2018版高中物理第四章波粒二象性导学案(打包5套)教科版选修3_5

文档属性

名称 2018版高中物理第四章波粒二象性导学案(打包5套)教科版选修3_5
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 教科版
科目 物理
更新时间 2018-03-26 22:04:04

内容文字预览

1 量子概念的诞生
[目标定位] 1.知道热辐射、黑体和黑体辐射的概念,知道黑体辐射的实验规律.2.知道普朗克提出的能量子假说.
一、黑体与黑体辐射
1.热辐射
(1)定义:周围的一切物体都在辐射电磁波,这种辐射与物体温度有关,所以叫热辐射.
(2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同.
2.黑体
(1)定义:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.
(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.
想一想 在火炉旁边有什么感觉?投入炉中的铁块颜色怎样变化?说明了什么问题?
答案 在火炉旁会感到热,这是由于火炉不断地向外辐射能量.投入炉中的铁块依次呈现暗红、赤红、橘红等颜色,直至成为黄白色,这表明同一物体热辐射的强度与温度有关.
二、黑体辐射的实验规律
1.随着温度的升高,各种波长的辐射强度都增加.
2.随着温度的升高,辐射强度的极大值向着波长较短的方向移动.
想一想 你认为现实生活中存在理想的黑体吗?
答案 现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型.
三、能量子
1.定义:普朗克认为,带电微粒辐射或吸收能量时,只能是辐射或吸收某个最小能量值的整数倍,这个不可再分的最小能量值?叫做能量子.
2.大小:?=hν,其中ν是电磁波的频率,h是普朗克常量,数值h=6.626×10-34_J·s(一般h取6.63×10-34 J·s).
预习完成后,请把你疑惑的问题记录在下面的表格中
问题1
问题2
问题3
一、对黑体辐射规律的理解
1.一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关.
图1
2.黑体是指只吸收而不反射外界射来的电磁波的物体,由于黑体只进行热辐射,所以黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.
3.黑体辐射的实验规律:随着温度的升高,一方面,各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动.如图1所示.
【例1】  (多选)在实验室或工厂的高温炉子上开一小孔,小孔可看作黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图2所示,就是黑体的辐射强度与其辐射光波长的关系图像,则下列说法正确的是(  )
图2
A.T1>T2
B.T1C.随着温度的升高,黑体的辐射强度都有所降低
D.随着温度的升高,辐射强度的极大值向波长较短方向移动
答案 AD
解析 一般材料的物体辐射能的多少决定于物体的温度(T)、辐射波的波长、时间的长短和发射的面积,而黑体是指在任何温度下,全部吸收任何波长的辐射的物体,黑体辐射的强度按波长的分布只与温度有关.实验表明,随着温度的升高,各种波长的辐射强度都有所增加,辐射强度的极大值向波长较短的方向移动.从图中可以看出,λ1<λ2,T1>T2,本题正确选项为A、D.
借题发挥 随着温度的升高,各种波长的辐射本领都在增加,当黑体温度升高时,辐射本领最大值向短波方向移动,这是黑体辐射的特点,熟悉黑体辐射特点是解决问题的关键.
针对训练 下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是(  )
答案 A
解析 随着温度的升高,辐射强度增加,辐射强度的极大值向着波长较短的方向移动,A正确,B、C、D错误.
二、能量子的理解和ε=hν的应用
1.物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量的任何一个中间状态.
2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化是连续的,不必考虑量子化;在研究微观粒子时必须考虑能量量子化.
3.能量子的能量ε=hν,其中h是普朗克常量,ν是电磁波的频率.
【例2】 光是一种电磁波,可见光的波长的大致范围是400 nm~700 nm.求400 nm、700 nm电磁辐射的能量子的值各是多少?
答案  4.97×10-19 J 2.84×10-19 J
解析 根据公式ν=和ε=hν可知:
400 nm对应的能量子
ε1=h=6.63×10-34× J=4.97×10-19 J.
700 nm对应的能量子
ε2=h=6.63×10-34× J=2.84×10-19 J.
借题发挥 (1)求解本题关键有两点:一是能根据已知条件求得每一个能量子的能量,另外必须明确激光器发射的能量是这些能量子能量的总和.
(2)这类习题数量级比较大,注意运算当中提高运算准确率.
【例3】 (多选)对于带电微粒的辐射和吸收能量时的特点,以下说法正确的是
(  )
A.以某一个最小能量值一份一份地辐射或吸收
B.辐射和吸收的能量是某一最小值的整数倍
C.吸收的能量可以是连续的
D.辐射和吸收的能量是量子化的
答案 ABD
解析 带电微粒的辐射和吸收能量时是以最小能量值——能量子ε的整数倍一份一份地辐射或吸收的,是不连续的.故选项A、B、D正确,C选项错.
对黑体辐射规律的理解
1.(多选)下列叙述正确的是(  )
A.一切物体都在辐射电磁波
B.一般物体辐射电磁波的情况只与温度有关
C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关
D.黑体能够完全吸收入射的各种波长的电磁波
答案 ACD
解析 根据热辐射定义知A对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射只与黑体温度有关,B错、C对;根据黑体定义知D对.
2.(多选)下列关于黑体辐射的实验规律叙述正确的是(  )
A.随着温度的升高,各种波长的辐射强度都有所增加
B.随着温度的升高,辐射强度的极大值向波长较短的方向移动
C.黑体热辐射的强度与波长无关
D.黑体辐射无任何规律
答案 AB
解析 黑体辐射的规律为随着温度的升高各种波长的辐射强度都增加,同时辐射强度的极大值向波长较短的方向移动.故A、B对.
能量子的理解及ε=hν的应用
3.硅光电池是利用光电效应将光辐射的能量转化为电能.若有N个波长为λ0的光子打在光电池极板上,这些光子的总能量为(h为普朗克常量)(  )
A.h· B.Nh· C.N·hλ0 D.2Nhλ0
答案 B
解析 一个光子的能量ε=hν=h,则N个光子的总能量E=Nh·.选项B正确.
4.神光“Ⅱ”装置是我国规模最大的高功率固体激光系统,利用它可获得能量为2 400 J、波长λ=0.35 μm的紫外激光.已知普朗克常量h=6.63×10-34 J·s,则该紫外激光所含光子数为多少?
答案 4.23×1021(个)
解析 紫外激光的波长已知,由此可求得紫外激光能量子的值,再根据紫外激光发射的总能量为2 400 J,即可求得紫外激光所含光子数.
紫外激光能量子的值为ε0== J=5.68×10-19 J.则该紫外激光所含光子数n===4.23×1021(个).
(时间:60分钟)
题组一 黑体辐射的理解和应用
1.关于对黑体的认识,下列说法正确的是(  )
A.黑体只吸收电磁波,不反射电磁波,看上去是黑的
B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关
C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关
D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体
答案 C
解析 黑体自身辐射电磁波,不一定是黑的,故选项A错误;黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,故选项B错误、选项C正确;小孔只吸收电磁波,不反射电磁波,因此是小孔成了一个黑体,而不是空腔,故选项D错误.
2.对黑体辐射电磁波的波长分布的影响因素是(  )
A.温度 B.材料
C.表面状况 D.以上都正确
答案 A
解析 根据黑体辐射电磁波的波长分布的决定因素,得其只与温度有关,A对.
3.能正确解释黑体辐射实验规律的是(  )
A.能量的连续经典理论
B.普朗克提出的能量量子化理论
C.以上两种理论体系任何一种都能解释
D.牛顿提出的微粒说
答案 B
解析 根据黑体辐射的实验规律,随着温度的升高,一方面各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动,只能用普朗克提出的能量量子化理论才能得到满意的解释,B对.
4.(多选)黑体辐射的实验规律如图1所示,由图可知(  )
图1
A.随温度升高,各种波长的辐射强度都增大
B.随温度降低,各种波长的辐射强度都增大
C.随温度升高,辐射强度的极大值向波长较短的方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动
答案 ACD
解析 由题图可知,随温度升高,各种波长的辐射强度都增大,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来.
5.(多选)2006年度诺贝尔物理学奖授予了两名美国科学家,以表彰他们发现了宇宙微波背景辐射的黑体谱形状及其温度在不同方向上的微小变化.他们的出色工作被誉为是宇宙学研究进入精密科学时代的起点.下列与宇宙微波背景辐射黑体谱相关的说法中正确的是(  )
A.一切物体都在辐射电磁波
B.一般物体辐射电磁波的情况只与温度有关
C.黑体的热辐射实质上是电磁辐射
D.普朗克在研究黑体的热辐射问题中提出了能量子假说
答案 ACD
解析 根据热辐射的定义,A正确;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射只与黑体的温度有关,B错误;普朗克在研究黑体辐射时最早提出了能量子假说,他认为能量是一份一份的,每一份是一个能量子,黑体辐射本质上是电磁辐射,故C、D正确.
题组二 能量子的理解及ε=hν的应用
6.红、橙、黄、绿四种单色光中,光子能量最小的是(  )
A.红光 B.橙光 C.黄光 D.绿光
答案 A
解析 在四种颜色的光中,红光的波长最长而频率最小,由光子的能量ε=hν可知红光光子能量最小.
7.已知某种单色光的波长为λ,在真空中光速为c,普朗克常量为h,则电磁波辐射的能量子ε的值为(  )
A.h B.
C. D.以上均不正确
答案 A
8.某激光器能发射波长为λ的激光,发射功率为P,c表示光速,h为普朗克常量,则激光器每秒发射的光量子数为(  )
A. B. C. D.λPhc
答案 A
解析 每个光量子的能量ε=hν=,每秒钟发射的总能量为P,则n==.
题组三 综合应用
9.对应于3.4×10-19 J的能量子,其电磁辐射的频率和波长各是多少?(h=6.63×10-34 J·s)
答案 5.13×1014 Hz 5.85×10-7 m
解析 根据公式ε=hν和ν=得
ν== Hz≈5.13×1014 Hz,
λ=== m=5.85×10-7 m.
10.人眼对绿光较为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒钟有6个光量子射入瞳孔,眼睛就能察觉.普朗克常数为6.63×10-34 J·s,光速为3×108 m/s.人眼能察觉到绿光时所接收到的最小功率为多少?
答案 2.3×10-18 W
解析 先根据ε=hν=h算出每个光量子的能量,每秒需要接收到6个这样的光量子,故接收到这6个光量子的功率就是人眼能觉察到绿光的最小功率.又因每秒有6个绿光的光能量子射入瞳孔,所以,觉察到绿光所需要接收到的最小功率P=,式中E=6ε,又ε=hν=h,代入数据得P=2.3×10-18 W.
11.小灯泡的功率P=1 W,设其发出的光向四周均匀辐射,平均波长λ=10-6 m,求在距离d=1.0×104 m处,每秒钟落在垂直于光线方向、面积为1 cm2的球面上的光子数是多少?(h=6.63×10-34 J·s)
答案 3.98×105个
解析 每秒钟小灯泡发出的能量为E=Pt=1 J
1个光子的能量:
ε=hν== J=1.989×10-19 J
小灯泡每秒钟辐射的光子数:
n===5×1018(个)
距离小灯泡d的球面面积为:
S=4πd2=4π×(1.0×104)2 m2=1.256×109 m2=1.256×1013 cm2
每秒钟射到1 cm2的球面上的光子数为:
N===3.98×105(个).
2 光电效应与光量子假说
[目标定位] 1.知道光电效应现象,能说出光电效应的实验规律.2.能用爱因斯坦光电效应方程对光电效应作出解释,会用光电效应方程解决一些简单的问题.
一、光电效应
1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象.
2.光电子:光电效应中发射出来的电子.
3.光电效应的实验规律
(1)对于给定的光电阴极材料,都存在一个截止频率ν0,只有超过截止频率ν0的光,才能引起光电效应.
(2)光电流的大小由光强决定,光强愈大,光电流愈大.
(3)光电子的最大初动能与入射光的频率成线性关系.
(4)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9 s.
想一想 紫外线灯照射锌板,为什么与锌板相连的验电器指针张开一个角度?
答案 紫外线灯照射锌板,发生光电效应现象,锌板上的电子飞出锌板,使锌板带正电,与锌板相连的验电器也会因而带正电,使得验电器指针张开一个角度.
二、爱因斯坦的光电效应方程
1.光子说:光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子为hν.
2.爱因斯坦光电效应方程的表达式:hν=mv2+A.其中A为电子从金属内逸出表面时所需做的功.
想一想 怎样从能量守恒角度理解爱因斯坦光电效应方程?
答案 爱因斯坦光电效应方程中的hν是入射光子的能量,逸出功A是光子飞出金属表面消耗的能量,mv2是光子的最大初动能,因此爱因斯坦光电效应方程符合能量的转化与守恒定律.
预习完成后,请把你疑惑的问题记录在下面的表格中
问题1
问题2
问题3
一、光电效应现象
1.光电效应的实质:光现象电现象.
2.光电效应中的光包括不可见光和可见光.
3.光电子:光电效应中发射出来的光电子,其本质还是电子.
【例1】 一验电器与锌板相连(如图1所示),用一紫外线灯照射锌板,关灯后,验电器指针保持一定偏角.
图1
(1)现用一带负电的金属小球与锌板接触,则验电器指针偏角将________(填“增大”、“减小”或“不变”).
(2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指针无偏转.那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指针________(填“有”或“无”)偏转.
答案 (1)减小 (2)无
解析 当用紫外线灯照射锌板时,锌板发生光电效应,锌板放出光电子而带上正电,此时与锌板连在一起的验电器也带上了正电,故指针发生了偏转.当带负电的小球与锌板接触后,中和了一部分正电荷,从而使验电器的指针偏角减小.使验电器指针回到零,用钠灯发出的黄光照射锌板,验电器指针无偏转,说明钠灯发出的黄光的频率小于锌的极限频率,而红外光比黄光的频率还要低,更不可能使锌板发生光电效应.能否发生光电效应与入射光的强弱无关.
二、光电效应的实验规律
1.对光电效应的理解
(1)入射光的强度:指单位时间内照射到金属表面单位面积上的光子的总能量,是由入射光子数和入射光子的频率决定的.可用P=nhν表示,其中n为单位时间内的光子数.
(2)在入射光频率不变的情况下,光的强度与单位时间内照射到金属表面上单位面积的光子数成正比.
(3)对于不同频率的入射光,即使光的强度相等,在单位时间内照射到金属单位面积的光子数也不相同,从金属表面逸出的光电子数不同,形成的光电流不同.
(4)饱和光电流:指光电流的最大值(即饱和值),在光电流未达到最大值之前,因光电子尚未全部形成光电流,所以光电流的大小不仅与入射光的强度有关,还与光电管两极间的电压有关,电压越大,被吸引变成光电流的光电子越多.
(5)饱和光电流与入射光的强度成正比:在入射光频率不变的情况下,光电流的最大值与入射光的强度成正比.原因是在高电压下光电子个数决定了光电流大小,而电子个数决定于入射光强度.“频率高,光子能量大,光就强,产生的光电流也强”、“光电子的初动能大,电子跑得快,光电流就强”等说法均是错误的.
总之,在理解光电效应规律时应特别注意以下几个关系:
照射光频率
照射光强度单位时间内发射出来的电子数
2.爱因斯坦对光电效应的解释
(1)饱和光电流与光强关系
光越强,包含的光子数越多,照射金属时产生的光电子越多,因而饱和光电流越大,所以,入射光频率一定时,饱和光电流与光强成正比.
(2)存在截止频率和遏止电压
爱因斯坦的光电效应方程表明光电子的初动能与入射光频率成线性关系,与光强无关,所以遏止电压由入射光频率决定,与光强无关.光电效应方程同时表明,只有hν>A0时,才有光电子逸出,ν0=就是光电效应的截止频率.
(3)光电效应具有瞬时性
电子一次性吸收光子的全部能量,不需要积累能量的时间,所以光电效应几乎是瞬时发生的.
【例2】 利用光电管研究光电效应实验如图2所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则(  )
图2
A.用紫外线照射,电流表不一定有电流通过
B.用红光照射,电流表一定无电流通过
C.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过
D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,电流表示数可能不变
答案 D
解析 因紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,选项A错误;因不知阴极K的截止频率,所以用红光照射时,不一定发生光电效应,所以选项B错误;即使UAK=0,电流表中也有电流,所以选项C错误;当滑动触头向B端滑动时,UAK增大,阳极A吸收光电子的能力增强,光电流会增大,当所有光电子都到达阳极A时,电流达到最大,即饱和电流.若在滑动前,电流已经达到饱和电流,那么即使增大UAK,光电流也不会增大,所以选项D正确.
针对训练1 (多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是(  )
A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大
B.入射光的频率变高,饱和光电流变大
C.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生
D.遏止电压的大小与入射光的频率有关,与入射光的光强无关
答案 AD
解析 根据光电效应规律,保持入射光的频率不变,入射光的光强变大,则饱和光电流变大,选项A正确;由爱因斯坦光电效应方程知,入射光的频率变高,产生的光电子最大初动能变大,而饱和光电流与入射光的频率和光强都有关,选项B错误;保持入射光的光强不变,不断减小入射光的频率,当入射光的频率小于极限频率时,就不能发生光电效应,没有光电流产生,选项C错误;遏止电压与产生的光电子的最大初动能有关,光电子的最大初动能与入射光的频率有关,与入射光的光强无关,选项D正确.
三、光电效应方程的理解与应用
1.光电效应方程实质上是能量守恒方程
能量为E=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.如果克服吸引力做功最少为A,电子离开金属表面时动能最大为Ek,根据能量守恒定律可知:Ek=hν-A.
2.光电效应方程包含了产生光电效应的条件
若发生光电效应,则光电子的最大初动能必须大于零,即Ek=hν-A>0,亦即hν>A,ν>=νc,而νc=恰好是光电效应的截止频率.
3.Ekm-ν曲线
如图3所示是光电子最大初动能Ekm随入射光频率ν的变化曲线.这里,横轴上的截距是截止频率或极限频率;纵轴上的截距是逸出功的负值;斜率为普朗克常量.
图3
【例3】 如图4所示,当电键K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上电键,调节滑动变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零.当电压表读数大于或等于0.60 V时,电流表读数为零.由此可知阴极材料的逸出功为(  )
图4
A.1.9 eV B.0.6 eV
C.2.5 eV D.3.1 eV
答案 A
解析 由题意知光电子的最大初动能为Ek=eUc=
0.60 eV,所以根据光电效应方程Ek=hν-A可得
A=hν-Ek=(2.5-0.6) eV=1.9 eV
针对训练2 (多选)如图5所示是某金属在光的照射下,光电子最大初动能Ek与入射光频率ν的关系图像,由图像可知(  )
图5
A.该金属的逸出功等于E
B.该金属的逸出功等于hν0
C.入射光的频率为ν0时,产生的光电子的最大初动能为E
D.入射光的频率为2ν0时,产生的光电子的最大初动能为2E
答案 AB
解析 题中图像反映了光电子的最大初动能Ek与入射光频率ν的关系,根据爱因斯坦光电效应方程Ek=hν-A,知当入射光的频率恰为该金属的截止频率ν0时,光电子的最大初动能Ek=0,此时有hν0=A,即该金属的逸出功等于hν0,选项B正确;根据图线的物理意义,有A=E,故选项A正确,而选项C、D错误.
                   
光电效应现象
1.(多选)如图6所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是(  )
图6
A.用紫外线照射锌板,验电器指针会发生偏转
B.用红光照射锌板,验电器指针会发生偏转
C.锌板带的是负电荷
D.使验电器指针发生偏转的是正电荷
答案 AD
解析 将擦得很亮的锌板与验电器连接,用弧光灯照射锌板(弧光灯发出紫外线),验电器指针张开一个角度,说明锌板带了电,进一步研究表明锌板带正电.这说明在紫外线的照射下,锌板中有一部分自由电子从表面飞出,锌板带正电,选项A、D正确.红光不能使锌板发生光电效应.
光电效应规律
2.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么(  )
A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加
B.逸出的光电子的最大初动能将减小
C.单位时间内从金属表面逸出的光电子数目将减少
D.有可能不发生光电效应
答案 C
解析 发生光电效应几乎是瞬时的,选项A错误;入射光的强度减弱,说明单位时间内的入射光子数目减少,频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B错误;入射光子的数目减少,逸出的光电子数目也就减少,故选项C正确;入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的极限频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D错误.
3.某单色光照射某金属时不能产生光电效应,则下述措施中可能使该金属产生光电效应的是(  )
A.延长光照时间
B.增大光的强度
C.换用波长较短的光照射
D.换用频率较低的光照射
答案 C
解析 光照射金属时能否产生光电效应,取决于入射光的频率是否大于金属的截止频率,与入射光的强度和照射时间无关,故选项A、B、D均错误;又因ν=,所以选项C正确.
光电效应方程的理解与应用
4.(多选)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是(  )
A.增大入射光的强度,光电流增大
B.减小入射光的强度,光电效应现象消失
C.改用频率小于ν的光照射,一定不发生光电效应
D.改用频率大于ν的光照射,光电子的最大初动能变大
答案 AD
解析 增大入射光的强度,单位时间内发射的光电子数增加,则光电流增大,选项A正确;光电效应能否发生与照射光频率有关,与照射光强度无关,选项B错误;改用频率较小的光照射时,如果光的频率仍大于极限频率,则仍会发生光电效应,否则,不能发生光电效应,选项C错误;光电子的最大初动能Ek=hν=A,故改用频率大于ν的光照射,光电子的最大初动能变大,选项D正确.
5.如图所示,N为金属板,M为金属网,它们分别与电池的两极相连,各电池的电动势和极性如图所示.已知金属板的逸出功为4.8 eV.现分别用不同能量的光子照射金属板(各光子的能量已在图上标出),那么各图中没有光电子到达金属网的是________(填正确答案标号).能够到达金属网的光电子的最大动能是________eV.
答案 AC 0.5
解析 因为金属板的逸出功为4.8 eV,所以能发生光电效应的是B、C、D,B所加的电压为正向电压,则电子一定能到达金属网;C光电子的最大初动能为1.0 eV,根据动能定理知电子不能到达金属网;D光电子的最大初动能为2.0 eV,根据动能定理光电子能够到达金属网.故没有光电子达到金属网的是A、C;D项中逸出的光电子最大初动能为Ek=ε光-A=6.8 eV-4.8 eV=2.0 eV,到达金属网时最大动能为0.5 eV.
(时间:60分钟)
题组一 光电效应的现象及规律
1.(多选)光电效应实验中,下列表述中正确的是(  )
A.光照时间越长光电流越大
B.入射光足够强就可以有光电流
C.遏止电压与入射光的频率有关
D.入射光频率大于极限频率才能产生光电子
答案 CD
解析 光电效应中有无光电流与入射光的强弱、照射时间长短无关,A、B错.遏止电压与入射光频率有关,入射光频率越大,光电子的最大初动能也越大,而Ek=eUc,故Uc也越大,C正确.任何金属都有一个极限频率,只有入射光的频率大于极限频率时,才能产生光电效应,D正确.
2.(多选)在演示光电效应的实验中,原来不带电的一块锌板与灵敏静电计相连,用弧光灯(紫外线)照射锌板时,静电计的指针就张开一个角度,如图1所示,这时(  )
图1
A.锌板带正电,指针带负电
B.锌板带正电,指针带正电
C.若用黄光照射锌板,则可能不产生光电效应现象
D.若用红光照射锌板,则锌板能发射光电子
答案 BC
解析 锌板在紫外线照射下,发生光电效应现象,有光电子飞出,故锌板带正电,指针上的部分电子被吸引到锌板上发生中和,使指针带正电,B对、A错;红光和黄光的频率都小于紫外线的频率,都可能不产生光电效应,C对、D错.
3.(多选)用紫光照射某金属恰可发生光电效应,现改用较弱的太阳光照射该金属,则(  )
A.可能不发生光电效应
B.逸出光电子的时间明显变长
C.逸出光电子的最大初动能不变
D.单位时间逸出光电子的数目变小
答案 CD
解析 由于太阳光含有紫光,所以照射金属时发生光电效应且逸出光电子的最大初动能不变,又因为光强变弱,所以单位时间逸出光电子的数目变小,C、D正确,A错误;产生光电效应的时间几乎是瞬时的,B错误.
4.关于光电效应的规律,下列说法中正确的是(  )
A.只有入射光的波长大于该金属的极限波长,光电效应才能发生
B.光电子的最大初动能跟入射光的强度成正比
C.发生光电效应的时间一般都大于10-7 s
D.发生光电效应时,单位时间内从金属内逸出的光电子数与入射光的强度成正比
答案 D
解析 由ε=hν=h知,当入射光波长大于极限波长时,不能发生光电效应,故A错;由Ek=hν-A知,最大初动能由入射光频率决定,与入射光的强度无关,故B错;发生光电效应的时间一般不超过10-9 s,故C错.
5.(多选)如图2所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是(  )
图2
A.入射光太弱
B.入射光波长太长
C.光照时间太短
D.电源正负极接反
答案 BD
解析 金属存在截止频率,超过截止频率的光照射金属才会有光电子射出.发射的光电子的动能随频率的增大而增大,动能小时不能克服反向电压,也不能有光电流.入射光的频率低于截止频率,不能产生光电效应,与光照强弱无关,选项B正确,A错误;电路中电源正负极接反,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,D正确;光电效应的产生与光照时间无关,C错误.
6.(多选)一束绿光照射某金属发生了光电效应,则下列说法正确的是(  )
A.若增加绿光的照射强度,则逸出的光电子数增加
B.若增加绿光的照射强度,则逸出的光电子的最大初动能增加
C.若改用紫光照射,则可能不会发生光电效应
D.若改用紫光照射,则逸出的光电子的最大初动能增加
答案 AD
解析 光电效应的规律表明:入射光的频率决定是否发生光电效应以及发生光电效应时逸出的光电子的最大初动能的大小.当入射光的频率增加后,逸出的光电子的最大初动能也增加,又紫光的频率高于绿光的频率.而增加光的照射强度,会使单位时间内逸出的光电子数增加.故正确选项有A、D.
题组二 光电效应方程及应用
7.(多选)产生光电效应时,关于逸出光电子的最大初动能Ek,下列说法正确的是(  )
A.对于同种金属,Ek与照射光的强度无关
B.对于同种金属,Ek与照射光的波长成反比
C.对于同种金属,Ek与照射光的频率成线性关系
D.对于不同种金属,若照射光频率不变,Ek与金属的逸出功成线性关系
答案 ACD
解析 Ek=hν-A=h-A,同种金属逸出功相同,最大初动能与照射光强度无关,与照射光的波长有关但不是反比例函数关系,最大初动能与入射光的频率成线性关系,不同种金属,保持入射光频率不变,最大初动能Ek与逸出功成线性关系.
8.用不同频率的光分别照射钨和锌,产生光电效应,根据实验可画出光电子的最大初动能Ek随入射光频率ν变化的Ek-ν图线.已知钨的逸出功是3.28 eV,锌的逸出功为3.34 eV,若将二者的图线画在同一个Ek-ν坐标系中,则正确的图是
(  )
答案 A
解析 根据光电效应方程Ek=hν-A可知,Ek-ν图像的斜率为普朗克常量h,因此图中两线应平行,故C、D错误;图线与横轴的交点表示恰能发生光电效应(光电子动能为零)时的入射光频率即极限频率.由光电效应方程可知,逸出功越大的金属对应的入射光的频率越高,所以能使金属锌发生光电效应的极限频率高,所以A正确、B错误.
9.在光电效应实验中,某金属的截止频率对应的波长为λ0,该金属的逸出功为________.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为________.已知电子的电荷量、真空中的光速和普朗克常量分别为e、c和h.
答案  ·
题组三 综合应用
10.几种金属的逸出功A0见下表:
金属





A/(10-19 J)
7.26
5.12
3.66
3.60
3.41
由一束可见光照射上述金属的表面,请通过计算说明哪些能发生光电效应.已知该可见光的波长的范围为4.0×10-7~7.6×10-6 m,普朗克常数h=6.63×10-34 J·s.
答案 钠、钾、铷能发生光电效应
解析 光子的能量ε=,
当λ=4.0×10-7 m时,
ε≈5.0×10-19 J.
根据ε>A0判断,钠、钾、铷能发生光电效应.
11.分别用λ和λ的单色光照射同一金属,发出的光电子的最大初动能之比为1∶3.以h表示普朗克常量,c表示真空中的光速,则此金属板的逸出功是多大?
答案 
解析 设此金属的逸出功为A,根据光电效应方程得如下两式:
当用波长为λ的光照射时:Ek1=-A①
当用波长为λ的光照射时:Ek2=-A②
又=③
解①②③组成的方程组得:A=.
12.铝的逸出功为4.2 eV,现用波长200 nm的光照射铝的表面.已知h=6.63×10-34 J·s,求:
(1)光电子的最大初动能;
(2)遏止电压;
(3)铝的截止频率.
答案 (1)3.225×10-19 J (2)2.016 V
(3)1.014×1015 Hz
解析 (1)根据光电效应方程Ek=hν-A有
Ek=-A= J-4.2×1.6×10-19 J=3.225×10-19 J
(2)由Ek=eUc可得
Uc== V=2.016 V.
(3)hνc=A知
νc== Hz=1.014×1015 Hz.
3 光的波粒二象性
[目标定位] 1.了解康普顿效应及其意义,了解光子理论对康普顿效应的解释.2.知道光的波粒二象性,知道波和粒子的对立统一的关系.3.了解什么是概率波,知道光也是一种概率波.
1.康普顿效应
(1)光的散射:光子在介质中和物体微粒相互作用,使光的传播方向发生偏转,这种现象叫光的散射.
(2)康普顿效应:X射线经物质散射后波长变长的现象.
2.光的波粒二象性
(1)光既具有波动性,又具有粒子性,即光具有波粒二象性.
(2)光的波动性的证明:光能发生干涉、衍射和色散等波特有的现象.
(3)光的粒子性的证明:光在与其他物质相互作用时,能量和动量是以一份一份的形式进行交换的.光电效应现象和康普顿效应证明光具有粒子性.
3.光子的能量ε=hν,动量p=,两式左侧的ε和p描述光的粒子性,右侧的ν和λ描述光的波动性,两式把粒子性和波动性紧密地联系了起来.
4.光是一种概率波
在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波,即光波在某处的强度代表着光子在该处出现概率的大小.
预习完成后,请把你疑惑的问题记录在下面的表格中
问题1
问题2
问题3
一、对康普顿效应的理解
康普顿效应不仅有力地验证了光子理论,而且也证实了微观领域的现象,也严格遵循能量守恒和动量守恒定律.康普顿效应深刻揭示出光具有粒子性的一面.
【例1】 康普顿效应证实了光子不仅具有能量,也有动量.图1给出了光子与静止电子碰撞后,电子的运动方向,则碰撞后光子可能沿方向________运动,并且波长________(填“不变”“变短”或“变长”).
图1
答案 1 变长
解析 因光子与电子的碰撞过程动量守恒,所以碰撞后光子和电子的总动量的方向与光子碰撞前动量的方向一致,可见碰撞后光子运动的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,光子的能量减少,由ε=hν知,频率变小,再根据c=λν知,波长变长.
二、对光的波粒二象性的理解
实验基础
表现
说明
光的波动性
干涉和衍射
1.光是一种概率波,即光子在空间各点出现的可能性大小(概率)可用波动规律来描述.
2.足够能量的光在传播时,表现出波的性质.
1.光的波动性是光子本身的一种属性,不是光子之间相互作用产生的.
2.光的波动性不同于宏观观念的波.
光的粒子性
光电效应、康普顿效应
①当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质.
②少量或个别光子清楚地显示出光的粒子性
①粒子的含义是“不连续”、“一份一份”的.
②光子不同于宏观观念的粒子
波动性和粒子性的对立、统一
①大量光子易显示波动性,而少量光子易显示出粒子性.
②波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强
①光子说并未否定波动性,E=hν=中,ν和λ就是波的概念.
②波和粒子在宏观世界是不能统一的,而在微观世界却是统一的
【例2】 (多选)关于光的波粒二象性的理解正确的是(  )
A.大量光子的行为往往表现出波动性,个别光子的行为往往表现出粒子性
B.光在传播时是波,而与物质相互作用时就转变成粒子
C.高频光是粒子,低频光是波
D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著
答案 AD
解析 光的波粒二象性指光有时候表现出的粒子性较明显,有时候表现出的波动性较明显,D正确;大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性,A正确;光在传播时波动性显著,光与物质相互作用时粒子性显著,B错误;频率高的光粒子性显著,频率低的光波动性显著,C错误.
借题发挥 解答此类问题的关键是要理解以下知识要点:
(1)光是一种波,同时也是一种粒子,也就是说光具有波粒二象性;
(2)光的波动性在光的传播过程中体现出来,具有一定的波长和频率,能够发生干涉和衍射现象;
(3)光的粒子性在它与物质的相互作用时体现出来,光子具有一定的能量(ε=hν)和动量.
针对训练 有关光的本性,下列说法正确的是(  )
A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的
B.光的波动性类似于机械波,光的粒子性类似于质点
C.大量光子才具有波动性,个别光子只具有粒子性
D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性
答案 D
解析 19世纪初,人们成功地在实验中观察到了光的干涉、衍射现象,这属于波的特征,微粒说无法解释.但到了19世纪末又发现了光的新现象——光电效应,证实光具有粒子性.这种现象波动说不能解释,因此,光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子.波动性和粒子性是光在不同的情况下的不同表现,是同一物体的两个不同侧面,不同属性,我们无法用其中的一种去说明光的一切行为,只能认为光具有波粒二象性.选D.
三、对光是概率波的理解
1.单个粒子运动的偶然性:我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不能确定的.
2.大量粒子运动的统计规律:光在传播过程中,光子在空间出现的概率可以通过波动规律确定,所以光是一种概率波.
【例3】 (多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子(  )
A.一定落在中央亮纹处
B.一定落在亮纹处
C.可能落在暗纹处
D.落在中央亮纹处的可能性最大
答案 CD
解析 根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不确定的,但概率最大的是落在中央亮纹处.当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.
对康普顿效应的理解
1.(多选)关于康普顿效应,下列说法正确的是(  )
A.康普顿在研究X射线散射时,发现散射光的波长发生了变化,为波动说提供了依据
B.X射线散射时,波长改变了多少与散射角有关
C.发生散射时,波长较短的X射线或γ射线入射时,产生康普顿效应
D.爱因斯坦的光子说能够解释康普顿效应,所以康普顿效应支持粒子说
答案 BCD
解析 美国物理学家康普顿在研究X射线散射时,发现散射光波长发生了变化,这种现象用波动说无法解释,用光子说却可以解释,A错,波长改变的多少与散射角有关,B对.当波长较短时发生康普顿效应,较长时发生光电效应,C对、D对.
对光的波粒二象性的理解
2.下列有关光的波粒二象性的说法中,正确的是(  )
A.有的光是波,有的光是粒子
B.光子与电子是同样的一种粒子
C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著
D.大量光子的行为往往显示出粒子性
答案 C
解析 一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,光的有些行为(如光电效应)表现出粒子性.所以,不能说有的光是波,有的光是粒子,虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著.故选项C正确,A、B、D错误.
3.关于光的波粒二象性,下列说法中不正确的是(  )
A.波粒二象性指光有时表现为波动性,有时表现为粒子性
B.光波频率越高,粒子性越明显
C.能量越大的光子其波动性越显著
D.个别光子易表现出粒子性,大量光子易表现出波动性
答案 C
解析 波粒二象性指光有时候表现出的粒子性较明显,有时候表现出的波动性较明显,或者说在某种场合下光的粒子性表现明显,在另外某种场合下,光的波动性表现明显.个别光子易表现出粒子性,大量光子易表现出波动性,A、D说法正确;光的频率越高,能量越高,粒子性相对波动性越明显,B说法正确、C说法错误.
(时间:60分钟)
题组一 康普顿效应
1.白天的天空各处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖,假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比(  )
A. 频率变大 B.速度变小
C.光子能量变大 D. 波长变长
答案 D
解析 光子与自由电子碰撞时,遵守动量守恒和能量守恒,自由电子碰撞前静止,碰撞后动量、能量增加,所以光子的动量、能量减小,由λ=,ε=hν可知光子频率变小,波长变长,故D正确,由于光子速度是不变的,故B错误.
2.光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此下列说法正确的是(  )
A.两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律
B.两种效应都相当于电子与光子的弹性碰撞过程
C.两种效应都属于吸收光子的过程
D.光电效应是吸收光子的过程,而康普顿效应相当于光子和电子弹性碰撞的过程
答案 D
解析 光电效应吸收光子放出电子,其过程能量守恒,但动量不守恒,康普顿效应相当于光子与电子弹性碰撞的过程,并且遵守动量守恒定律和能量守恒定律,两种效应都说明光具有粒子性.故D正确.
3.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中(  )
A.能量守恒,动量不守恒,且λ=λ′
B.能量不守恒,动量不守恒,且λ=λ′
C.能量守恒,动量守恒,且λ<λ′
D.能量守恒,动量守恒,且λ>λ′
答案 C
解析 能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前光子的能量ε=hν=h,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量ε′=hν′=h,由ε>ε′可知λ<λ′,选项C正确.
题组二 光的波粒二象性
4.(多选)说明光具有粒子性的现象是(  )
A.光电效应 B.光的干涉
C.光的衍射 D.康普顿效应
答案 AD
5.(多选)关于光的波动性与粒子性,以下说法正确的是(  )
A.爱因斯坦的光子说否定了光的电磁说
B.光电效应现象说明了光的粒子性
C.光波不同于机械波,它是一种概率波
D.光的波动性和粒子性是相互矛盾的,无法统一
答案 BC
解析 爱因斯坦的光子说并没有否定电磁说,只是在一定条件下光是体现粒子性的,A错;光电效应说明光具有粒子性,说明光的能量是一份一份的,B对;光波在少量的情况下体现粒子性,大量的情况下体现波动性,所以C对;光的波动性和粒子性不是孤立的,而是有机的统一体,D错.
6.下列关于光的波粒二象性的理解,正确的是(  )
A.大量的光子中有些光子表现出波动性,有些光子表现出粒子性
B.光在传播时是波,而与物质相互作用时就转变成粒子
C.高频光是粒子,低频光是波
D.波粒二象性是光的属性,有时它的波动性显著,有时它的粒子性显著
答案 D
解析 光的波粒二象性是光的属性,不论其频率的高低还是光在传播或者是与物质相互作用,光都具有波粒二象性,大量光子的效果易呈现出波动性,个别光子的效果易表现出粒子性,光的频率越高,粒子性越强,光的频率越低,波动性越强,故A、B、C错误,D正确.
7.关于光的本性,下列说法正确的是(  )
A.波动性和粒子性是相互矛盾和对立的,因此光具有波粒二象性是不可能的
B.光的波动性类似于机械波,光的粒子性类似于质点
C.大量光子具有波动性,个别光子具有粒子性
D.γ射线具有显著的粒子性,而不具有波动性
答案 C
解析 由光的波粒二象性可知:光是同时具有波粒二象性的.但是不同于宏观的机械波和宏观粒子,波动性和粒子性是光在不同情况下的表现,是同一客观事物的两个侧面.我们无法用一种学说去说明光的所有行为,只能认为光具有波粒二象性.实际上光是一种概率波,即少数光子的行为表现出粒子性,大量光子的行为表现出波动性.综上所述选项C正确.
8.(多选)关于光的性质,下列叙述中正确的是(  )
A.在其他同等条件下,光的频率越高,衍射现象越容易看到
B.频率越高的光,粒子性越显著;频率越低的光,波动性越显著
C.大量光子产生的效果往往显示出波动性,个别光子产生的效果往往显示出粒子性
D.如果让光子一个一个地通过狭缝时,它们将严格按照相同的轨道和方向做极有规则的匀速直线运动
答案 BC
解析 光具有波粒二象性,频率越高,粒子性越显著;少量光子表现出粒子性,但光子的波粒二象性是本身固有的.
9.(多选)在验证光的波粒二象性的实验中,下列说法正确的是(  )
A.使光子一个一个地通过单缝,如果时间足够长,底片上会出现衍射图样
B.单个光子通过单缝后,底片上会出现完整的衍射图样
C.光子通过单缝的运动路线像水波一样起伏
D.单个光子通过单缝后打在底片上的情况呈现出随机性,大量光子通过单缝后打在底片上的情况呈现出规律性
答案 AD
10.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是(  )
A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样
B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样
C.大量光子的运动显示光的波动性,个别光子的运动显示光的粒子性
D.光只有波动性没有粒子性
答案 AC
解析 光的波动性是统计规律的结果,对个别光子我们无法判断它落到哪个位置;对于大量光子遵循统计规律即对大量光子的运动或曝光时间足够长,显示出光的波动性.
4 实物粒子的波粒二象性
5 不确定关系
[目标定位] 1.了解德布罗意假说的内容,知道德布罗意波的波长和粒子动量的关系.2.知道粒子和光一样具有波粒二象性,了解电子波动性的实验验证.3.初步了解不确定关系的内容,感受数学工具在物理学发展过程中的作用.
一、粒子的波动性
1.德布罗意波
任何一个运动的物体都有一种波与它相对应,这种波叫物质波,也称为德布罗意波.
2.物质波的波长、频率关系式:E=hν,p=.
3.电子波动性的实验证实
(1)最早从实验上证实电子衍射现象的是美国的戴维孙和革末,他们做了电子束在晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射现象,首次证实了电子的波动性.
(2)汤姆孙做电子束穿过多晶薄膜的衍射实验,也证实了电子的波动性.
二、氢原子中的电子云
1.定义:用点的多少表示的电子出现的概率分布.
2.电子的分布:某一空间范围内电子出现概率大的地方点多,电子出现概率小的地方点少.电子云反映了原子核外电子位置的不确定性,说明电子对应的波也是一种概率波.
三、不确定关系
1.定义:在经典物理学中,一个质点的位置和动量是可以同时测定的,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系.
2.表达式:ΔxΔpx≥.其中以Δx表示粒子位置的不确定量,以Δpx表示粒子在x方向上的动量的不确定量,h是普朗克常量.
3.不确定关系在微观世界与宏观世界中的不同作用
在微观世界里,由于粒子的波动性比较显著,粒子的不确定关系表现比较明显,但在宏观世界里,由于其德布罗意波长非常小,宏观粒子的波动性根本无法察觉,所以宏观物体的不确定关系不需要考虑.
预习完成后,请把你疑惑的问题记录在下面的表格中
问题1
问题2
问题3
一、对物质波的理解
1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.
2.物质波波长的计算公式为λ=,频率公式为ν=
3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.
4.德布罗意波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不要以宏观观点中的波来理解德布罗意波.
【例1】 下列关于德布罗意波的认识,正确的解释是(  )
A.任何一个物体都有一种波和它对应,这就是物质波
B.X光的衍射证实了物质波的假设是正确的
C.电子的衍射证实了物质波的假设是正确的
D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有波动性
答案 C
解析 运动的物体才具有波动性,A项错;宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错;只有C项正确.
【例2】 如果一个中子和一个质量为10 g的子弹都以103 m/s的速度运动,则它们的德布罗意波的波长分别是多大?(中子的质量为1.67×10-27 kg,普朗克常量为6.63×10-34 J·s)
答案 4.0×10-10 m 6.63×10-35 m
解析 中子的动量为p1=m1v
子弹的动量为p2=m2v
据λ=知中子和子弹的德布罗意波长分别为
λ1=,λ2=
联立以上各式解得λ1=,λ2=
将m1=1.67×10-27 kg,v=103 m/s
h=6.63×10-34 J·s,
m2=1.0×10-2kg
代入上面两式可解得
λ1=4.0×10-10 m,λ2=6.63×10-35 m
二、对不确定关系的理解
1.单缝衍射现象中,粒子在挡板左侧的位置是完全不确定的,即通过挡板前粒子的位置具有不确定性.
2.单缝衍射现象中,粒子通过狭缝后,在垂直原来运动方向的动量是不确定的,即通过挡板后粒子的动量具有不确定性.
3.微观粒子运动的位置不确定量Δx和动量的不确定量Δpx的关系式为ΔxΔpx≥,其中h是普朗克常量,这个关系式叫不确定性关系.
4.不确定性关系告诉我们,如果要更准确地确定粒子的位置(即Δx更小),那么动量的测量一定会更不准确(即Δpx更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.
【例3】 在单缝衍射实验中,若单缝宽度是1.0×10-9 m,那么光子经过单缝发生衍射,动量不确定量是多少?
答案 Δpx≥5.3×10-26 kg·m/s
解析 由题意可知光子位置的不确定量
Δx=1.0×10-9 m,解答本题需利用不确定性关系.
单缝宽度是光子经过狭缝的位置不确定量,
即Δx=1.0×10-9 m,
由ΔxΔpx≥有:1.0×10-9 m·Δpx≥.
得Δpx≥5.3×10-26 kg·m/s.
针对训练 一颗质量为10 g的子弹,具有200 m/s的速率,若其动量的不确定范围为其动量的0.01%(这在宏观范围是十分精确的),则该子弹位置的不确定量范围为多大?
答案 2.6×10-31 m
解析 子弹的动量p=mv=0.01×200 kg·m/s=2 kg·m/s,动量的不确定范围Δpx=0.01 %×p=2×10-4 kg·m/s;
由不确定关系ΔxΔpx≥,得子弹位置的不确定范围
Δx≥= m=2.6×10-31 m.
对物质波的理解
1.一颗质量为10 g的子弹,以200 m/s的速度运动着,则由德布罗意理论计算,要使这颗子弹发生明显的衍射现象,那么障碍物的尺寸为(  )
A.3.0×10-10 m B.1.8×10-11 m
C.3.0×10-34 m D.无法确定
答案 C
解析 λ=== m≈3.32×10-34 m,故能发生明显衍射的障碍物尺寸应为选项C.
2.下列说法中正确的是(  )
A.物质波属于机械波
B.只有像电子、质子、中子这样的微观粒子才具有波动性
C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波
D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性
答案 C
解析 任何一个运动的物体都具有波动性,但因为宏观物体的德布罗意波波长很短,所以很难看到它的衍射和干涉现象,所以C项对,B、D项错;物质波不同于宏观意义上的波,故A项错.
对不确定性关系的理解
3.(多选)根据不确定性关系ΔxΔpx≥,判断下列说法正确的是(  )
A.采取办法提高测量Δx精度时,Δpx的精度下降
B.采取办法提高测量Δx精度时,Δpx的精度上升
C.Δx与Δpx测量精度与测量仪器及测量方法是否完备有关
D.Δx与Δpx测量精度与测量仪器及测量方法是否完备无关
答案 AD
解析 不确定关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定关系所给出的限度.故A、D正确.
4.电子的质量me=9.0×10-31 kg,测定其速度的不确定量为2×10-6 m/s,则该电子位置的不确定量范围为多大.(=5.3×10-35 J·s)
答案 Δx≥29.4 m
解析 由不确定关系ΔxΔpx≥及Δpx=mΔv知
Δx≥= m=29.4 m.
(时间:60分钟)
题组一 对粒子波粒二象性的理解
1.下列关于物质波说法中正确的是(  )
A.实物粒子具有粒子性,在任何条件下都不可能表现出波动性
B.宏观物体不存在对应波的波长
C.电子在任何条件下都能表现出波动性
D.微观粒子在一定条件下能表现出波动性
答案 D
2.在历史上,最早证明了德布罗意波存在的实验是(  )
A.弱光衍射实验 B.电子束在晶体上的衍射实验
C.弱光干涉实验 D.以上都不正确
答案 B
解析 由课本知识知,最早证明德布罗意波假说的是电子束在晶体上的衍射实验.
3.下列说法中正确的是(  )
A.物质波属于机械波
B.只有像电子、质子、中子这样的微观粒子才具有波动性
C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波
D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性
答案 C
解析 物质波是由实物粒子的运动形式,而机械波是由组成物体的质点做周期性运动形成,故A错;不论是微观粒子,还是宏观物体,只要它们运动,就有与之对应的物质波,故B、D均错,C对.
4.下列说法中正确的是(  )
A.质量大的物体,其德布罗意波长短
B.速度大的物体,其德布罗意波长短
C.动量大的物体,其德布罗意波长短
D.动能大的物体,其德布罗意波长短
答案 C
解析 由物质波的波长λ=,得其只与物体的动量有关,动量越大其波长越短.
5.一个电子被加速后,以极高的速度在空间运动,关于它的运动,下列说法中正确的是(  )
A.电子在空间做匀速直线运动
B.电子上下左右颤动着前进
C.电子运动轨迹是正弦曲线
D.无法预言它的路径
答案 D
解析 根据概率波的知识可知,某个电子在空间中运动的路径我们无法确定,只能根据统计规律确定大量电子的运动区域.故选项D正确.
6.对于微观粒子的运动,下列说法中正确的是(  )
A.不受外力作用时光子就会做匀速运动
B.光子受到恒定外力作用时就会做匀变速运动
C.只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度
D.运用牛顿力学无法确定微观粒子的运动规律
答案 D
解析 光子不同于宏观力学的粒子,不能用宏观粒子的牛顿力学规律分析光子的运动,选项A、B错误;根据概率波、不确定关系可知,选项C错误,故选D.
7.关于物质的波粒二象性,下列说法中不正确的是(  )
A.不仅光子具有波粒二象性,一切运动的微粒也具有波粒二象性
B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道
C.波粒二象性中的波动性,是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是相同的
D.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的
答案 C
解析 不能将微观粒子的波动性和粒子性看成宏观概念中的波和粒子,它们在本质上是不相同的.
8.(多选)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中正确的是(  )
A.该实验说明了电子具有波动性
B.实验中电子束的德布罗意波长为λ=
C.加速电压U越大,电子的衍射现象越明显
D.若用相同动能的质子替代电子,衍射现象将更加明显
答案 AB
解析 得到电子的衍射图样,说明电子具有波动性,A正确;
由德布罗意波长公式λ=
而动量p==
两式联立得λ=,B正确;
由公式λ=可知,加速电压越大,电子的波长越小,衍射现象越不明显;用相同动能的质子替代电子,质子的波长小,其衍射现象不如电子的衍射现象明显.故C、D错误.
题组二 对不确定性关系的理解
9.(多选)由不确定性关系可以得出的结论是(  )
A.如果动量的不确定范围越小,则与它对应位置坐标的不确定范围就越大
B.如果位置坐标的不确定范围越小,则动量的不确定范围就越大
C.动量和位置坐标的不确定范围之间的关系不是反比例函数
D.动量和位置坐标的不确定范围之间有唯一的确定关系
答案 ABC
10.(多选)关于不确定性关系ΔxΔpx≥有以下几种理解,其中正确的是(  )
A.微观粒子的动量不可确定
B.微观粒子的位置坐标不可确定
C.微观粒子的动量和位置不可能同时确定
D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子
答案 CD
解析 本题主要考查对不确定性关系ΔxΔpx≥的理解,不确定性关系表示确定位置、动量的精度相互制约,此长彼消,当粒子的位置不确定性小时,粒子动量的不确定性大;反之亦然.故不能同时准确确定粒子的位置和动量.不确定性关系是自然界中的普遍规律,对微观世界的影响显著,对宏观世界的影响不可忽略,故C、D正确.
11.经150 V电压加速的电子束,沿同一方向射出,穿过铝箔后射到其后的屏上,则(  )
A.所有电子的运动轨迹均相同
B.所有电子到达屏上的位置坐标均相同
C.电子到达屏上的位置坐标可用牛顿运动定律确定
D.电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置
答案 D
解析 电子被加速后其德布罗意波长λ==1×10-10m,穿过铝箔时发生衍射.
12.已知=5.3×10-35J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.
(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6m;
(2)电子的质量me=9.1×10-31kg,测定其位置的不确定量为10-10 m.
答案 见解析
解析 (1)球的速度测定的不确定量
Δv≥=m/s=5.3×10-29m/s
这个速度不确定量在宏观世界中微不足道,可认为球的速度是确定的,其运动遵从经典物理学理论.
(2)原子中电子的速度测定的不确定量
Δv≥=m/s=5.8×105 m/s
这个速度不确定量不可忽略,不能认为原子中的电子具有确定的速度,其运动不能用经典物理学理论处理.
第四章 波粒二象性
章末整合

一、量子论与光子说
1.量子论:德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hν.
2.光子说:爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即E=hν其中h为普朗克常量,h=6.63×10-34 J·s.
【例1】 (多选)下列对光子的认识,正确的是(  )
A.“光子说”中的光子就是牛顿在微粒说中所说的“微粒”
B.“光子说”中的光子就是光电效应的光电子
C.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子
D.光子的能量跟光的频率成正比
答案 CD
解析 根据光子说,在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子.而牛顿的“微粒说”中的微粒指宏观世界的微小颗粒.光电效应中,金属内的电子吸收光子后克服原子核的库仑引力等束缚,逸出金属表面,成为光电子,故A、B选项错误,C选项正确;由ε=hν知,光子能量ε与其频率ν成正比,故D选项正确.
【例2】 已知:功率为100 W的灯泡消耗的电能的5 %转化为所发出的可见光的能量,光速c=3.0×108 m/s,普朗克常量h=6.63×10-34 J·s,假定所发出的可见光的波长都是560 nm,计算灯泡每秒内发出的光子数.
答案 1.4×1019个
解析 一波长为λ的光子能量为E=,设灯泡每秒内发出的光子数为n,灯泡电功率为P,则n=,式中k=5 %是灯泡的发光效率.联立两式得n=,代入题给数据得n=1.4×1019(个).
二、光电效应的规律和光电效应方程
1.光电效应规律
(1)任何一种金属都对应一个极限(截止)频率,入射光频率必须大于极限频率才会产生光电效应.
(2)光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大.
(3)当入射光频率大于极限频率时,保持频率不变,光电流的强度与入射光的强度成正比.
(4)入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9 s.
2.爱因斯坦光电效应方程Ek=hν-A.
A表示金属的逸出功,νc表示金属的极限频率,则A=hνc.
【例3】 用波长为2.0×10-7 m的紫外线照射钨的表面,释放出来的光电子中最大的动能是4.7×10-19 J.由此可知,钨的极限频率是(普朗克常量h=6.63×10-34 J·s,光速c=3.0×108 m/s,结果取两位有效数字)(  )
A.5.5×1014 Hz B.7.9×1014 Hz
C.9.8×1014 Hz D.1.2×1015 Hz
答案 B
解析 由爱因斯坦光电效应方程得h=Ek+A,而金属的逸出功A=hνc,由以上两式得,钨的极限频率为:νc=-=7.9×1014 Hz,B项正确.
针对训练 已知钙和钾的截止频率分别为7.73×1014 Hz和5.44×1014 Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的(  )
A.波长 B.频率
C.能量 D.动量
答案 A
解析 由爱因斯坦光电效应方程hν=A+mv,又由A=hν0,可得光电子的最大初动能mv=hν-hν0,由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,B、C、D错;又由c=λν可知光电子频率较小时,波长较大,A对.
三、用图像表示光电效应的规律
1.Ek-ν图像
根据爱因斯坦光电效应方程Ek=hν-A,光电子的最大初动能Ek是入射光频率ν的一次函数,图像如图1所示.其横轴截距为金属的极限频率νc,纵轴截距是金属的逸出功的负值;斜率为普朗克常量h.
图1
2.I-U图像
光电流强度I随光电管两极间电压U的变化图像如图2所示,图中Im为饱和光电流,Uc为遏止电压.利用mev=eUc可得光电子的最大初动能.
图2
【例4】 (1)研究光电效应的电路如图3所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I与A、K之间的电压UAK的关系图像中,正确的是
(  )
图3
(2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子.光电子从金属表面逸出的过程中,其动量的大小________(选填“增大”、“减小”或“不变”),原因是
_____________________________________________________________________.
答案 (1)C (2)减小 光电子受到金属表面层中力的阻碍作用(或需要克服逸出功)
解析 (1)同一金属的逸出功一定,对于同一频率的光,由eUc=mv=hν-A知,遏止电压相等,遏止电压与光的强度无关;光越强,光电流越大,所以C项正确.
四、光的波粒二象性、物质波
1.光的干涉、衍射、光的偏振说明光具有波动性,光电效应、康普顿效应则证明光具有粒子性,因此,光具有波粒二象性,对于光子这样的微观粒子只有从波粒二象性出发,才能统一说明光的各种行为.
2.电子的衍射实验,说明了一些物质微粒也像光子一样具有波粒二象性.
3.任何一个运动着的物体,小到电子、质子、大到行星、太阳,都有一种波和它对应,波长(物质波的波长)λ=.物质波和光波一样,也属于概率波,概率波的实质是指粒子在空间分布的概率是受波动规律支配的.
【例5】 (多选)现代物理学认为,光和实物粒子都具有波粒二象性,下列事实中突出体现波动性的是(  )
A.一定频率的光照射到锌板上,光的强度越大,单位时间内锌板上发射的光电子就越多
B.肥皂液是无色的,吹出的肥皂泡却是彩色的
C.质量为10-3 kg、速度为10-2 m/s的小球,其德布罗意波长约为10-23 m,不过我们能清晰地观测到小球运动的轨迹
D.人们常利用热中子研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距大致相同
答案 BD
解析 光子照到锌板上,发生光电效应,说明光有粒子性,A不正确;白光在肥皂泡上发生薄膜干涉时,会出现彩色条纹,光的干涉现象说明了光有波动性,B正确;由于实物的波长很小,波动性不明显,表现为粒子性,C不正确;用热中子研究晶体结构,其实是通过中子的衍射来“观察”晶体的,是利用中子的波动性,D正确.故选BD.