阶段质量检测(二) 推理与证明
(时间: 120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)21cnjy.com
1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是( )
A.归纳推理 B.类比推理
C.演绎推理 D.非以上答案
解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C.
2.自然数是整数,4是自然数,所以4是整数.以上三段论推理( )
A.正确
B.推理形式不正确
C.两个“自然数”概念不一致
D.“两个整数”概念不一致
解析:选A 三段论中的大前提、小前提及推理形式都是正确的.
3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:
①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.
则说法中正确的个数有( )
A.0 B.1
C.2 D.3
解析:选B 可用反证法推出①,②不正确,因此③正确.
4.下列推理正确的是( )
A.把a(b+c)与loga(x+y)类比,则有loga(x+y)=logax+logay
B.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin y
C.把a(b+c)与ax+y类比,则有ax+y=ax+ay
D.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)
解析:选D (xy)z=x(yz)是乘法的结合律,正确.
5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )21·世纪*教育网
A.(3,9) B.(4,8)
C.(3,10) D.(4,9)
解析:选D 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.
6.求证:+>.
证明:因为+和都是正数,
所以为了证明+>,
只需证明(+)2>()2,展开得5+2>5,
即2>0,此式显然成立,所以不等式+>成立.
上述证明过程应用了( )
A.综合法 B.分析法
C.综合法、分析法配合使用 D.间接证法
解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.2-1-c-n-j-y
7.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为( )21*cnjy*com
A.a1a2a3…a9=29 B.a1+a2+…+a9=29
C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9
解析:选D 由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.
8.若数列{an}是等比数列,则数列{an+an+1}( )
A.一定是等比数列
B.一定是等差数列
C.可能是等比数列也可能是等差数列
D.一定不是等比数列
解析:选C 设等比数列{an}的公比为q,则an+an+1=an(1+q).∴当q≠-1时,{an+an+1}一定是等比数列;2·1·c·n·j·y
当q=-1时,an+an+1=0,此时为等差数列.
9.已知a+b+c=0,则ab+bc+ca的值( )
A.大于0 B.小于0
C.不小于0 D.不大于0
解析:选D 法一:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-≤0.【出处:21教育名师】
法二:令c=0,若b=0,则ab+bc+ac=0,否则a,b异号,∴ab+bc+ac=ab<0,排除A、B、C,选D.21*cnjy*com
10.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么a,b,c的值为( )www-2-1-cnjy-com
A.a=,b=c= B.a=b=c=
C.a=0,b=c= D.不存在这样的a,b,c
解析:选A 令n=1,2,3,
得
所以a=,b=c=.
11.已知数列{an}的前n项和Sn,且a1=1,Sn=n2an(n∈N*),可归纳猜想出Sn的表达式为( )
A.Sn= B.Sn=
C.Sn= D.Sn=
解析:选A 由a1=1,得a1+a2=22a2,∴a2=,S2=;又1++a3=32a3,∴a3=,S3==;
又1+++a4=16a4,得a4=,S4=.
由S1=,S2=,S3=,S4=可以猜想Sn=.
12.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2 016=( )
x
1
2
3
4
5
f(x)
4
1
3
5
2
A.1 B.2
C.4 D.5
解析:选D x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{xn}是周期为4的数列,所以x2 016=x4=5,故应选D.21教育网
二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上)
13.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1,在用反证法证明时,假设应为________.【来源:21cnj*y.co*m】
解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x,y都大于1”.
答案:x,y都大于1
14.已知a>0,b>0,m=lg,n=lg,则m,n的大小关系是________.
解析:ab>0?>0?a+b+2>a+b?
(+)2>()2?+>?
>?lg>lg .
答案:m>n
15.已知 =2, =3, =
4,…, =6,a,b均为正实数,由以上规律可推测出a,b的值,则a+b=________.
解析:由题意归纳推理得 =6,b=62-1
=35,a=6.∴a+b=6+35=41.
答案:41
16.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为.
答案:
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)用综合法或分析法证明:
(1)如果a,b>0,则lg ≥;
(2)6+>2+2.
证明:(1)当a,b>0时,有≥,
∴lg≥lg,
∴lg≥lg ab=.
(2)要证 +>2+2,
只要证(+)2>(2+2)2,
即2>2,这是显然成立的,
所以,原不等式成立.
18.(本小题满分12分)若a1>0,a1≠1,an+1=(n=1,2,…).
(1)求证:an+1≠an;
(2)令a1=,写出a2,a3,a4,a5的值,观察并归纳出这个数列的通项公式an(不要求证明).www.21-cn-jy.com
解:(1)证明:若an+1=an,即=an,
解得an=0或1.
从而an=an-1=…=a2=a1=0或1,
这与题设a1>0,a1≠1相矛盾,
所以an+1=an不成立.
故an+1≠an成立.
(2)由题意得a1=,a2=,a3=,a4=,a5=,由此猜想:an=.
19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.21·cn·jy·com
(2)已知 和 都是无理数,试证:+也是无理数.
证明:依题设和都是无理数,而无理数与无理数之和是无理数,所以+必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.【来源:21·世纪·教育·网】
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-,而关于x的方程x2+2x+5-m2=0的判别式Δ=4(m2-4),∵-2解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形.
(2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.【版权所有:21教育】
(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.21教育名师原创作品
20.(本小题满分12分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),
求证:数列{bn}中任意不同的三项都不可能成为等比数列.
解:(1)由已知得
∴d=2.
故an=2n-1+,Sn=n(n+).
(2)由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0,
∵p,q,r∈N*,∴
∴2=pr,(p-r)2=0.
∴p=r,与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成等比数列.
21.(本小题满分12分)已知:sin2 30°+sin2 90°+sin2 150°=,sin2 5°+sin2 65°+sin2 125°=,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.21世纪教育网版权所有
解:一般形式为:
sin2α+sin2(α+60°)+sin2(α+120°)=.
证明:左边=++
=-[cos 2α+cos(2α+120°)+cos(2α+240°)]
=-(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°)
=-cos 2α-cos 2α-sin 2α-cos 2α+sin 2α==右边.
将一般形式写成sin2(α-60°)+sin2α+sin2(α+60°)=也正确
22.(本小题满分12分)根据要求证明下列各题:
(1)用分析法证明:已知非零向量a,b,且a⊥b,求证:≤;
(2)用反证法证明:1,,3不可能是一个等差数列中的三项.
证明:(1)a⊥b?a·b=0,要证≤.
只需证|a|+|b|≤ |a+b|,
只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),
只需证|a|2+2|a||b|+|b|2≤2a2+2b2,
只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,
上式显然成立,故原不等式得证.
(2)假设1,,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),
则数列的公差d==,即-1=,
因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以为有理数,
所以-1是有理数,这与-1是无理数相矛盾.
故假设不成立,所以1,,3不可能是一个等差数列的三项.