备考2018中考数学高频考点剖析
专题二十七 几何三大变换之平移问题
考点扫描☆聚焦中考
平移,是每年中考的必考内容之一,考查的知识点包括在函数中的平移和几何中的平移两方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以函数和多边形的计算为主。结合2017年全国各地中考的实例,我们从两个方面进行平移问题的探讨:【来源:21cnj*y.co*m】
(1)函数问题中的平移;
(2)几何图形中的平移;
考点剖析☆典型例题
例1 (2017毕节)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为( )
A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2
【考点】F9:一次函数图象与几何变换.
【分析】根据“左加右减”的函数图象平移规律来解答.
【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:
y=2(x+1)﹣1,即y=2x+1,
故选B.
例2(2017广西百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为 .
【考点】Q3:坐标与图形变化﹣平移.
【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.
【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),
∴OC=OA=2,C(0,2),
∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,【版权所有:21教育】
∴点C的对应点坐标是(1,3).
故答案为(1,3).
例3(2017宁夏)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).
(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.
【分析】(1)根据图形平移的性质画出平移后得的△A1B1C1即可;
(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.
【解答】解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2 B2C2即为所求.
【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
例4(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )21·世纪*教育网
A.2 B.3 C.4 D.5
【考点】坐标与图形变化-平移.
【分析】直接利用平移中点的变化规律求解即可.
【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=0+1=1,b=0+1=1,
故a+b=2.
故选:A.
【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.21教育网
考点过关☆专项突破
类型一 函数问题中的平移
1. (2017湖北荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为 .21·cn·jy·com
2. (2017贵州)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为 .【来源:21·世纪·教育·网】
3. (2017内蒙古赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为( )【出处:21教育名师】
A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8
4. (2017湖北荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为 .
5.(2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )
A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1
6. (2017广西河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.
(1)写出A,B两点的坐标,并画出直线l的图象;
(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是 .
(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD= .
7. (2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).
(1)四边形ABCD的面积为 ;
(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;
(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.21*cnjy*com
类型二 几何图形中的平移
1.(2016·山东省德州市·3分)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )2-1-c-n-j-y
A.平移 B.旋转 C.轴对称 D.位似
2.(2016·山东省济宁市·3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
3.(2016·贵州安顺·3分)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )
A.(﹣2,﹣4) B.(﹣2,4) C.(2,﹣3) D.(﹣1,﹣3)
4. (2016·云南省昆明市)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
5. (2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
6. (2017年江苏扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.21教育名师原创作品
(1)判断四边形ACC'A'的形状,并说明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.
类型三 综合性问题中的平移
1. (2017江苏盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B. C. D.
2. (2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )
A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3
3.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为 .21世纪教育网版权所有
4. (2017湖北江汉)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.www.21-cn-jy.com
5.(2016·浙江省绍兴市·8分)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).21cnjy.com
(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.
6.(2016·黑龙江龙东·6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.2·1·c·n·j·y
(1)画出△A1B1C1;
(2)画出△A2B2C2;
(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.
7. (2016·黑龙江齐齐哈尔·6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
8. 如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=www-2-1-cnjy-com
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.21*cnjy*com
备考2018中考数学高频考点剖析
专题二十七 几何三大变换之平移问题
考点扫描☆聚焦中考
平移,是每年中考的必考内容之一,考查的知识点包括在函数中的平移和几何中的平移两方面,总体来看,难度系数低,以选择填空为主。也有少量的解析题。解析题主要以函数和多边形的计算为主。结合2017年全国各地中考的实例,我们从两个方面进行平移问题的探讨:21世纪教育网版权所有
(1)函数问题中的平移;
(2)几何图形中的平移;
考点剖析☆典型例题
例1 (2017毕节)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为( )
A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2
【考点】F9:一次函数图象与几何变换.
【分析】根据“左加右减”的函数图象平移规律来解答.
【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:
y=2(x+1)﹣1,即y=2x+1,
故选B.
例2(2017广西百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为 (1,3) .【来源:21·世纪·教育·网】
【考点】Q3:坐标与图形变化﹣平移.
【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.
【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),
∴OC=OA=2,C(0,2),
∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,2-1-c-n-j-y
∴点C的对应点坐标是(1,3).
故答案为(1,3).
例3(2017宁夏)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).【来源:21cnj*y.co*m】
(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.
【分析】(1)根据图形平移的性质画出平移后得的△A1B1C1即可;
(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.
【解答】解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2 B2C2即为所求.
【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
例4(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2 B.3 C.4 D.5
【考点】坐标与图形变化-平移.
【分析】直接利用平移中点的变化规律求解即可.
【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=0+1=1,b=0+1=1,
故a+b=2.
故选:A.
【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
考点过关☆专项突破
类型一 函数问题中的平移
1. (2017湖北荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为 4 .
【考点】F9:一次函数图象与几何变换.
【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.
【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.
∵点A(﹣1,2)关于y轴的对称点是(1,2),
∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,
解得b=4.
故答案为4.
2. (2017贵州)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为 (1,﹣1) .
【考点】Q3:坐标与图形变化﹣平移.
【分析】根据坐标平移规律即可求出答案.
【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,
∴平移后A的坐标为(1,﹣1)
故答案为:(1,﹣1)
3. (2017内蒙古赤峰)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为( )21cnjy.com
A.y=2x﹣5 B.y=2x+5 C.y=2x+8 D.y=2x﹣8
【考点】F9:一次函数图象与几何变换.
【分析】根据函数图象上加下减,可得答案.
【解答】解:由题意,得
y=2x﹣3+8,
即y=2x+5,
故选:B.
4.(2017湖北荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为 4 .
【考点】F9:一次函数图象与几何变换.
【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.
【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.
∵点A(﹣1,2)关于y轴的对称点是(1,2),
∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,
解得b=4.
故答案为4.
5. (2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )
A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1
【考点】H6:二次函数图象与几何变换.
【分析】根据平移规律,可得答案.
【解答】解:由图象,得
y=2x2﹣2,
由平移规律,得
y=2(x﹣1)2+1,
故选:C.
6. (2017广西河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.
(1)写出A,B两点的坐标,并画出直线l的图象;
(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是 y=﹣2x+6 .21教育网
(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD= .
【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.
【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;
(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;
(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.
【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),
当x=0时,y=2,即点B(0,2),
如图,直线AB即为所求;
(2)如图,直线l1即为所求,
直线l1的解析式为y=﹣2x+2+4=﹣2x+6,
故答案为:y=﹣2x+6;
(3)如图,直线l2即为所求,
∵直线l绕点A顺时针旋转90°得到l2,
∴由图可知,点B(0,2)的对应点坐标为(3,1),
设直线l2解析式为y=kx+b,
将点A(1,0)、(3,1)代入,得:,
解得:,
∴直线l2的解析式为y=x﹣,
当x=0时,y=﹣,
∴直线l2与y轴的交点E(0,﹣),
∴tan∠CAD=tan∠EAO===,
故答案为:.
7. (2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).
(1)四边形ABCD的面积为 20 ;
(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;
(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.21教育名师原创作品
【考点】FI:一次函数综合题.
【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;
(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE?OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,
(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.
【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,
∴A(﹣5,0),
∴OA=5,
∴AC=7,
把x=﹣3代入y=﹣2x﹣10得,y=﹣4
∴OC=4,
∴四边形ABCD的面积=(3+7)×4=20;
故答案为:20;
(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,
∴四边形ABFE是平行四边形,
∴S=AE?OC=4t;
②当3≤t<7时,如图1,∵C(0,﹣4),D(2,0),
∴直线CD的解析式为:y=2x﹣4,
∵E′F′∥AB,BF′∥AE′
∴BF′=AE=t,
∴F′(t﹣3,﹣4),
直线E′F′的解析式为:y=﹣2x+2t﹣10,
解得,
∴G(,t﹣7),
∴S=S四边形ABCD﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,
③当t≥7时,S=S四边形ABCD=20,
综上所述:S关于t的函数解析式为:S=;
(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),
此时直线EF的解析式为:y=﹣2x﹣6,
设动点P的直线为(m,﹣2m﹣6),
∵PM⊥直线BC于M,交x轴于n,
∴M(m,﹣4),N(m,0),
∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,
①假设直线EF上存在点P,使点T恰好落在x轴上,
如图2,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,
作FK⊥x轴于K,则KF=4,
由△TKF∽△PNT得, =2,
∴NT=2KF=8,
∵PN2+NT2=PT2,
∴4(m+3)2+82=4(m+1)2,
解得:m=﹣6,∴﹣2m﹣6=﹣6,
此时,P(﹣6,6);
②假设直线EF上存在点P,使点T恰好落在y轴上,
如图3,连接PT,FT,则△PFM≌△PFT,
∴PT=PM=2|m+1|,FT=FM=|m+1|,
∴=2,
作PH⊥y轴于H,则PH=|m|,
由△TFC∽△PTH得,,
∴HT=2CF=2,
∵HT2+PH2=PT2,
即22+m2=4(m+1)2,
解得:m=﹣,m=0(不合题意,舍去),
∴m=﹣时,﹣2m﹣6=﹣,
∴P(﹣,﹣),
综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.
类型二 几何图形中的平移
1.(2016·山东省德州市·3分)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )21·cn·jy·com
A.平移 B.旋转 C.轴对称 D.位似
【考点】位似变换.
【分析】根据平移、旋转变换、轴对称变换和位似变换的性质进行判断即可.
【解答】解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;
旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;
轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;
位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,
故选:D.
【点评】本题考查的是平移、旋转变换、轴对称变换和位似变换,理解“等距变换”的定义、掌握平移、旋转变换、轴对称变换和位似变换的性质是解题的关键.
2.(2016·山东省济宁市·3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )www.21-cn-jy.com
A.16cm B.18cm C.20cm D.21cm
【考点】平移的性质.
【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可
【解答】解:∵△ABE向右平移2cm得到△DCF,
∴EF=AD=2cm,AE=DF,
∵△ABE的周长为16cm,
∴AB+BE+AE=16cm,
∴四边形ABFD的周长=AB+BE+EF+DF+AD
=AB+BE+AE+EF+AD
=16cm+2cm+2cm
=20cm.
故选C.
3.(2016·贵州安顺·3分)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )
A.(﹣2,﹣4) B.(﹣2,4) C.(2,﹣3) D.(﹣1,﹣3)
【分析】直接利用平移中点的变化规律求解即可.
【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).
故选A.
【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4. (2016·云南省昆明市)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.
【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【解答】解:(1)如图1所示:
(2)如图2所示:
(3)找出A的对称点A′(﹣3,﹣4),
连接BA′,与x轴交点即为P;
如图3所示:点P坐标为(2,0).
5. (2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.
【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;
(2)由AC=BD,DE=AC,得出BD=DE即可.
【解答】(1)证明:∵四边形ABCD是矩形,
∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,
由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,
∴AD=EC,
在△ACD和△EDC中,,
∴△ACD≌△EDC(SAS);
(2)解:△BDE是等腰三角形;理由如下:
∵AC=BD,DE=AC,
∴BD=DE,
∴△BDE是等腰三角形.
6. (2017年江苏扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.
(1)判断四边形ACC'A'的形状,并说明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.
【考点】LO:四边形综合题;LA:菱形的判定与性质;Q2:平移的性质;T7:解直角三角形.
【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.
(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.
【解答】解:(1)四边形ACC'A'是菱形.理由如下:
由平移的性质得到:AC∥A′C′,且AC=A′C′,
则四边形ACC'A'是平行四边形.
∴∠ACC′=∠AA′C′,
又∵CD平分∠ACB的外角,即CD平分∠ACC′,
∴CD也平分∠AA′C′,
∴四边形ACC'A'是菱形.
(2)∵在△ABC中,∠B=90°,A B=24,cos∠BAC=,
∴cos∠BAC==,即=,
∴AC=26.
∴由勾股定理知:BC===7.
又由(1)知,四边形ACC'A'是菱形,
∴AC=AA′=26.
由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,
∴AA′=BB′=26,
∴CB′=BB′﹣BC=26﹣7.
类型三 综合性问题中的平移
1. (2017江苏盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B. C. D.
【考点】H6:二次函数图象与几何变换.
【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
【解答】
解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),
∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,
∴A(1,1),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC?AA′=3AA′=9,
∴AA′=3,
即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是y=(x﹣2)2+4.
故选D.
2. (2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )
A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3
【考点】H6:二次函数图象与几何变换.
【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.
【解答】解:∵矩形ABCD的两条对称轴为坐标轴,
∴矩形ABCD关于坐标原点对称,
∵A点C点是对角线上的两个点,
∴A点、C点关于坐标原点对称,
∴C点坐标为(﹣2,﹣1);
∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;
∵抛物线经过A点时,函数表达式为y=x2,
∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,
故选A.
3.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为 .21·世纪*教育网
【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.
【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.www-2-1-cnjy-com
【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,
∴点C到x轴的距离为1+2×=+1,
横坐标为2,
∴A(2, +1),
第2016次变换后的三角形在x轴上方,
点A的纵坐标为+1,
横坐标为2-2016×1=-2014,
所以,点A的对应点A′的坐标是(-2014,+1)
故答案为:(-2014,+1).
4. (2017湖北江汉)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.21*cnjy*com
【考点】HA:抛物线与x轴的交点;AA:根的判别式;H6:二次函数图象与几何变换;H7:二次函数的最值.【版权所有:21教育】
【分析】(1)由题意△≥0,列出不等式,解不等式即可;
(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;
(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;
【解答】解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,
△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,
∵方程有实数根,
∴﹣(m﹣1)2≥0,
∴m=1.
(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,
图象如图所示:
平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.
(3)由消去y得到x2+6x+n+2=0,
由题意△≥0,
∴36﹣4n﹣8≥0,
∴n≤7,
∵n≤m,m=1,
∴1≤n≤7,
令y′=n2﹣4n=(n﹣2)2﹣4,
∴n=2时,y′的值最小,最小值为﹣4,
n=7时,y′的值最大,最大值为21,
∴n2﹣4n的最大值为21,最小值为﹣4.
5.(2016·浙江省绍兴市·8分)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).2·1·c·n·j·y
(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.
【考点】几何变换综合题.
【分析】(1)根据平移的性质得出点A平移的坐标即可;
(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;
②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.
【解答】解:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),
∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);
(2)①连接CM,如图1:
由中心对称可知,AM=BM,
由轴对称可知:BM=CM,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACM+∠MCB=90°,
∴∠ACB=90°,
∴△ABC是直角三角形;
②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
由①得∠ACE=90°,
∴∠AEC=45°,
∴E点坐标为(13,0),
设直线BE的解析式为y=kx+b,
∵C,E点在直线上,
可得:,
解得:,
∴y=﹣x+13,
∵点B由点A经n次斜平移得到,
∴点B(n+1,2n),由2n=﹣n﹣1+13,
解得:n=4,
∴B(5,8).
6.(2016·黑龙江龙东·6分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.【出处:21教育名师】
(1)画出△A1B1C1;
(2)画出△A2B2C2;
(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.
【考点】作图-旋转变换;作图-平移变换.
【分析】(1)由B点坐标和B1的坐标得到△ABC向右平移5个单位,再向上平移1个单位得到△A1B1C1,则根据点平移的规律写出A1和C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;21*cnjy*com
(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.
【解答】解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;
(3)OA==4,
点A经过点A1到达A2的路径总长=+=+2π.
7. (2016·黑龙江齐齐哈尔·6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.
【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;
(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;
(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;
(2)如图所示,△A2B2O为所求做的三角形;
(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
∴A2A3所在直线的解析式为:y=﹣5x+16,
令y=0,则x=,
∴P点的坐标(,0).
8. 如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.
【考点】FI:一次函数综合题.
【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;
(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为?BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.
【解答】解:
(1)∵|x﹣15|+=0,
∴x=15,y=13,
∴OA=BC=15,AB=OC=13,
∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,
∵tan∠CBD=,
∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,
∴∠ONM=∠CBD,
∴=,
∵DE∥ON,
∴==,且OE=3,
∴=,解得OM=6,
∴ON=8,即N(0,8),
把N、B的坐标代入y=kx+b可得,解得,
∴直线BN的解析式为y=x+8;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,
当点N′在x轴上方,即0<t≤8时,如图2,
由题意可知四边形BNN′B′为平行四边形,且NN′=t,
∴S=NN′?OA=15t;
当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,
∵NN′=t,
∴可设直线B′N′解析式为y=x+8﹣t,
令y=0,可得x=3t﹣24,∴OG=24,
∵ON=8,NN′=t,∴ON′=t﹣8,
∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;
综上可知S与t的函数关系式为S=.