备考2018中考数学高频考点剖析 专题16 平面几何之三角形边角问题(原卷+解析卷)

文档属性

名称 备考2018中考数学高频考点剖析 专题16 平面几何之三角形边角问题(原卷+解析卷)
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2018-04-02 11:41:24

文档简介

备考2018中考数学高频考点剖析
专题十六 平面几何之三角形边角问题
考点扫描☆聚焦中考
三角形边角问题,是每年中考的必考内容之一,考查的知识点包括三角形三边关系、三角形中的中点线段、三角形内角和和三角形外角性质等四方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以涉及到三角形内角和计算为主。结合近几年全国各地中考的实例,我们从四方面进行三角形边角问题的探讨:
(1)三角形三边关系;
(2)三角形中点线段;
(3)三角形内角和.
(4)三角形外角性质.
考点剖析☆典型例题
例1(2017?宁德)在△ABC中,AB=5,AC=8,则BC长不可能是(  )
A.4 B.8 C.10 D.13
【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.
【解答】解:∵AB=5,AC=8,
∴3<BC<13.
故选D.
【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.
例2(2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是(  )
A.中线 B.角平分线 C.高 D.中位线
【分析】根据等底等高的三角形的面积相等解答.
【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,
∴三角形的中线将三角形的面积分成相等两部分.
故选A.
例3如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.21世纪教育网版权所有
【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.www-2-1-cnjy-com
【解答】证明:∵AB∥CD,
∴∠BEF+∠EFD=180°,
又EP、FP分别是∠BEF、∠EFD的平分线,
∴∠PEF=∠BEF,∠EFP=∠EFD,
∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,
∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,
即EP⊥FP.
【点评】本题的关键就是找到∠PEF+∠EFP与∠BEF+∠EFD之间的关系,考查了整体代换思想.
例4(2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是(  )
A.120° B.90° C.100° D.30°
【分析】根据三角形的外角的性质计算即可.
【解答】解:∠A=∠ACD﹣∠B
=120°﹣20°
=100°,
故选:C.
例5如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.
【分析】首先根据四边形内角和为360度计算出∠DAB+∠ABC=360°﹣220°=140°,再根据∠1=∠2,∠3=∠4计算出∠2+∠3=70°,然后利用三角形内角和为180度计算出∠AOB的度数.【来源:21·世纪·教育·网】
【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,
∴∠DAB+∠ABC=360°﹣220°=140°,
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=70°,
∴∠AOB=180°﹣70°=110°.
【点评】此题主要考查了多边形的内角,关键是掌握四边形内角和为360°,三角形内角和为180°.
考点过关☆专项突破
类型一 三角形三边关系
1. (2017年江苏扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是(  )
A.6 B.7 C.11 D.12
2. (2017甘肃张掖)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为(  )21·cn·jy·com
A.2a+2b﹣2c B.2a+2b C.2c D.0
3. 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是(  )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.5cm,5cm,11cm D.13cm,12cm,20cm
4. (2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=(  )www.21-cn-jy.com
A.50m B.48m C.45m D.35m
5. 若一个三角形的两边长分别为3和7,则第三边长可能是(  )
A.6 B.3 C.2 D.11
6. 如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
类型二 三角形内重点线段
1. 下列说法不正确的是(  )
A.三角形的中线在三角形的内部
B.三角形的角平分线在三角形的内部
C.三角形的高在三角形的内部
D.三角形必有一高线在三角形的内部
2.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.21cnjy.com

3.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.2·1·c·n·j·y
4. 已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.21·世纪*教育网
5. 如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.21*cnjy*com
6.(2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC的长度是多少?
类型三 三角形内角和
1.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是(  )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形
2.(2017湖南株洲)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=(  )
A.145° B.150° C.155° D.160°
3.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数(  )【来源:21cnj*y.co*m】
A.35° B.5° C.15° D.25°
4. 如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为  .【出处:21教育名师】
5. 如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【版权所有:21教育】
类型四 三角形外角性质
1. 如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是 .21教育网
2. 如图,∠1+∠2+∠3+∠4+∠5= °.
3. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.21教育名师原创作品
4. (2017江苏徐州)正六边形的每个内角等于 °.
5. (2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 .
6. (2017湖北宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是(  )21*cnjy*com
A.①② B.①③ C.②④ D.③④
7. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于(  )
A.108° B.90° C.72° D.60°
8.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?(  )
A.40° B.45° C.50° D.60°
9. 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是(  )
A.140米 B.150米 C.160米 D.240米
10. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求∠BOC的度数.2-1-c-n-j-y
备考2018中考数学高频考点剖析
专题十六 平面几何之三角形边角问题
考点扫描☆聚焦中考
三角形边角问题,是每年中考的必考内容之一,考查的知识点包括三角形三边关系、三角形中的中点线段、三角形内角和和三角形外角性质等四方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以涉及到三角形内角和计算为主。结合近几年全国各地中考的实例,我们从四方面进行三角形边角问题的探讨:
(1)三角形三边关系;
(2)三角形中点线段;
(3)三角形内角和.
(4)三角形外角性质.
考点剖析☆典型例题
例1(2017?宁德)在△ABC中,AB=5,AC=8,则BC长不可能是(  )
A.4 B.8 C.10 D.13
【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.
【解答】解:∵AB=5,AC=8,
∴3<BC<13.
故选D.
【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.
例2(2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是(  )
A.中线 B.角平分线 C.高 D.中位线
【分析】根据等底等高的三角形的面积相等解答.
【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,
∴三角形的中线将三角形的面积分成相等两部分.
故选A.
例3如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.21*cnjy*com
【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.
【解答】证明:∵AB∥CD,
∴∠BEF+∠EFD=180°,
又EP、FP分别是∠BEF、∠EFD的平分线,
∴∠PEF=∠BEF,∠EFP=∠EFD,
∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,
∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,
即EP⊥FP.
【点评】本题的关键就是找到∠PEF+∠EFP与∠BEF+∠EFD之间的关系,考查了整体代换思想.
例4(2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是(  )
A.120° B.90° C.100° D.30°
【分析】根据三角形的外角的性质计算即可.
【解答】解:∠A=∠ACD﹣∠B
=120°﹣20°
=100°,
故选:C.
例5如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.
【分析】首先根据四边形内角和为360度计算出∠DAB+∠ABC=360°﹣220°=140°,再根据∠1=∠2,∠3=∠4计算出∠2+∠3=70°,然后利用三角形内角和为180度计算出∠AOB的度数.21·cn·jy·com
【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,
∴∠DAB+∠ABC=360°﹣220°=140°,
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=70°,
∴∠AOB=180°﹣70°=110°.
【点评】此题主要考查了多边形的内角,关键是掌握四边形内角和为360°,三角形内角和为180°.
考点过关☆专项突破
类型一 三角形三边关系
1. (2017年江苏扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是(  )
A.6 B.7 C.11 D.12
【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.
【解答】解:设第三边的长为x,
∵三角形两边的长分别是2和4,
∴4﹣2<x<2+4,即2<x<6.
则三角形的周长:8<C<12,
C选项11符合题意,
故选C.
2. (2017甘肃张掖)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为(  )21·世纪*教育网
A.2a+2b﹣2c B.2a+2b C.2c D.0
【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.
【解答】解:∵a、b、c为△ABC的三条边长,
∴a+b﹣c>0,c﹣a﹣b<0,
∴原式=a+b﹣c+(c﹣a﹣b)
=0.
故选D.
3. 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是(  )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.5cm,5cm,11cm D.13cm,12cm,20cm
【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.
【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;
B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;
C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;
D、12+13>20,故以这三根木棒能构成三角形,符合题意.
故选D.
【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.
4. (2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=(  )21教育网
A.50m B.48m C.45m D.35m
【分析】根据中位线定理可得:AB=2DE=48m.
【解答】解:∵D是AC的中点,E是BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
∵DE=24m,
∴AB=2DE=48m,
故选B.
5. 若一个三角形的两边长分别为3和7,则第三边长可能是(  )
A.6 B.3 C.2 D.11
【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.
【解答】解:设第三边为x,则4<x<10,
所以符合条件的整数为6,
故选A.
【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.21*cnjy*com
6. 如图,在△BCD中,BC=4,BD=5,
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.
【分析】(1)利用三角形三边关系得出DC的取值范围即可;
(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.
【解答】解:(1)∵在△BCD中,BC=4,BD=5,
∴1<DC<9;
(2)∵AE∥BD,∠BDE=125°,
∴∠AEC=55°,
又∵∠A=55°,
∴∠C=70°.
【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.
类型二 三角形内重点线段
1. 下列说法不正确的是(  )
A.三角形的中线在三角形的内部
B.三角形的角平分线在三角形的内部
C.三角形的高在三角形的内部
D.三角形必有一高线在三角形的内部
【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.
【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误;
B、三角形的角平分线在三角形的内部正确,故本选项错误;
C、只有锐角三角形的三条高在三角形的内部,故本选项正确;
D、三角形必有一高线在三角形的内部正确,故本选项错误.
故选C.
【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.
2.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.
【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.
【解答】解:∵CD⊥AB,
∴∠CDB=90°,
∵∠B=60°,
∴∠BCD=90°﹣∠B=90°﹣60°=30°;
∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,
∴∠ACB=100°,
∵CE是∠ACB的平分线,
∴∠ACE=∠ACB=50°,
∴∠CEB=∠A+∠ACE=20°+50°=70°,
∠ECD=90°﹣70°=20°
【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.www.21-cn-jy.com
3.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.www-2-1-cnjy-com
【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.
【解答】解:∵∠A=50°,∠C=60°
∴∠ABC=180°﹣50°﹣60°=70°,
又∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°﹣90°﹣∠C=30°,
∵AE、BF是角平分线,
∴∠CBF=∠ABF=35°,∠EAF=25°,
∴∠DAE=∠DAC﹣∠EAF=5°,
∠AFB=∠C+∠CBF=60°+35°=95°,
∴∠BOA=∠EAF+∠AFB=25°+95°=120°,
∴∠DAC=30°,∠BOA=120°.
故∠DAE=5°,∠BOA=120°.
【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.
4. 已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.
【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.
【解答】证明:
∵∠ACB=90°,
∴∠1+∠3=90°,
∵CD⊥AB,
∴∠2+∠4=90°,
又∵BE平分∠ABC,
∴∠1=∠2,
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
即∠CFE=∠CEF.
【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.
5. 如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.【来源:21·世纪·教育·网】
【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【出处:21教育名师】
【解答】解:∵AD是BC边上的高,∠EAD=5°,
∴∠AED=85°,
∵∠B=50°,
∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,
∵AE是∠BAC的角平分线,
∴∠BAC=2∠BAE=70°,
∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.
【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.
6.(2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .
【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.
【解答】解:∵D,E分别是△ABC的边AC和AC的中点,
∴DE是△ABC的中位线,
∵DE=7,
∴BC=2DE=14.
故答案是:14.
类型三 三角形内角和
1.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是(  )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形
【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状.
【解答】解:∵∠A=20°,
∴∠B=∠C=(180°﹣20°)=80°,
∴三角形△ABC是锐角三角形.
故选A.
【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.
2.(2017湖南株洲)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=(  )
A.145° B.150° C.155° D.160°
【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.
【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,
∴6x=180,
∴x=30,
∵∠BAD=∠B+∠C=5x=150°,
故选B.
3.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数(  )
A.35° B.5° C.15° D.25°
【分析】利用三角形的内角和是180°可得∠BAC的度数;AE是∠BAC的角平分线,可得∠EAC的度数;利用AD是高可得∠ADC=90°,那么可求得∠DAC度数,那么∠EAD=∠EAC﹣∠DAC.21世纪教育网版权所有
【解答】解:∵∠B=50°,∠C=60°,
∴∠BAC=180°﹣∠B﹣∠C=70°,
∵AE是∠BAC的角平分线,
∴∠EAC=∠BAC=35°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=90°﹣∠C=30°,
∴∠EAD=∠EAC﹣∠DAC=5°.
故选B.
【点评】关键是得到和所求角有关的角的度数;用到的知识点为:三角形的内角和是180°;角平分线把一个角分成相等的两个角.
4. 如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为 125° .
【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.
【解答】解:∵△ABC中,∠A=70°,
∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,
∴BP,CP分别为∠ABC与∠ACP的平分线,
∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,
∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.
故答案为:125°.
【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.
5. 如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.
【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.
【解答】解:设∠1=∠2=x,则∠3=∠4=2x.
因为∠BAC=63°,
所以∠2+∠4=117°,即x+2x=117°,
所以x=39°;
所以∠3=∠4=78°,
∠DAC=180°﹣∠3﹣∠4=24°.
【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.
类型四 三角形外角性质
1. 如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是 36° .【来源:21cnj*y.co*m】
【分析】先根据已知三角形的一个外角等于与它相邻的内角的4倍,互为邻补角的两个角和为180°,从而求出这个外角与它相邻的内角的度数为144°、36°.又知这个外角还等于与它不相邻的一个内角的2倍,所以可以得到这两个与它不相邻的内角分别为:72°、72°,则这个三角形各角的度数分别是36°,72°,72°.【版权所有:21教育】
【解答】解:∵三角形的一个外角等于与它相邻的内角的4倍,
∴可设这一内角为x,则它的外角为4x,
∴有x+4x=180°,
则x=36°,4x=144°.
又∵这个外角还等于与它不相邻的一个内角的2倍,
∴这两个与它不相邻的内角分别为:72°、72°,
∴这个三角形各角的度数分别是36°,72°,72°,
∴此三角形最小内角的度数是36°.
故答案为:36°
【点评】本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.
2. 如图,∠1+∠2+∠3+∠4+∠5= 540 °.
【分析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理即可求出答案.
【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,
根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.
故答案为540.
【点评】本题主要考查三角形的内角和为180°定理,需作辅助线,比较简单.
3. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.2·1·c·n·j·y
【分析】根据三角形的外角的性质计算即可.
【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,
故答案为:120.
4. (2017江苏徐州)正六边形的每个内角等于 120 °.
【分析】根据多边形内角和公式即可求出答案.
【解答】解:六边形的内角和为:(6﹣2)×180°=720°,
∴正六边形的每个内角为: =120°,
故答案为:120°
5. (2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 5 .
【分析】用多边形的外角和360°除以72°即可.
【解答】解:边数n=360°÷72°=5.
故答案为:5.
6. (2017湖北宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是(  )21cnjy.com
A.①② B.①③ C.②④ D.③④
【分析】根据多边形的内角和定理即可判断.
【解答】解:∵①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;2-1-c-n-j-y
∴①③剪开后的两个图形的内角和相等,
故选B.
7. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于(  )
A.108° B.90° C.72° D.60°
【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.
【解答】解:设此多边形为n边形,
根据题意得:180(n﹣2)=540,
解得:n=5,
故这个正多边形的每一个外角等于: =72°.
故选C.
【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)?180°,外角和等于360°.
8.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?(  )21教育名师原创作品
A.40° B.45° C.50° D.60°
【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.
【解答】解:延长BC交OD与点M,如图所示.
∵多边形的外角和为360°,
∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.
∵四边形的内角和为360°,
∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,
∴∠BOD=40°.
故选A.
【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.
10. 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是(  )

A.140米 B.150米 C.160米 D.240米
【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.
【解答】解:∵多边形的外角和为360°,而每一个外角为24°,
∴多边形的边数为360°÷24°=15,
∴小明一共走了:15×10=150米.
故选B.
【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.
11. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求∠BOC的度数.

【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.
【解答】解:延长BO交AC于E,
∵∠A=50°,∠ABO=20°,
∴∠1=50°+20°=70°,
∵∠ACO=30°,
∴∠BOC=∠1+∠ACO=70°+30°=100°

【点评】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.
同课章节目录