1+z2=(2+)-(+2)i=-i.
2.若z+3-2i=4+i,则z等于(  )
A.1+i B.1+3i
C.-1-i D.-1-3i
答案 B
解析 z=4+i-(3-2i)=1+3i.
3.在复平面内,O是原点,,,表示的复数分别为-2+i,3+2i,1+5i,则表示的复数为(  )【来源:21·世纪·教育·网】
A.2+8i B.-6-6i
C.4-4i D.-4+2i
答案 C
解析 =-=-(+)=4-4i.
4.若|z-1|=|z+1|,则复数z对应的点在(  )
A.实轴上 B.虚轴上
C.第一象限 D.第二象限
答案 B
解析 ∵|z-1|=|z+1|,
∴点Z到(1,0)和(-1,0)的距离相等,即点Z在以(1,0)和(-1,0)为端点的线段的中垂线上.
5.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=________.21教育网
答案 -1
解析  z1-z2=(a2-a-2)+(a-4+a2-2)i(a∈R)为纯虚数,∴,
解得a=-1.
[呈重点、现规律]
1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.
2.复数加法的几何意义就是向量加法的平行四边形法则.复数减法的几何意义就是向量减法的三角形法则.
3.2.2 复数的乘法
3.2.3 复数的除法
明目标、知重点 1.掌握复数代数形式的乘法和除法运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.进一步理解共轭复数的概念及性质.www.21-cn-jy.com
1.复数的乘法法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),
则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.
2.复数乘法的运算律
对任意复数z1、z2、z3∈C,有
交换律
z1·z2=z2·z1
结合律
(z1·z2)·z3=z1·(z2·z3)
乘法对加法的分配律
z1(z2+z3)=z1z2+z1z3
3.复数的除法法则
设z1=a+bi,z2=c+di(c+di≠0),
则==+i.
[情境导学]
我们学习过实数的乘法运算及运算律,那么复数的乘法如何进行运算,复数的乘法满足运算律吗?
探究点一 复数乘除法的运算
思考1 怎样进行复数的乘法?
答 两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成-1,并且把实部与虚部分别合并即可.21教育网
思考2 复数的乘法与多项式的乘法有何不同?
答 复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i2换成-1.
例1 计算:(1)(1-2i)(3+4i)(-2+i);
(2)(3+4i)(3-4i);
(3)(1+i)2.
解 (1)(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i)
=-20+15i;
(2)(3+4i)(3-4i)=32-(4i)2=9-(-16)=25;
(3)(1+i)2=1+2i+i2=2i.
反思与感悟 复数的乘法可以按多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等.2·1·c·n·j·y
跟踪训练1 计算:(1)(2+i)(2-i);(2)(1+2i)2.
解 (1)(2+i)(2-i)=4-i2=4-(-1)=5;
(2)(1+2i)2=1+4i+(2i)2=1+4i+4i2=-3+4i.
思考3 如何理解复数的除法运算法则?
答 复数的除法先写成分式的形式,再把分母实数化(方法是分母与分子同时乘以分母的共轭复数,若分母是纯虚数,则只需同时乘以i).【来源:21·世纪·教育·网】
例2 计算:(1)+;
(2)()6+.
解 (1)原式=+=+=+=;
(2)方法一 原式=[]6+
=i6+=-1+i.
方法二 (技巧解法)
原式=[]6+
=i6+=-1+i.
反思与感悟 复数的除法是分子、分母同乘以分母的共轭复数.
跟踪训练2 计算:(1);(2).
解 (1)===1-i.
(2)===-1-3i.
探究点二 共轭复数及其应用
思考1 复数a+bi及其共轭复数之积是实数还是虚数?
答 复数a+bi的共轭复数表示为a-bi,由于 (a+bi)·(a-bi)=a2+b2 ,所以两个共轭复数之积为实数.21·世纪*教育网
思考2 共轭复数有哪些性质,这些性质有什么作用?
答 (1)在复平面上,两个共轭复数对应的点关于实轴对称.
(2)实数的共轭复数是它本身,即z=?z∈R,利用这个性质可证明一个复数为实数.
(3)若z≠0且z+=0,则z为纯虚数,利用这个性质,可证明一个复数为纯虚数.
思考3 z·与|z|2和||2有什么关系?
答 z·=|z|2=||2.
例3 已知复数z满足|z|=1,且(3+4i)z是纯虚数,求z的共轭复数.
解 设z=a+bi(a,b∈R),则=a-bi且|z|==1,即a2+b2=1.①
因为(3+4i)z=(3+4i)(a+bi)=(3a-4b)+(3b+4a)i,而(3+4i)z是纯虚数,
所以3a-4b=0,且3b+4a≠0.②
由①②联立,解得或
所以=-i,或=-+i.
反思与感悟 本题使用了复数问题实数化思想,运用待定系数法,化解了问题的难点.
跟踪训练3 已知复数z满足:z·+2iz=8+6i,求复数z的实部与虚部的和.
解 设z=a+bi(a,b∈R),
则z·=a2+b2,
∴a2+b2+2i(a+bi)=8+6i,
即a2+b2-2b+2ai=8+6i,
∴,解得,
∴a+b=4,∴复数z的实部与虚部的和是4.
1.设复数z满足iz=1,其中i为虚数单位,则z等于(  )
A.-i B.i
C.-1 D.1
答案 A
解析 z==-i.
2.已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z等于(  )
A.-2i B.2i C.-4i D.4i
答案 C
解析 由M∩N={4}得zi=4,z==-4i.
3.复数等于(  )
A.i B.-i
C.--i D.-+i
答案 A
4.复数z=(i为虚数单位)在复平面内对应的点所在象限为(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 D
解析 因为z===,故复数z对应的点在第四象限,选D.
[呈重点、现规律]
1.复数代数形式的乘除运算
(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.21世纪教育网版权所有
(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.21·cn·jy·com
2.共轭复数的性质可以用来解决一些复数问题.
3.复数问题实数化思想.
复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+bi(a,b∈R),利用复数相等的充要条件转化.21cnjy.com
习题课 复 数
明目标、知重点 1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算并认识复数加减法的几何意义.21世纪教育网版权所有
1.复数的四则运算,若两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R)
(1)加法:z1+z2=(a1+a2)+(b1+b2)i;
(2)减法:z1-z2=(a1-a2)+(b1-b2)i;
(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i;
(4)除法:=+i(z2≠0);
(5)实数四则运算的交换律、结合律、分配律都适合于复数的情况;
(6)特殊复数的运算:in(n为正整数)的周期性运算;
(1±i)2=±2i;若ω=-±i,则ω3=1,1+ω+ω2=0.
2.共轭复数与复数的模
(1)若z=a+bi,则=a-bi,z+为实数,z-为纯虚数(b≠0).
(2)复数z=a+bi的模,|z|=,
且z·=|z|2=a2+b2.
3.复数加、减法的几何意义
(1)复数加法的几何意义
若复数z1、z2对应的向量、不共线,则复数z1+z2是以、为两邻边的平行四边形的对角线所对应的复数.21教育网
(2)复数减法的几何意义
复数z1-z2是连接向量、的终点,并指向Z1的向量所对应的复数.
题型一 复数的四则运算
例1 (1)计算:+2 012+

(2)已知z=1+i,求的模.
解 (1)原式=+1 006+
=i+(-i)1 006+0=-1+i.
(2)===1-i,
∴的模为.
反思与感悟 复数的除法运算是复数运算中的难点,如果遇到(a+bi)÷(c+di)的形式,首先应该写成分式的形式,然后再分母实数化.21·cn·jy·com
跟踪训练1 (1)已知=2+i,则复数z等于(  )
A.-1+3i B.1-3i
C.3+i D.3-i
答案 B
解析 方法一 ∵=2+i,∴=(1+i)(2+i)=2+3i-1=1+3i,∴z=1-3i.
方法二 设z=a+bi(a,b∈R),∴=a-bi,
∴=2+i,∴,z=1-3i.
(2)i为虚数单位,则2 011等于(  )
A.-i B.-1 C.i D.1
答案 A
解析 因为==i,所以2 011=i2 011=i4×502+3=i3=-i,故选A.
题型二 复数的几何意义
例2 已知点集D={z||z+1+i|=1,z∈C},试求|z|的最小值和最大值.
解 点集D的图象为以点C(-1,
-)为圆心,1为半径的圆,圆上任一点P对应的复数为z,则||=|z|.
由图知,当OP过圆心C(-1,-)时,与圆交于点A、B,则|z|的最小值是|OA|=|OC|-1=-1=2-1=1,即|z|min=1;www.21-cn-jy.com
|z|的最大值是|OB|=|OC|+1=2+1=3,
即|z|max=3.
反思与感悟 复数和复平面内的点,以原点为起点的向量一一对应;复数加减法符合向量运算的平行四边形法则和三角形法则:|z1-z2|表示复数z1,z2对应的两点Z1,Z2之间的距离.
跟踪训练2 已知复数z1,z2满足|z1|=3,|z2|=5,|z1-z2|=,求|z1+z2|的值.
解 如图所示,设z1,z2对应点分别为A,B,以,为邻边作?OACB,则对应的复数为z1+z2.这里||=3,||=5,||=.21cnjy.com
∴cos ∠AOB=
==.
∴cos ∠OBC=-.又||=||=3,
∴|z1+z2|=||
==.
题型三 两个复数相等
例3 设复数z和它的共轭复数满足4z+2=3+i,求复数z.
解 设z=a+bi(a,b∈R).
因为4z+2=3+i,
所以2z+(2z+2)=3+i.
2z+2=2(a+bi)+2(a-bi)=4a,整体代入上式,
得2z+4a=3+i.所以z=+.
根据复数相等的充要条件,得
解得所以z=+.
反思与感悟 两个复数相等是解决复数问题的重要工具.“复数相等”可以得到两个实数等式,为应用方程思想提供了条件,常用于确定系数,解复数方程等问题.
跟踪训练3 是z的共轭复数,若z+=2,(z-)i=2(i为虚数单位),则z等于(  )
A.1+i B.-1-i
C.-1+i D.1-i
答案 D
解析 方法一 设z=a+bi,a,b为实数,则=a-bi.
∵z+=2a=2,∴a=1.
又(z-)i=2bi2=-2b=2,∴b=-1.故z=1-i.
方法二 ∵(z-)i=2,∴z-==-2i.
又z+=2,∴(z-)+(z+)=-2i+2,
∴2z=-2i+2,∴z=1-i.
1.以1+2i的虚部为实部,以3i-2的实部为虚部的新复数是(  )
A.2-2i B.2+i C.3+i D.2+3i
答案 A
2.若x-2+yi和3x-i互为共轭复数,则实数x与y的值是(  )
A.x=3,y=3 B.x=5,y=1
C.x=-1,y=-1 D.x=-1,y=1
答案 D
解析 x-2=3x,y=-(-1),
即x=-1,y=1.
3.设复数z满足(1+i)z=2,其中i为虚数单位,则z等于(  )
A.1+i B.1-i
C.2+2i D.2-2i
答案 B
解析 z===1-i,故选B.
4.已知=b+i(a,b∈R),其中i为虚数单位,则a+b等于(  )
A.-1 B.1 C.2 D.3
答案 B
解析 ∵=b+i,∴a+2i=bi-1.
∴a=-1,b=2,∴a+b=1.
[呈重点、现规律]
1.复数的四则运算按照运算法则和运算律进行运算,其中除法运算的关键是将分母实数化;
2.复数的几何意义是数形结合思想在复数中的一大体现;
3.利用两个复数相等可以解决求参数值(或范围)和复数方程等问题.
第三章 数系的扩充与复数
题型一 分类讨论思想的应用
例1 实数k为何值时,复数(1+i)k2-(3+5i)k-2(2+3i)满足下列条件?
(1)是实数;(2)是虚数;(3)是纯虚数.
解 (1+i)k2-(3+5i)k-2(2+3i)=(k2-3k-4)+(k2-5k-6)i.
(1)当k2-5k-6=0,即k=6或k=-1时,该复数为实数.
(2)当k2-5k-6≠0,即k≠6且k≠-1时,该复数为虚数.
(3)当即k=4时,该复数为纯虚数.
反思与感悟 当复数的实部与虚部含有字母时,利用复数的有关概念进行分类讨论.分别确定什么情况下是实数、虚数、纯虚数.当x+yi没有说明x,y∈R时,也要分情况讨论.
跟踪训练1 (1)若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则(  )
A.a=-1 B.a≠-1且a≠2
C.a≠-1 D.a≠2
答案 C
解析 若一个复数不是纯虚数,则该复数是一个虚数或是一个实数.当a2-a-2≠0时,已知的复数一定不是纯虚数,解得a≠-1且a≠2;当a2-a-2=0且|a-1|-1=0时,已知的复数也不是一个纯虚数,解得a=2.综上所述,当a≠-1时,已知的复数不是一个纯虚数.21·cn·jy·com
(2)实数x取什么值时,复数z=(x2+x-6)+(x2-2x-15)i是:①实数;②虚数;③纯虚数;④零.www.21-cn-jy.com
解 ①当x2-2x-15=0,即x=-3或x=5时,复数z为实数;
②当x2-2x-15≠0,即x≠-3且x≠5时,复数z为虚数;
③当x2+x-6=0且x2-2x-15≠0,即x=2时,复数z是纯虚数;
④当x2+x-6=0且x2-2x-15=0,即x=-3时,复数z为零.
题型二 数形结合思想的应用
例2 已知等腰梯形OABC的顶点A、B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.21·世纪*教育网
解 设z=x+yi,x,y∈R,如图.
∵OA∥BC,|OC|=|BA|,
∴kOA=kBC,|zC|=|zB-zA|,

解得或.
∵|OA|≠|BC|,
∴x2=-3,y2=4(舍去),
故z=-5.
反思与感悟 数形结合既是一种重要的数学思想,又是一种常用的数学方法.本章中,复数本身的几何意义、复数的模以及复数加减法的几何意义都是数形结合思想的体现.它们得以相互转化.涉及的主要问题有复数在复平面内对应点的位置、复数运算及模的最值问题等.
跟踪训练2 已知复数z1=i(1-i)3.
(1)求|z1|;
(2)若|z|=1,求|z-z1|的最大值.
解 (1)|z1|=|i(1-i)3|=|i|·|1-i|3=2.
(2)如图所示,由|z|=1可知,z在复平面内对应的点的轨迹是半径为1,圆心为O(0,0)的圆,而z1对应着坐标系中的点Z1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆半径)=2+1.
题型三 转化与化归思想的应用
例3 已知z是复数,z+2i,均为实数,且(z+ai)2的对应点在第一象限,求实数a的取值范围.
解 设z=x+yi(x,y∈R),
则z+2i=x+(y+2)i为实数,∴y=-2.
又==(x-2i)(2+i)
=(2x+2)+(x-4)i为实数,
∴x=4.∴z=4-2i,
又∵(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象限.
∴,解得2∴实数a的取值范围是(2,6).
反思与感悟 在求复数时,常设复数z=x+yi(x,y∈R),把复数z满足的条件转化为实数x,y满足的条件,即复数问题实数化的基本思想在本章中非常重要.
跟踪训练3 已知x,y为共轭复数,且(x+y)2-3xyi=4-6i,求x,y.
解 设x=a+bi(a,b∈R),则y=a-bi.
又(x+y)2-3xyi=4-6i,
∴4a2-3(a2+b2)i=4-6i,

∴或或或
∴或或或
题型四 类比思想的应用
复数加、减、乘、除运算的实质是实数的加减乘除,加减法是对应实、虚部相加减,而乘法类比多项式乘法,除法类比根式的分子分母有理化,只要注意i2=-1.
在运算的过程中常用来降幂的公式有
(1)i的乘方:i4k=1,i4k+1=i,i4k+2=-1,i4k+3=-i(k∈Z);
(2)(1±i)2=±2i;
(3)设ω=-±i,则ω3=1,ω2=,1+ω+ω2=0,=ω2,ω3n=1,ω3n+1=ω(n∈N+)等;21世纪教育网版权所有
(4)(±i)3=-1;
(5)作复数除法运算时,有如下技巧:
===i,利用此结论可使一些特殊的计算过程简化.
例4 计算:
(1)(1-i)(-+i)(1+i);
(2)+()2 006.
解 (1)方法一 (1-i)(-+i)(1+i)
=(-+i+i-i2)(1+i)
=(+i)(1+i)
=+i+i+i2
=-1+i.
方法二 原式=(1-i)(1+i)(-+i)
=(1-i2)(-+i)=2(-+i)=-1+i.
(2)+()2 006=+
=-=i-=i-i=0.
反思与感悟 复数的运算可以看作多项式的化简,加减看作多项式加减,合并同类项,乘法和除法可看作多项式的乘法.21cnjy.com
跟踪训练4 计算:+-.
解 +-
=+-
=+-
=2-(i+3)-i=-1-2i.
[呈重点、现规律]
高考对本章考查的重点
1.对复数的概念的考查是考查复数的基础,要求准确理解虚数单位、复数、虚数、纯虚数、共轭复数、实部、虚部、复数的模等概念.21教育网
2.对复数四则运算的考查可能性较大,要加以重视,其中复数的乘法运算与多项式的乘法运算类似;对于复数的除法运算,将分子分母同时乘以分母的共轭复数.最后整理成a+bi(a,b∈R)的结构形式.2·1·c·n·j·y
3.对复数几何意义的考查.在高考中一般会结合复数的概念、复数的加减运算考查复数的几何意义、复数加减法的几何意义.【来源:21·世纪·教育·网】