机械能守恒 功能关系 二轮专题复习:4.机械能守恒定律及功能关系高考真题

文档属性

名称 机械能守恒 功能关系 二轮专题复习:4.机械能守恒定律及功能关系高考真题
格式 zip
文件大小 37.0KB
资源类型 教案
版本资源 通用版
科目 物理
更新时间 2018-03-26 07:42:18

图片预览

文档简介

[真题1] (2017·高考全国卷Ⅱ)(多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0.若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中(  )
A.从P到M所用的时间等于
B.从Q到N阶段,机械能逐渐变大
C.从P到Q阶段,速率逐渐变小
D.从M到N阶段,万有引力对它先做负功后做正功
解析:选CD.A错:由开普勒第二定律可知,相等时间内,太阳与海王星连线扫过的面积都相等.
B错:由机械能守恒定律知,从Q到N阶段,机械能守恒.
C对:从P到Q阶段,万有引力做负功,动能减小,速率逐渐变小.
D对:从M到N阶段,万有引力与速度的夹角先是钝角后是锐角,即万有引力对它先做负功后做正功.
[真题2] (2017·高考全国卷Ⅲ)如图,一质量为m,长度为l的均匀柔软细绳PQ竖直悬挂.用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距l.重力加速度大小为g.在此过程中,外力做的功为(  )
A.mgl        B.mgl
C.mgl D.mgl
解析:选A.以均匀柔软细绳MQ段为研究对象,其质量为m,取M点所在的水平面为零势能面,开始时,细绳MQ段的重力势能Ep1=-mg·=-mgl,用外力将绳的下端Q缓慢地竖直向上拉起至M点时,细绳MQ段的重力势能Ep2=-mg·=-mgl,则外力做的功即克服重力做的功等于细绳MQ段的重力势能的变化,即W=Ep2-Ep1=-mgl+mgl=mgl,选项A正确.
[真题3] (2017·高考全国卷Ⅰ)一质量为8.00×104 kg的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105 m处以7.50×103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2.(结果保留2位有效数字)
(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;
(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.
解析:(1)飞船着地前瞬间的机械能为
Ek0=mv ①
式中,m和v0分别是飞船的质量和着地前瞬间的速率.由①式和题给数据得
Ek0=4.0×108 J ②
设地面附近的重力加速度大小为g.飞船进入大气层时的机械能为
Eh=mv+mgh ③
式中,vh是飞船在高度1.60×105 m处的速度大小.由③式和题给数据得
Eh≈2.4×1012 J ④
(2)飞船在高度h′=600 m处的机械能为
Eh′=m2+mgh′ ⑤
由功能原理得
W=Eh′-Ek0 ⑥
式中,W是飞船从高度600 m处至着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得
W≈9.7×108 J ⑦
答案:(1)4.0×108 J 2.4×1012 J (2)9.7×108 J
[预测题4] 轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动.重力加速度大小为g.
(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;
(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.
解析:(1)依题意,当弹簧竖直放置,长度被压缩至l时,质量为5m的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律知,弹簧长度为l时的弹性势能为Ep=5mgl ①
设P的质量为M,到达B点时的速度大小为vB,由能量守恒定律得
Ep=Mv+μMg·4l ②
联立①②式,取M=m并代入题给数据得
vB= ③
若P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足
mg≤m ④
设P滑到D点时的速度为vD,由机械能守恒定律得
mv=mv+mg·2l ⑤
联立③⑤式得
vD= ⑥
vD满足④式要求,故P能运动到D点,并从D点以速度vD水平射出.设P落回到轨道AB所需的时间为t,由运动学公式得
2l=gt2 ⑦
P落回到AB上的位置与B点之间的距离为
s=vDt ⑧
联立⑥⑦⑧式得
s=2l ⑨
(2)为使P能滑上圆轨道,它到达B点时的速度不能小于零.由①②式可知5mgl>μMg·4l

要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C.由机械能守恒定律有
Mv≤Mgl ?
联立①②⑩?式得
m≤M答案:(1) 2l (2)m≤M
同课章节目录