5.2 平行线及其判定
5.2.1平行线
1.下列说法中,正确的是( )
A.平面内,没有公共点的两条线段平行
B.平面内,没有公共点的两条射线平行
C.没有公共点的两条直线互相平行
D.互相平行的两条直线没有公共点
2.如图所示,能相交的是__________,平行的是__________.
3.在同一平面内,直线AB与直线CD满足下列条件,则其对应的位置关系是
(1)若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为__________;
(2)直线AB与直线CD有且只有一个公共点,则直线AB与直线CD的位置关系为__________.
4.如图,完成下列各题:
(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;
(2)用符号表示上面①、②中的平行、垂直关系.
5.若直线a∥b,b∥c,则a∥c的依据是( )
A.平行公理 B.等量代换
C.等式的性质 D.平行于同一条直线的两条直线平行
6.如图,PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是______________________________.
7.如图,P,Q分别是直线EF外两点.
(1)过P画直线AB∥EF,过Q画直线CD∥EF.
(2)AB与CD有怎样的位置关系?为什么?
8.下列说法中,正确的是( )
A.同一平面内的两条直线叫平行线
B.平行线在同一平面内
C.不相交的两条直线叫平行线
D.过直线外一点有且只有一条直线与已知直线相交
9.下列说法中,正确的个数为( )
①过一点有无数条直线与已知直线平行;
②经过直线外一点有且只有一条直线与已知直线平行;
③如果两条线段不相交,那么它们就平行;
④如果两条直线不相交,那么它们就平行.
A.1个 B.2个 C.3个 D.4个
10.在同一平面内,下面关于一条直线和两条平行线的位置关系的说法中,正确的是( )
A.一定与两条平行线都平行
B.可能与两条平行线都相交或都平行
C.一定与两条平行线都相交
D.可能与两条平行线中的一条平行,一条相交
11.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:__________,__________.
12.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作__________的平行线即可,其理由是________________________________________.
13.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必__________.
14.如图所示,在∠AOB内有一点P.
(1)过P画l1∥OA;
(2)过P画l2∥OB;
(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.
15.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?
16.利用直尺画图:
(1)利用图1中的网格,过P点画直线AB的平行线和垂线;
(2)把图2网格中的三条线段通过平移使三条线段AB,CD,EF首尾顺次相接组成一个三角形;
(3)在图3的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.
参考答案
1.D 2.③⑤
3.(1)平行
(2)相交
4.(1)图略.
(2)EF∥AB,MC⊥CD.
5.D
6.经过直线外一点,有且只有一条直线与这条直线平行
7.(1)图略.
(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.
8.B 9.A 10.B 11.CD∥MN GH∥PN 12.AB 平行于同一条直线的两条直线平行 13.相交
14.(1)(2)图略;
(3)l1与l2的夹角有两个:∠1,∠2.因为∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.
15.因为AB∥EF,CD∥EF,所以CD∥AB.
16.(1)CD∥AB,PQ⊥AB.
(2)△EFG或△EFH都是所求作的三角形.
(3)四边形ABCD是符合条件的四边形.
5.2.2 平行线的判定
1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )
A.同位角相等,两直线平行
B.内错角相等,两直线平行
C.两直线平行,同位角相等
D.两直线平行,内错角相等
2.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )
A.①② B.①③ C.①④ D.③④
3.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
4.如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC(____________________________).
5.如图,∠1=∠2,∠2=∠3,你能判断图中哪些直线平行,并说出理由.
6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( )
A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°
7.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于__________.
8.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).
9.如图,下列条件中能判断直线l1∥l2的是( )
A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180° D.∠3=∠5
10.如图,在下列条件中,能判断AD∥BC的是( )
A.∠DAC=∠BCA B.∠DCB+∠ABC=180° C.∠ABD=∠BDC D.∠BAC=∠ACD
11.对于图中标记的各角,下列条件能够推理得到a∥b的是( )
A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°
12.如图,直线a、b被直线c所截,若满足____________________,则a、b平行.
13.如图,用式子表示下列句子.
(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;
(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;
(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.
14.如图所示,推理填空:
(1)∵∠1=__________(已知),
∴AC∥ED(同位角相等,两直线平行).
(2)∵∠2=__________(已知),
∴AB∥FD(内错角相等,两直线平行).
(3)∵∠2+__________=180°(已知),
∴AC∥ED(同旁内角互补,两直线平行).
15.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.
16.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.
17.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?
答案
1.A 2.A 3.D 4.内错角相等,两直线平行
5.DE∥BF,AB∥CD.
理由如下:
∵∠1=∠2,
∴DE∥BF(同位角相等,两直线平行).
∵∠2=∠3,
∴∠1=∠3(等量代换).
∴AB∥CD(内错角相等,两直线平行).
6.C 7.80° 8.合格
9.C 10.A 11.D
12.答案不唯一,如:∠1=∠2或∠2=∠3或∠3+∠4=180°
13.(1)∵∠1=∠B(已知),
∴DE∥BC(同位角相等,两直线平行).
(2)∵∠1=∠2(已知),
∴EF∥AB(内错角相等,两直线平行).
(3)∵∠BDE+∠B=180°(已知),
∴DE∥BC(同旁内角互补,两直线平行).
14.(1)∠C
(2)∠BED
(3)∠AFD
15.∵∠ACD=70°,∠ACB=60°,
∴∠BCD=130°.
∵∠ABC=50°,
∴∠BCD+∠ABC=180°.
∴AB∥CD.
16.PG∥QH,AB∥CD.
∵PG平分∠APQ,QH平分∠DQP,
∴∠1=∠GPQ=∠APQ,∠PQH=∠2=∠PQD.
又∵∠1=∠2,
∴∠GPQ=∠PQH,∠APQ=∠PQD.
∴PG∥QH,AB∥CD.
17.CD∥EF.
理由如下:
∵AB⊥BD,CD⊥BD,
∴AB∥CD.
∵∠1+∠2=180°,
∴AB∥EF.
∴CD∥EF.