2017-2018学年 高中物理 第十八章原子结构(课件+学案) 新人教版选修3-5

文档属性

名称 2017-2018学年 高中物理 第十八章原子结构(课件+学案) 新人教版选修3-5
格式 zip
文件大小 2.2MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2018-03-26 09:15:10

文档简介

1 电子的发现 2 原子的核式结构模型
[目标定位] 1.知道阴极射线是由电子组成的以及电荷量是量子化的.2.了解α粒子散射实验的原理和现象以及卢瑟福原子核式结构模型的主要内容.3.知道原子和原子核的大小数量级,原子核的电荷数.
一、阴极射线
                   
1.实验
图1
如图1所示,真空玻璃管中K是金属板制成的阴极,接感应圈的负极,A是金属环制成的阳极,接感应圈的正极,会在K、A间产生近万伏的高电压,可观察到玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影.
2.阴极射线
荧光的实质是由于玻璃受到阴极发出的某种射线的撞击而引起的,这种射线被命名为阴极射线.
【深度思考】
阴极射线中的粒子全部来源于阴极吗?
答案 在通常情况下,气体是不导电的,在强电场条件下,气体能够被电离而导电.在高真空的放电管中,阴极射线中的粒子主要来自阴极.对于真空度不高的放电管,粒子还可能来自管中的气体.
【例1】 (多选)下面对阴极射线的认识正确的是(  )
A.阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光粉而产生的
B.只要阴阳两极间加有电压,就会有阴极射线产生
C.阴极射线是真空玻璃管内由阴极发生的射线
D.阴阳两极间加有高压时,电场很强,阴极中的电子受到很强的电场力作用而脱离阴极
解析 阴极射线是由阴极直接发出的,故A错误;只有当两极间有高压且阴极接电源负极时,阴极中的电子才会受到足够大的电场力作用而脱离阴极成为阴极射线,故B错误,D正确;阴极射线是真空玻璃管内由阴极发出的射线,C正确.
答案 CD
阴极射线的实质是带负电的电子流,电子在电场(或磁场)中运动时所受的电场力(或洛伦兹力)远大于其自身的重力,故研究阴极射线在电、磁场中的运动时,除题目特别说明外,一般不考虑重力的影响.
二、电子的发现                   
1.汤姆孙根据阴极射线分别通过电场或磁场发生偏转,根据偏转情况,证明了它的本质是带负电的粒子流,并求出其比荷.
2.换用不同材料的阴极做实验,所得比荷的数值都相同,证明这种粒子是构成各种物质的共有成分.
3.密立根通过著名的“油滴实验”精确地测出了电子电荷量.电子电荷量一般取e=1.6×10-19_C,电子质量me=9.1×10-31_kg.
【例2】 (多选)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”,关于电子的说法正确的是(  )
A.电子是原子核的组成部分
B.电子电荷的精确测定最早是由密立根通过著名的“油滴实验”实现的
C.电子电荷量的数值约为1.602×10-19 C
D.电子质量与电荷量的比值称为电子的比荷
解析 电子是原子的组成部分,电子的发现说明原子是可以再分的.电子的电荷量与质量的比值称为电子的比荷,也叫荷质比.
答案 BC
【例3】 电子的电荷量最早由美国科学家密立根通过油滴实验测出,如图2所示,两块水平放置的平行金属板上、下极板与电源正负极相接,上、下极板分别带正、负电荷,油滴从喷雾器喷出后,由于摩擦而起电,油滴进入上极板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动,两金属板间距为d,不计空气阻力和浮力.
图2
(1)调节两板的电势差u,当u=U0时,使得某个质量为m1的油滴恰好做匀速直线运动,求油滴所带的电荷量q为多少?
(2)若油滴进入电场时的速度可以忽略,当两金属板间的电势差u=U时,观察到某个质量为m2的油滴进入电场后做匀加速运动时,经过时间t运动到下极板,求此油滴的电荷量Q.
解析 (1)油滴匀速下落过程受到的电场力和重力平衡,由平衡条件得:q=m1g,得q=m1g.
(2)油滴加速下落,其所带电荷量为Q,因油滴带负电,则油滴所受的电场力方向向上,设此时的加速度的大小为a,由牛顿第二定律和运动学公式得:m2g-Q=m2a,
d=at2,解得Q=.
答案 (1) (2)
解决带电粒子在电场中运动的三个步骤
(1)确定研究对象,并根据题意判断是否可以忽略带电粒子的重力.在本题中,油滴是个实物粒子,受重力较大,且题目中强调其在电场中能做匀速直线运动,不能忽略其重力;
(2)对研究对象进行受力分析,必要时要画出力的示意图;
(3)选用恰当的物理规律列方程求解.
三、α粒子散射实验
1.α粒子
从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7 300倍.
2.实验装置和实验现象
(1)装置:放射源、金箔、荧光屏等,如图3所示.

图3
(2)现象:①绝大多数的α粒子穿过金箔后仍沿原来的方向前进.
②少数α粒子发生较大的偏转.
③极少数α粒子偏转角度超过90°,有的几乎达到180°.
【深度思考】
α粒子散射实验现象能否定汤姆孙原子模型的依据是什么?
答案 (1)α粒子在穿过原子之间时,所受周围的正、负电荷作用的库仑力是平衡的,α粒子不会发生偏转.
(2)α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.
【例4】 (多选)如图4为卢瑟福所做的α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述说法中正确的是(  )
图4
A.相同时间内在A时观察到屏上的闪光次数最多
B.相同时间内在B时观察到屏上的闪光次数比放在A时稍少些
C.放在D位置时屏上仍能观察到一些闪光,但次数极少
D.放在C、D位置时屏上观察不到闪光
解析 在卢瑟福α粒子散射实验中,α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进,故A正确;少数α粒子发生大角度偏转,极少数α粒子偏转角度大于90°,极个别α粒子反弹回来,所以在B位置只能观察到少数的闪光,在C、D两位置能观察到的闪光次数极少,故B、D错,C对.
答案 AC
α粒子散射实验问题
(1)明确实验装置中各部分的组成及作用.
(2)弄清实验现象,知道“绝大多数”、“少数”和“极少数”粒子的运动情况.
针对训练 卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是(  )
答案 D
解析 α粒子轰击金箔后偏转,越靠近金原子核,偏转的角度越大,所以A、B、C错误,D正确.
四、卢瑟福原子核式结构模型                  
1.内容:在原子中心有一个很小的核,叫原子核.原子的全部正电荷和几乎全部质量都集中在核内,带负电的电子在核外空间绕核旋转.
2.对α粒子散射实验现象的解释
(1)当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,运动方向改变很小,因为原子核很小,所以绝大多数α粒子不发生偏转.
(2)只有当α粒子十分接近原子核穿过时,才受到很大的库仑力作用,偏转角才很大,而这种机会很少.
(3)如果α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少,如图5所示.

图5
3.原子核的电荷与尺度
(1)原子内的电荷关系
各种元素的原子核的电荷数,即原子内含有的电子数,非常接近它们的原子序数.
(2)原子核的组成
原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数.
(3)原子核的大小
对于一般的原子核,实验确定的核半径R的数量级为10-15_m,而整个原子半径的数量级是10-10_m.因而原子内部十分“空旷”.
【例5】 (多选)关于α粒子的散射实验,下列说法中正确的是(  )
A.该实验说明原子中正电荷是均匀分布的
B.α粒子发生大角度散射的主要原因是原子中原子核的作用
C.只有少数α粒子发生大角度散射的原因是原子的全部正电荷和几乎全部质量集中在一个很小的核上
D.卢瑟福根据α粒子散射实验提出了原子核式结构理论
解析 α粒子散射实验中,有少数α粒子发生大角度偏转说明三点:一是原子内有一质量很大的粒子存在;二是这一粒子带有较大的正电荷;三是这一粒子的体积很小,但不能说明原子中正电荷是均匀分布的,故A错误,B、C正确;卢瑟福依据α粒子散射实验的现象提出了原子的核式结构理论,D正确.
答案 BCD
对α粒子散射实验要清楚两点:一是α粒子散射实验的实验现象;二是对实验现象的微观解释——原子的核式结构.
                  
1.(电子的发现及对电子的认识)(多选)关于阴极射线的性质,判断正确的是(  )
A.阴极射线带负电
B.阴极射线带正电
C.阴极射线的比荷比氢原子比荷大
D.阴极射线的比荷比氢原子比荷小
答案 AC
解析 通过让阴极射线在电场、磁场中的偏转的研究发现阴极射线带负电,其比荷比氢原子的比荷大得多,故A、C正确.
2.(电子的发现及对电子的认识)(多选)如图6所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹下偏,则(  )
图6
A.导线中的电流由A流向B
B.导线中的电流由B流向A
C.如要使电子束的径迹向上偏,可以通过改变AB中电流的方向来实现
D.电子的径迹与AB中电流的方向无关
答案 BC
解析 阴极射线带负电,由左手定则判断管内磁场垂直纸面向里;由安培定则判断AB中电流的方向由B流向A.电流方向改变,管内磁场方向改变,电子受力方向也改变.
3.(α粒子散射实验的理解)(多选)关于α粒子散射实验,下列说法正确的是(  )
A.在实验中,观察到的现象是:绝大多数α粒子穿过金箔后,仍沿原来的方向前进,极少数发生了较大角度的偏转
B.使α粒子发生明显偏转的力来自带正电的核和核外电子,当α粒子接近核时,是核的斥力使α粒子发生明显偏转;当α粒子接近电子时,是电子的吸引力使之发生明显偏转
C.实验表明:原子中心有一个极小的核,它占有原子体积的极小部分
D.实验表明:原子中心的核带有原子的全部正电荷和全部原子的质量
答案 AC
解析 α粒子散射实验的现象是:绝大多数α粒子几乎不发生偏转;少数α粒子发生了较大角度的偏转;极少数α粒子发生了大角度偏转,A正确;当α粒子接近核时,是核的斥力使α粒子发生明显偏转,B错误;从绝大多数α粒子几乎不发生偏转,推测使粒子受到排斥力的核体积极小,C正确;实验表明原子中心的核带有原子的全部正电和绝大部分质量,D错误.
4.(原子的核式结构模型)(多选)卢瑟福原子核式结构理论的主要内容有(  )
A.原子的中心有个核,叫原子核
B.原子的正电荷均匀分布在整个原子中
C.原子的全部正电荷和几乎全部质量都集中在原子核内
D.带负电的电子在核外绕着核旋转
答案 ACD
解析 卢瑟福原子核式结构理论的主要内容是:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子在核外空间绕着核旋转,由此可见,B选项错误,A、C、D选项正确.
5.(原子的核式结构模型)X表示金原子核,α粒子射向金核被散射,若它们入射时的动能相同,其偏转轨道可能是下图中的(  )
答案 D
解析 α粒子离金核越远其所受斥力越小,轨道弯曲程度就越小,故选项D正确.
                   
题组一 电子的发现及对电子的认识
1.关于阴极射线的本质,下列说法正确的是(  )
A.阴极射线本质是氢原子
B.阴极射线本质是电磁波
C.阴极射线本质是电子
D.阴极射线本质是X射线
答案 C
解析 阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.
2.(多选)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”.下列关于电子的说法正确的是(  )
A.任何物质中均有电子
B.不同的物质中具有不同的电子
C.电子质量是质子质量的1 836倍
D.电子是一种粒子,是构成物质的基本单元
答案 AD
解析 汤姆生对不同材料的阴极发出的射线进行研究,均为同一种粒子—即电子,电子是构成物质的基本单元,它的质量远小于质子质量;由此可知A、D正确,B、C错误.
3.阴极射线从阴极射线管中的阴极发出,在其间的高电压下加速飞向阳极,如图1所示.若要使射线向上偏转,所加磁场的方向应为(  )
图1
A.平行于纸面向左 B.平行于纸面向上
C.垂直于纸面向外 D.垂直于纸面向里
答案 C
解析 由于阴极射线的本质是电子流,阴极射线方向向右,说明电子的运动方向向右,相当于存在向左的电流,利用左手定则,为使电子所受洛伦兹力方向平行于纸面向上,磁场方向应为垂直于纸面向外,故选项C正确.
4.(多选)如图2所示是阴极射线显像管及其偏转圈的示意图,显像管中有一个阴极,工作时它能发射阴极射线,荧光屏被阴极射线轰击就能发光.安装在管颈的偏转线圈产生偏转磁场,可以使阴极射线发生偏转.下列说法中正确的是(  )
图2
A.如果偏转线圈中没有电流,则阴极射线应该打在荧光屏正中的O点
B.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上A点,则偏转磁场的磁感应强度的方向应该垂直纸面向里
C.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上B点,则偏转磁场的磁感应强度的方向应该垂直纸面向里
D.如果要使阴极射线在荧光屏上的位置由B点向A点移动,则偏转磁场的磁感应强度应该先由小到大,再由大到小
答案 AC
解析 偏转线圈中没有电流,阴极射线沿直线运动,打在O点,A正确;由阴极射线的电性及左手定则可知B错误,C正确;由R=可知,B越小,R越大,故磁感应强度应先由大变小,再由小变大,故D错误.
题组二 对α粒子散射实验的理解
5.(多选)在α粒子散射实验中,选用金箔的原因下列说法正确的是(  )
A.金具有很好的延展性,可以做成很薄的箔
B.金核不带电
C.金原子核质量大,被α粒子轰击后不易移动
D.金核半径大,易形成大角度散射
答案 ACD
解析 α粒子散射实验中,选用金箔是因为金具有很好的延展性,可以做成很薄的箔,α粒子很容易穿过,A正确.金原子核质量大,被α粒子轰击后不易移动,C正确.金核带正电,半径大,易形成大角度散射.故D正确,B错误.
6.在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图3所示,图中P、Q两点为轨迹上的点,虚线是过P、Q两点并与轨道相切的直线.两虚线和轨迹将平面分成四个区域,不考虑其他原子核对α粒子的作用,那么关于该原子核的位置,下列说法正确的是(  )
图3
A.可能在①区域 B.可能在②区域
C.可能在③区域 D.可能在④区域
答案 A
解析 因为α粒子与此原子核之间存在着斥力,如果原子核在②、③或④区,α粒子均应向①区偏折,所以不可能.
7.当α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是(  )
A.α粒子先受到原子核的斥力作用,后受原子核的引力作用
B.α粒子一直受到原子核的斥力作用
C.α粒子先受到原子核的引力作用,后受到原子核的斥力作用
D.α粒子一直受到库仑斥力,速度一直减小
答案 B
解析 α粒子与金原子核带同种电荷,两者相互排斥,故A、C错误,B正确;α粒子在靠近金原子核时斥力做负功,速度减小,远离时斥力做正功,速度增大,故D错误.
题组三 卢瑟福的核式结构模型
8.(多选)关于卢瑟福的原子核式结构学说的内容,下列叙述正确的是(  )
A.原子是一个质量分布均匀的球体
B.原子的质量几乎全部集中在原子核内
C.原子的正电荷和负电荷全部集中在一个很小的核内
D.原子半径的数量级是10-10 m,原子核半径的数量级是10-15 m
答案 BD
9.α粒子散射实验中,不考虑电子和α粒子的碰撞影响,是因为(  )
A.α粒子与电子根本无相互作用
B.α粒子受电子作用的合力为零,电子是均匀分布的
C.α粒子和电子碰撞损失的能量极少,可忽略不计
D.电子很小,α粒子碰撞不到电子
答案 C
解析 在α粒子散射实验中,电子与α粒子存在相互作用,A错;电子质量大约只有α粒子的,电子与α粒子碰撞后,电子对α粒子的影响就像灰尘对子弹的影响,完全可忽略不计,C正确,B、D错误.
10.(多选)α粒子散射实验中,当α粒子最接近金原子核时,α粒子符合下列哪种情况(  )
A.动能最小
B.势能最小
C.α粒子与金原子核组成的系统的能量小
D.所受金原子核的斥力最大
答案 AD
解析 α粒子在接近金原子核的过程中,要克服库仑斥力做功,动能减少,电势能增加,两者相距最近时,动能最小,电势能最大,总能量守恒.根据库仑定律,距离最近时,斥力最大.
题组四 综合应用
11.为了测定带电粒子的比荷,让这个带电粒子垂直电场方向飞进平行金属板间,已知匀强电场的场强为E,在通过长为L的两金属板间后,测得偏离入射方向的距离为d,如果在两板间加垂直于电场方向的匀强磁场,磁场方向垂直于粒子的入射方向,磁感应强度为B,则粒子恰好不偏离原来的方向,求为多少?
答案 
解析 设带电粒子以速度v0垂直电场方向进入匀强电场,则d=at2=2①
此带电粒子垂直入射到正交的电磁场区域时不发生偏转,
由平衡条件qE=qv0B,
得v0=②
由①②两式得=
解得=.
12.电子所带电荷量的精确数值最早是由美国物理学家密立根通过油滴实验测得的.他测定了数千个带电油滴的电荷量,发现这些电荷量都等于某个最小电荷量的整数倍.这个最小电荷量就是电子所带的电荷量.密立根实验的原理图如图4所示,A、B是两块平行放置的水平金属板,A板带正电,B板带负电.从喷雾器嘴喷出的小油滴,落到A、B两板之间的电场中.小油滴由于摩擦而带负电,调节A、B两板间的电压,可使小油滴受到的电场力和重力平衡.已知小油滴静止处的电场强度是1.92×105 N/C,油滴半径是1.64×10-4 cm,油的密度是0.851 g/cm3,求油滴所带的电荷量.这个电荷量是电子电荷量的多少倍?(g取9.8 m/s2)
图4
答案 8.02×10-19 C 5
解析 小油滴质量m=ρV=ρ·πr3①
由题意知mg=qE②
由①②两式可得q=
=C≈8.02×10-19 C
=≈5
因此小油滴所带电荷量q是电子电荷量e的5倍.
课件30张PPT。[目标定位] 1.知道阴极射线是由电子组成的以及电荷量是量子化的.2.了解α粒子散射实验的原理和现象以及卢瑟福原子核式结构模型的主要内容.3.知道原子和原子核的大小数量级,原子核的电荷数.1.实验图1如图1所示,真空玻璃管中K是金属板制成的 ,接感应圈
的负极,A是金属环制成的 ,接感应圈的正极,会在K、
A间产生 的高电压,可观察到玻璃壁上 及管
中物体在玻璃壁上的影.阴极阳极近万伏淡淡的荧光2.阴极射线
荧光的实质是由于玻璃受到 发出的某种射线的撞击
而引起的,这种射线被命名为 .阴极阴极射线【深度思考】
阴极射线中的粒子全部来源于阴极吗?
答案 在通常情况下,气体是不导电的,在强电场条件下,气体能够被电离而导电.在高真空的放电管中,阴极射线中的粒子主要来自阴极.对于真空度不高的放电管,粒子还可能来自管中的气体.解析 阴极射线是由阴极直接发出的,故A错误;只有当两极间有高压且阴极接电源负极时,阴极中的电子才会受到足够大的电场力作用而脱离阴极成为阴极射线,故B错误,D正确;阴极射线是真空玻璃管内由阴极发出的射线,C正确.
答案 CD1.汤姆孙根据阴极射线分别通过电场或磁场发生偏转,根据 情况,证明了它的本质是 的粒子流,并求
出其比荷.
2.换用 的阴极做实验,所得 的数值都相同,
证明这种粒子是构成各种物质的共有成分.
3.密立根通过著名的“油滴实验”精确地测出了电子电荷量.电子电荷量一般取e= ,电子质量me=
.偏转带负电不同材料比荷1.6×10-19 C9.1×10-31 kg解析 电子是原子的组成部分,电子的发现说明原子是可以再分的.电子的电荷量与质量的比值称为电子的比荷,也叫荷质比.
答案 BC【例3】 电子的电荷量最早由美国科学家密立根通过油滴实验测出,如图2所示,两块水平放置的平行金属板上、下极板与电源正负极相接,上、下极板分别带正、负电荷,油滴从喷雾器喷出后,由于摩擦而起电,油滴进入上极板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动,两金属板间距为d,不计空气阻力和浮力.图21.α粒子
从放射性物质(如铀和镭)中发射出来的快速运动的粒
子,带有两个单位的 电荷,质量为 质量的
4倍、电子质量的7 300倍.正氢原子2.实验装置和实验现象
(1)装置:放射源、金箔、荧光屏等,如图3所示.图3(2)现象:①绝大多数的α粒子穿过金箔后 方向
前进.
②少数α粒子发生 的偏转.
③极少数α粒子偏转角度超过90°,有的几乎达到180°.仍沿原来的较大【深度思考】
α粒子散射实验现象能否定汤姆孙原子模型的依据是什么?
答案 (1)α粒子在穿过原子之间时,所受周围的正、负电荷作用的库仑力是平衡的,α粒子不会发生偏转.
(2)α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.【例4】 (多选)如图4为卢瑟福所做的α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述说法中正确的是 (  )图4A.相同时间内在A时观察到屏上的闪光次数最多
B.相同时间内在B时观察到屏上的闪光次数比放在A时稍少些
C.放在D位置时屏上仍能观察到一些闪光,但次数极少
D.放在C、D位置时屏上观察不到闪光
解析 在卢瑟福α粒子散射实验中,α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进,故A正确;少数α粒子发生大角度偏转,极少数α粒子偏转角度大于90°,极个别α粒子反弹回来,所以在B位置只能观察到少数的闪光,在C、D两位置能观察到的闪光次数极少,故B、D错,C对.
答案 AC针对训练 卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是 (  ) 答案 D
解析 α粒子轰击金箔后偏转,越靠近金原子核,偏转的角度越大,所以A、B、C错误,D正确.1.内容:在原子中心有一个很小的核,叫 .原子
的全部 和几乎全部 都集中在核内,带负电
的 在核外空间绕核旋转.
2.对α粒子散射实验现象的解释
(1)当α粒子穿过原子时,如果离核较远,受到原子核的
斥力 ,运动方向改变 ,因为原子核很小,所以
绝大多数α粒子不发生偏转.原子核正电荷质量很小很小电子(2)只有当α粒子十分接近原子核穿过时,才受到很大的库仑力作用,偏转角才很大,而这种机会很少.
(3)如果α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少,如图5所示.图53.原子核的电荷与尺度
(1)原子内的电荷关系
各种元素的原子核的电荷数,即原子内含有的 ,非常
接近它们的 .
(2)原子核的组成
原子核是由 组成的,原子核的电荷数就是核中的

(3)原子核的大小
对于一般的原子核,实验确定的核半径R的数量级为 ,
而整个原子半径的数量级是 .因而原子内部十分
“空旷”.电子数原子序数质子和中子质子数10-15 m10-10 m【例5】 (多选)关于α粒子的散射实验,下列说法中正确的是
(  )
A.该实验说明原子中正电荷是均匀分布的
B.α粒子发生大角度散射的主要原因是原子中原子核的作用
C.只有少数α粒子发生大角度散射的原因是原子的全部正电荷和几乎全部质量集中在一个很小的核上
D.卢瑟福根据α粒子散射实验提出了原子核式结构理论解析 α粒子散射实验中,有少数α粒子发生大角度偏转说明三点:一是原子内有一质量很大的粒子存在;二是这一粒子带有较大的正电荷;三是这一粒子的体积很小,但不能说明原子中正电荷是均匀分布的,故A错误,B、C正确;卢瑟福依据α粒子散射实验的现象提出了原子的核式结构理论,D正确.
答案 BCD 3 氢原子光谱
[目标定位] 1.了解光谱、连续谱和线状谱等概念.2.知道氢原子光谱的实验规律.3.知道经典物理的困难在于无法解释原子的稳定性和光谱分立特征.
一、光谱                  
1.定义
用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.
2.分类
(1)线状谱:由一条条的亮线组成的光谱.
(2)连续谱:由连在一起的光带组成的光谱.
3.特征谱线
各种原子的发射光谱都是线状谱,且不同原子的亮线位置不同,故这些亮线称为原子的特征谱线.
4.光谱分析
由于每种原子都有自己的特征谱线,可以利用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析,它的优点是灵敏度高,样本中一种元素的含量达到10-10_g时就可以被检测到.
【深度思考】
物质的光谱按其产生方式不同可分为两大类:发射光谱和吸收光谱,线状谱、连续谱和太阳光谱分别属于哪类光谱?
答案 (1)发射光谱——物体直接发出的光通过分光后产生的光谱.它分为连续谱和明线光谱(线状谱).
①连续谱——由连续分布的一切波长的光组成的光谱.炽热的固体、液体和高压气体的发射光谱是连续谱,如灯丝发出的光、炽热的钢水发出的光都形成连续谱.
②线状谱——只含有一些不连续的亮线的光谱.各种原子的发射光谱(由稀薄气体发出)都是线状谱.每种原子都有自己的特征谱线,不同元素线状谱不同.
(2)吸收光谱——高温物体发出的白光通过温度较低的物质时,某些波长的光被该物质吸收后产生的光谱.这种光谱的特点是在连续的背景上有若干条暗线.这些暗线与特征谱线相对应.太阳光谱是一种吸收光谱.
【例1】 (多选)关于光谱和光谱分析,下列说法中正确的是(  )
A.发射光谱包括连续谱和线状谱
B.太阳光谱是连续谱,氢光谱是线状谱
C.只有线状谱可用作光谱分析
D.光谱分析帮助人们发现了许多新元素
解析 光谱分为发射光谱和吸收光谱,发射光谱分为连续谱和线状谱,A正确;太阳光谱是吸收光谱,B错误;线状谱和吸收光谱都可用作光谱分析,C错误;光谱分析可以精确分析物质中所含元素,并能发现新元素,D正确.
答案 AD
光谱分析只能用特征谱线来分析,每种原子都有自己的特征谱线,不同元素线状谱不同,因此可用来分析物质中所含元素.
针对训练1 (多选)关于光谱,下列说法中正确的是(  )
A.炽热的液体发射连续谱
B.线状谱和吸收光谱都可以对物质进行光谱分析
C.太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元素
D.发射光谱一定是连续谱
答案 AB
解析 炽热的固体、液体和高压气体的发射光谱是连续光谱,故A正确;线状谱和吸收光谱都可以用来进行光谱分析,B正确;太阳光谱中的暗线说明太阳大气中含有与这些暗线相对应的元素,C错误;发射光谱有连续谱和线状谱,D错误.
二、氢原子光谱的实验规律                
1.研究光谱的意义
光是由原子内部电子的运动产生的,因此光谱研究是探索原子结构的一条重要途径.
2.巴耳末公式
巴耳末研究发现,氢原子在可见光区的四条谱线的波长能够用一个公式表示即巴耳末公式:=R(-),n=3,4,5…,式中R叫做里德伯常量,R=1.10×107 m-1.它确定的这一组谱线称为巴耳末系.式中的n只能取整数,不能连续取值.
【例2】 (多选)下列关于巴耳末公式=R的理解,正确的是(  )
A.此公式是巴耳末在研究氢原子光谱特征时发现的
B.公式中n可取任意值,故氢原子光谱是连续谱
C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱
D.公式不但适用于氢原子光谱的分析,也适用于其他原子的光谱
解析 此公式是巴耳末在研究氢原子光谱在可见光区的4条谱线中得到的,只适用于氢原子光谱的分析,且n只能取大于等于3的整数,则λ不能取连续值,故氢原子光谱是线状谱.
答案 AC
针对训练2 氢原子光谱巴耳末系最小波长与最大波长之比为(  )
A. B. C. D.
答案 A
解析 由巴耳末公式=R n=3,4,5,…
当n→∞时,有最小波长λ1,=R,
当n=3时,有最大波长λ2,=R,得=.
三、经典理论的困难                 
1.核式结构模型的成就:正确地指出了原子核的存在,很好的解释了α粒子散射实验.
2.经典理论的困难:既无法解释原子的稳定性,又无法解释原子光谱
的分立特征.
1.(光谱和光谱分析)(多选)关于太阳光谱,下列说法正确的是(  )
A.太阳光谱是吸收光谱
B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后产生的
C.根据太阳光谱中的暗线,可以分析太阳的物质组成
D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素
答案 AB
解析 太阳光谱是吸收光谱.因为太阳是一个高温物体,它发出的白光通过温度较低的太阳大气层时,会被太阳大气层中的某些元素的原子吸收,从而使我们观察到的太阳光谱是吸收光谱,所以分析太阳的吸收光谱,可知太阳大气层的物质组成,而某种物质要观察到它的吸收光谱,要求它的温度不能太低,但也不能太高,否则会直接发光,由于地球大气层的温度很低,所以太阳光通过地球大气层时不会被地球大气层中的物质原子吸收,故上述选项中正确的是A、B.
2.(光谱和光谱分析)利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析,下列说法正确的是(  )
A.利用高温物体的连续谱就可鉴别其组成成分
B.利用物质的线状谱就可鉴别其组成成分
C.高温物体发出的光通过物质后的光谱上的暗线反映了高温物体的组成成分
D.同一种物质的线状谱与吸收光谱上的暗线由于光谱的不同,它们没有关系
答案 B
解析 由于高温物体的光谱包括了各种频率的光,与其组成成分无关,故A项错误;某种物质发光的线状谱中的明线是与某种原子发出的某频率的光有关,通过这些亮
线与原子的特征谱线对照,即可确定物质的组成成分,B项正确;高温物体发出的光通过物质后某些频率的光被吸收而形成暗线,这些暗线由所经过的物质决定,C项错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线状谱中的亮线与吸收光谱中的暗线相对应,D项错误.
3.(氢原子光谱的实验规律)(多选)巴耳末通过对氢原子光谱的研究总结出巴耳末公式=R(-),n=3,4,5,…对此,下列说法正确的是(  )
A.巴耳末依据核式结构理论总结出巴耳末公式
B.巴耳末公式反映了氢原子发光的连续性
C.巴耳末依据氢原子光谱的分析总结出巴耳末公式
D.巴耳末公式反映了氢原子发光的分立性,其波长的分立值并不是人为规定的
答案 CD
解析 巴耳末公式是根据氢原子光谱总结出来的.氢原子光谱的不连续性反映了氢原子发光的分立性,即辐射波长的分立特征,选项C、D正确.
                   
题组一 光谱和光谱分析
1.白炽灯发光产生的光谱是(  )
A.连续光谱 B.明线光谱
C.原子光谱 D.吸收光谱
答案 A
解析 白炽灯发光是由于灯丝在炽热状态下发出的光,是连续谱.
2.关于线状谱,下列说法中正确的是(  )
A.每种原子处在不同温度下发光的线状谱不同
B.每种原子处在不同的物质中的线状谱不同
C.每种原子在任何条件下发光的线状谱都相同
D.两种不同的原子发光的线状谱可能相同
答案 C
解析 每种原子都有自己的结构,只能发出由内部结构决定的自己的特征谱线,不会因温度、物质不同而改变,选项C正确.
3.(多选)要得到钠元素的特征谱线,下列做法正确的是(  )
A.使固体钠在空气中燃烧
B.将固体钠高温加热成稀薄钠蒸气
C.使炽热固体发出的白光通过低温钠蒸气
D.使炽热固体发出的白光通过高温钠蒸气
答案 BC
解析 炽热固体发出的是连续谱,燃烧固体钠不能得到特征谱线,A错误;稀薄气体发光产生线状谱,B正确;强烈的白光通过低温钠蒸气时,某些波长的光被吸收产生钠的吸收光谱,C正确,D错误.
4.太阳光谱中有许多暗线,它们对应着某些元素的特征谱线,产生这些暗线是由于(  )
A.太阳表面大气层中缺少相应的元素
B.太阳内部缺少相应的元素
C.太阳表面大气层中存在着相应的元素
D.太阳内部存在着相应的元素
答案 C
解析 太阳光谱中的暗线是由于太阳发出的连续光谱通过太阳表面大气层时某些光被吸收造成的,因此,太阳光谱中的暗线是由于太阳表面大气层中存在着相应的元素,故C正确,A、B、D均错误.
5.关于光谱,下列说法正确的是(  )
A.一切光源发出的光谱都是连续谱
B.一切光源发出的光谱都是线状谱
C.稀薄气体发出的光谱是线状谱
D.作光谱分析时,利用连续谱和线状谱都可以鉴别物质以确定物质的化学组成
答案 C
解析 不同光源发出的光谱有连续谱,也有线状谱,故A、B错误;稀薄气体发出的光谱是线状谱,C正确;线状谱和吸收光谱可以进行光谱分析,D错误.
6.(多选)下列关于光谱的说法正确的是(  )
A.炽热固体、液体和高压气体发出的光形成连续谱
B.各种原子的线状谱中的亮线和它的吸收光谱中的暗线是一一对应的
C.气体发出的光只能产生线状谱
D.甲物质发出的光通过低温的乙物质蒸气可得到甲物质的吸收光谱
答案 AB
解析 吸收光谱中的暗线与线状谱中的亮线是一一对应的,所以B正确;而气体发光时,若是高压气体发光则形成连续谱,若是稀薄气体发光则形成线状谱,故A正确,C错误;甲物质发出的白光通过低温的乙物质蒸气后,得到的是乙物质的吸收光谱,D错误.
7.如图1甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为(  )
图1
A.a元素        B.b元素
C.c元素 D.d元素
答案 B
解析 由矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故B正确;与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.
题组二 氢原子光谱的实验规律
8.下列对氢原子光谱实验规律的认识中,正确的是(  )
A.因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光
B.氢原子产生的光谱是一系列波长不连续的谱线
C.氢原子产生的光谱是一系列亮度不连续的谱线
D.氢原子产生的光的波长大小与氢气放电管放电强弱有关
答案 B
解析 氢原子光谱是线状谱,波长是一系列不连续的、分立的特征谱线,并不是只含有一种波长的光,也不是亮度不连续的谱线,B对,A、C错;氢原子光谱是氢原子的特征谱线,只要是氢原子发出的光的光谱就相同,与放电管的放电强弱无关,D错.                   
9. (多选)如图2甲所示,是a、b、c、d四种元素的线状谱,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺乏的(  )
图2
A.a元素
B.b元素
C.c元素
D.d元素
答案 BD
解析 将甲中的线状谱与乙中的谱线相对照.
10.氢原子光谱的巴耳末系中波长最长的光波的光子能量为E1,其次为E2,则为(  )
A. B.
C. D.
答案 A
解析 由=R得:当n=3时,
波长最长,=R,
当n=4时,波长次之,=R,
解得:=,由E=h得:==.
11.试计算氢原子光谱中巴耳末系的最长波和最短波的波长各是多少?(保留三位有效数字)
答案 6.55×10-17 m 3.64×10-7 m
解析 根据巴耳末公式:=R,n=3,4,5,…可得λ=,当n=3时,波长最长,其值为λ1=== m≈6.55×10-7 m,当n=∞时,波长最短,其值为λ2=== m≈3.64×10-7 m.
课件16张PPT。[目标定位] 1.了解光谱、连续谱和线状谱等概念.2.知道氢原子光谱的实验规律.3.知道经典物理的困难在于无法解释原子的稳定性和光谱分立特征.1.定义
用光栅或棱镜可以把各种颜色的光按 展开,获得
光的波长(频率)和强度分布的记录,即光谱.
2.分类
(1)线状谱:由 组成的光谱.
(2)连续谱:由 的光带组成的光谱.波长一条条的亮线连在一起3.特征谱线
各种原子的发射光谱都是 ,且不同原子的亮线位置
,故这些亮线称为原子的 谱线.
4.光谱分析
由于每种原子都有自己的 ,可以利用它来鉴别物质
和确定物质的 ,这种方法称为光谱分析,它的优点
是 高,样本中一种元素的含量达到 g时就可以被
检测到.线状谱不同特征特征谱线组成成分灵敏度10-10【深度思考】
物质的光谱按其产生方式不同可分为两大类:发射光谱和吸收光谱,线状谱、连续谱和太阳光谱分别属于哪类光谱?
答案 (1)发射光谱——物体直接发出的光通过分光后产生的光谱.它分为连续谱和明线光谱(线状谱).
①连续谱——由连续分布的一切波长的光组成的光谱.炽热的固体、液体和高压气体的发射光谱是连续谱,如灯丝发出的光、炽热的钢水发出的光都形成连续谱.②线状谱——只含有一些不连续的亮线的光谱.各种原子的发射光谱(由稀薄气体发出)都是线状谱.每种原子都有自己的特征谱线,不同元素线状谱不同.
(2)吸收光谱——高温物体发出的白光通过温度较低的物质时,某些波长的光被该物质吸收后产生的光谱.这种光谱的特点是在连续的背景上有若干条暗线.这些暗线与特征谱线相对应.太阳光谱是一种吸收光谱.解析 光谱分为发射光谱和吸收光谱,发射光谱分为连续谱和线状谱,A正确;太阳光谱是吸收光谱,B错误;线状谱和吸收光谱都可用作光谱分析,C错误;光谱分析可以精确分析物质中所含元素,并能发现新元素,D正确.
答案 AD针对训练1 (多选)关于光谱,下列说法中正确的是 (  )
A.炽热的液体发射连续谱
B.线状谱和吸收光谱都可以对物质进行光谱分析
C.太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元素
D.发射光谱一定是连续谱
答案 AB
解析 炽热的固体、液体和高压气体的发射光谱是连续光谱,故A正确;线状谱和吸收光谱都可以用来进行光谱分析,B正确;太阳光谱中的暗线说明太阳大气中含有与这些暗线相对应的元素,C错误;发射光谱有连续谱和线状谱,D错误.1.研究光谱的意义
光是由原子内部电子的运动产生的,因此光谱研究是
探索 的一条重要途径.原子结构里德伯常量巴耳末系整数连续取值解析 此公式是巴耳末在研究氢原子光谱在可见光区的4条谱线中得到的,只适用于氢原子光谱的分析,且n只能取大于等于3的整数,则λ不能取连续值,故氢原子光谱是线状谱.
答案 AC1.核式结构模型的成就:正确地指出了原子核的存在,很好的解释了 .
2.经典理论的困难:既无法解释原子的 ,又无法解
释原子光谱的 .α粒子散射实验稳定性分立特征4 玻尔的原子模型
[目标定位] 1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子模型.
一、玻尔原子理论的基本假设
1.玻尔原子模型
(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.
(2)电子绕核运动的轨道是量子化的.
(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.
2.定态
当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.即原子的能量是量子化的,这些量子化的能量值叫做能级.原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的状态叫做激发态,对应的电子在离核较远的轨道上运动.
3.频率条件
当电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(能量记为En,m>n)时,会放出能量为hν的光子,该光子的能量hν=Em-En,该式称为频率条件,又称辐射条件.反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子能量同样由频率条件决定.
高能级Em低能级En
【深度思考】
是不是所处的能级越高的氢原子,向低能级跃迁时释放的光子能量越大?
答案 不一定.氢原子从高能级向低能级跃迁时,所释放的光子能量一定等于能级差,氢原子所处的能级越高,跃迁时能级差不一定越大,释放的光子能量不一定越大.
【例1】 根据玻尔理论,下列关于氢原子的论述正确的是(  )
A.若氢原子由能量为En的定态向低能级跃迁时,氢原子要辐射的光子能量为hν=En
B.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是ν
C.一个氢原子中的电子从一个半径为ra的轨道自发地直接跃迁到另一半径为rb的轨道,已知ra>rb,则此过程原子要辐射某一频率的光子
D.氢原子吸收光子后,将从高能级向低能级跃迁
解析 原子由高能级向低能级跃迁满足频率条件,辐射的光子能量为hν=En-Em,同样吸收满足频率条件的光子后会从低能级跃迁到高能级;原子辐射的能量与电子在某一轨道上绕核的运动无关.
答案 C
【例2】 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中(  )
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大
解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即k=m,又Ek=mv2,所以Ek=.由此式可知:电子离核越远,即r越大时,电子的动能越小,故A、C错;由r变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D正确.
答案 D
当氢原子从低能量态En向高能量态Em(n<m)跃迁时,r增大,Ek减小,Ep增大(或r增大时,库仑力做负功,电势能Ep增大),E增大,故需吸收光子能量,所吸收的光子能量hν=Em-En.
二、玻尔理论对氢光谱的解释
                   
1.氢原子能级图
如图1所示

图1
2.解释巴耳末公式
按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=Em-En.巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2.
3.解释气体导电发光
通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.
4.解释氢原子光谱的不连续性
原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.
5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.
【深度思考】
(1)观察氢原子能级图(图1),当氢原子处于基态时,E1=-13.6 eV.通过计算,En与E1在数值上有什么关系?
(2)如果氢原子吸收的能量大于13.6 eV,会发生什么现象?
答案 (1)通过计算得:En=(n=1,2,3,…)
(2)hν=Em-En适用于光子和原子在各定态之间跃迁情况,若吸收光子的能量大于或等于13.6 eV时,原子将会被电离.
【例3】 如图2所示为氢原子的能级图.用光子能量为13.06 eV的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波的光有(  )
图2
A.15种 B.10种
C.4种 D.1种
解析 基态的氢原子的能级值为-13.6 eV,吸收13.06 eV的能量后变成-0.54 eV,原子跃迁到n=5能级,由于氢原子是大量的,故辐射的光子种类是==10种.
答案 B
1.对能级图的理解:
由En=知,量子数越大,能级越密.量子数越大,能级差越小,能级横线间的距离越小.n=1是原子的基态,n→∞是原子电离时对应的状态.
2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|Em-En|,h=|Em-En|.
3.大量处于n激发态的氢原子向基态跃迁时,最多可辐射种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.
针对训练 图3为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是(  )
图3
A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1 能级产生的
B.频率最小的光是由n=2能级跃迁到n=1能级产生的
C.这些氢原子总共可辐射出3种不同频率的光
D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应
答案 D
解析 由ΔE=,知λ=,则由n=4跃迁到n=1能级产生的光子能量最大,波长最短,所以该光子最不容易发生衍射现象,A项错误;因由n=2能级跃迁到n=1能级产生的光子能量大于由n=4能级跃迁到n=3能级产生光子的能量,故其频率不是最小的,所以B项错误;大量的氢原子由n=4的激发态向低能级跃迁,可能辐射出6种不同频率的光子,故C项错误;由n=2能级跃迁到n=1能级辐射出光子的能量E=-3.4 eV-(-13.6)eV=10.2 eV.因E>W逸=6.34 eV,故D项正确.三、玻尔理论的局限性
1.玻尔理论的成功之处
玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律.
2.玻尔理论的局限性
保留了经典粒子的观念,仍然把电子的运动看做经典力学描述下的轨道运动.
                   
1.(对玻尔理论的理解)根据玻尔的原子结构模型,原子中电子绕核运转的轨道半径(  )
A.可以取任意值
B.可以在某一范围内取任意值
C.可以取不连续的任意值
D.是一些不连续的特定值
答案 D
解析 按玻尔的原子理论:原子的能量状态对应着电子不同的运动轨道,由于原子的能量状态是不连续的,则其核外电子的可能轨道是分立的,且是特定的,故上述选项只有D正确.
2.(对玻尔理论的理解)氢原子辐射出一个光子后,根据玻尔理论,下列说法中正确的是(  )
A.电子绕核旋转的半径增大
B.氢原子的能量增大
C.氢原子的电势能增大
D.氢原子核外电子的速率增大
答案 D
解析 氢原子辐射一个光子时能量减少,所以电子的轨道半径减小,速度增大,电势能减小,故选项D正确.
3.(氢原子能级及跃迁)(多选)如图4所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是(  )
图4
A.能量和频率最大、波长最短的是B光子
B.能量和频率最小、波长最长的是C光子
C.频率关系为νB>νA>νC,所以B的粒子性最强
D.波长关系为λB>λA>λC
答案 ABC
解析 从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短;能量和频率最小、波长最长的是C光子,所以频率关系式νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C正确,D错误.
4.(氢原子能级及跃迁)(多选)用光子能量为E的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为ν1、ν2、ν3的三种光子,且ν1<ν2<ν3.入射光束中光子的能量应是(  )
A.hν3 B.h(ν1+ν2)
C.h(ν2+ν3) D.h(ν1+ν2+ν3)
答案 AB
解析 氢原子吸收光子后发射三种频率的光,可知氢原子由基态跃迁到了第三能级,能级跃迁如图所示,由图可知该氢原子吸收的能量为hν3或h(ν1+ν2).
                   
题组一 对玻尔理论的理解
1.(多选)玻尔在他提出的原子模型中所做的假设有(  )
A.原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量
B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的
C.电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子
D.电子在绕原子核做圆周运动时,稳定地产生电磁辐射
答案 ABC
解析 原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量,故A正确;原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的,故B正确;电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子,故C正确;电子在绕原子核做圆周运动时,不会产生电磁辐射,只有跃迁时才会出现,故D错误.
2.(多选)关于玻尔原子理论的基本假设,下列说法中正确的是(  )
A.原子中的电子绕原子核做圆周运动,库仑力提供向心力
B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的
C.原子的能量包括电子的动能和系统的势能,电子动能可取任意值,系统的势能只能取某些分立值
D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率
答案 AB
解析 根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确;玻尔原子模型结合氢原子光谱,则表明氢原子的能量是不连续的.故B正确;原子的能量包括电子的动能和系统的势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误;电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D错误.
3.(多选)下列说法正确的是(  )
A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立
B.玻尔理论可以成功解释氢原子的光谱现象
C.玻尔继承了卢瑟福原子模型,但对原子能量和电子轨道引入了量子化假设
D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征
答案 BCD
解析 卢瑟福通过α粒子散射实验建立了原子核式结构模型,故A错误;玻尔理论成功地解释了氢原子的光谱现象.故B正确;玻尔的原子模型对应的是电子轨道的量子化,卢瑟福的原子模型核外电子可在任意轨道上运动,故C正确;玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征,故D正确.
4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中(  )
A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线
B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线
C.只吸收频率一定的光子,形成光谱中的一条暗线
D.只发出频率一定的光子,形成光谱中的一条亮线
答案 B
解析 当原子由高能级向低能级跃迁时,原子将发出光子,由于不只是两个特定能级之间的跃迁,所以它可以发出一系列频率的光子,形成光谱中的若干条亮线.
5.根据玻尔理论,氢原子有一系列能级,以下说法正确的是(  )
A.当氢原子处于第二能级且不发生跃迁时,会向外辐射光子
B.电子绕核旋转的轨道半径可取任意值
C.处于基态的氢原子可以吸收10 eV的光子
D.大量氢原子处于第四能级向基态跃迁时会出现6条谱线
答案 D
解析 氢原子处于第二能级且向基态发生跃迁时,才会向外辐射光子.故A错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B错误.10 eV的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C错误.根据C=6知,大量处于n=4能级的氢原子跃迁时能辐射出6种不同频率的光子.故D正确.
6.根据玻尔理论,某原子从能量为E的轨道跃迁到能量为E′的轨道,辐射出波长为λ的光.以h表示普朗克常量,c表示真空中的光速,E′等于(  )
A.E-h B.E+h
C.E-h D.E+h
答案 C
解析 释放的光子能量为hν=h,所以E′=E-hν=E-h.
题组二 氢原子能级及跃迁
7.氢原子的基态能量为E1,下列四个能级图,正确代表氢原子的是(  )
答案 C
解析 由氢原子能级图可知,量子数n越大,能级越密,且各能级能量En=,所以C正确.
8.汞原子的能级图如图1所示,现让一束光子能量为8.8 eV的单色光照射到大量处于基态(能级数n=1)的汞原子上,能发出6种不同频率的色光.下列说法中正确的是(  )
图1
A.最长波长光子的能量为1.1 eV
B.最长波长光子的能量为2.8 eV
C.最大频率光子的能量为2.8 eV
D.最大频率光子的能量为4.9 eV
答案 A
解析 由题意知,吸收光子后汞原子处于n=4的能级,向低能级跃迁时,最大频率的光子能量为(-1.6+10.4)eV=8.8 eV,最大波长(即最小频率)的光子能量为(-1.6+2.7)eV=1.1 eV,故A正确.
9.(多选)如图2是氢原子的能级图,一群氢原子处于n=3能级,下列说法中正确的是(  )
图2
A.这群氢原子发出的光子中,能量最大为10.2 eV
B.从n=3能级跃迁到n=2能级时发出的光波长最长
C.这群氢原子能够吸收任意光子的能量而向更高能级跃迁
D.如果发出的光子中只有一种能使某金属产生光电效应,那一定是由n=3能级跃迁到n=1能级发出的
答案 BD
解析 由n=3能级跃迁到n=1能级,辐射的光子能量最大,ΔE=13.6 eV-1.51 eV=12.09 eV,从n=3能级跃迁到n=2能级辐射的光子能量最小,频率最小,则波长最长,故A错误,B正确;一群处于n=3能级的氢原子发生跃迁,吸收的能量必须等于两能级的能级差,故C错误;如果发出的光子只有一种能使某金属产生光电效应,知这种光子为能量最大的一种,即由n=3能级跃迁到n=1能级发出的.故D正确.
10.如图3所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光中,波长最长的是(  )
图3
A.n=4跃迁到n=1时辐射的光子
B.n=4跃迁到n=3时辐射的光子
C.n=2跃迁到n=1时辐射的光子
D.n=3跃迁到n=2时辐射的光子
答案 B
11.(多选)如图4所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在自发跃迁中放出一些光子,用这些光子照射逸出功为2.25 eV的钾,下列说法正确的是(  )
图4
A.这群氢原子能发出三种不同频率的光
B.这群氢原子发出光子均能使金属钾发生光电效应
C.金属钾表面逸出的光电子最大初动能一定小于12.09 eV
D.金属钾表面逸出的光电子最大初动能可能等于9.84 eV
答案 ACD
解析 根据C=3知,这群氢原子能辐射出三种不同频率的光子,故A正确;从n=3跃迁到n=1辐射的光子能量为13.6 eV-1.51 eV=12.09 eV>2.25 eV,从n=2跃迁到n=1辐射的光子能量为13.6 eV-3.4 eV=10.2 eV>2.25 eV,从n=3跃迁到n=2辐射的光子能量为3.4 eV-1.51 eV=1.89 eV<2.25 eV,所以能发生光电效应的光有两种,故B错误;从n=3跃迁到n=1辐射的光子能量最大,发生光电效应时,产生的光电子最大初动能最大,根据光电效应方程得,Ekm=hν-W0=12.09 eV-2.25 eV=9.84 eV.故C、D正确.
题组三 综合应用
12.如图5所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,
图5
(1)有可能放出几种能量的光子?
(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?(普朗克常量h=6.63×10-34 J·s,光速c=3.0×108 m/s)
答案 (1)6 (2)第四能级向第三能级 1.88×10-6 m
解析 (1)由N=C,可得N=C=6种;
(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据=E4-E3=-0.85-(-1.51) eV=0.66 eV,λ== m≈1.88×10-6 m.
13.氢原子在基态时轨道半径r1=0.53×10-10m,能量E1=-13.6 eV.求氢原子处于基态时.
(1)电子的动能;
(2)原子的电势能;
(3)用波长是多少的光照射可使其电离?
答案 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m
解析 (1)设处于基态的氢原子核外电子速度大小为v1,则k=,所以电子动能
Ek1=mv== eV
≈13.6 eV.
(2)因为E1=Ek1+Ep1,
所以Ep1=E1-Ek1=-13.6 eV-13.6 eV=-27.2 eV.
(3)设用波长为λ的光照射可使氢原子电离,
有=0-E1
所以λ=-= m
≈9.14×10-8 m.
课件23张PPT。[目标定位] 1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子模型.1.玻尔原子模型
(1)原子中的电子在 的作用下,绕 做圆
周运动.
(2)电子绕核运动的轨道是 的.
(3)电子在这些轨道上绕核的转动是稳定的,不产生
.库仑引力原子核量子化电磁辐射2.定态
当电子在不同的轨道上运动时,原子处于不同的状态,
具有不同的能量.即原子的能量是 的,这些量子
化的能量值叫做 .原子中这些具有确定能量的稳定
状态,称为 .能量最低的状态叫做 ,其他的状
态叫做 ,对应的电子在离核较远的轨道上运动.量子化能级定态基态激发态Em-En 【深度思考】
是不是所处的能级越高的氢原子,向低能级跃迁时释放的光子能量越大?
答案 不一定.氢原子从高能级向低能级跃迁时,所释放的光子能量一定等于能级差,氢原子所处的能级越高,跃迁时能级差不一定越大,释放的光子能量不一定越大.【例2】 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中
(  )
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大图12.解释巴耳末公式
按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν= .巴耳末公式中的正整数n和2正好代
表能级跃迁之前和之后所处的 的量子数n和2.
3.解释气体导电发光
通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到 ,处于激发态
的原子是 的,会自发地向能量较低的能级跃迁,
放出 ,最终回到基态.Em-En定态轨道激发态不稳定光子4.解释氢原子光谱的不连续性
原子从高能级向低能级跃迁时放出的光子的能量等于前后 ,由于原子的能级是 的,所以放出
的光子的能量也是 的,因此原子的发射光谱只有一
些分立的亮线.
5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构, 各不相同,因此辐射
(或吸收)的 也不相同.两个能级之差分立分立能级光子频率图2图31.玻尔理论的成功之处
玻尔理论第一次将 引入原子领域,提出了定态
和跃迁的概念,成功地解释了 光谱的实验规律.
2.玻尔理论的局限性
保留了 粒子的观念,仍然把电子的运动看做经典力
学描述下的轨道运动.量子观念氢原子经典