高中生物人教版选修3专题1蛋白质工程的崛起 课件 (共29张PPT)

文档属性

名称 高中生物人教版选修3专题1蛋白质工程的崛起 课件 (共29张PPT)
格式 zip
文件大小 403.4KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 生物学
更新时间 2018-04-10 22:25:49

图片预览

文档简介

课件29张PPT。1.4 蛋白质工程的崛起专题 1 基因工程蛋白质是一切生命活动的体现者
基因控制蛋白质的合成
活动1:如果想让某一个生物的性状在另外一个生物的身上表达,常用的方法有哪些? 要想让一种生物的性状在另一种生物中表达,在种内可以用常规杂交育种的办法实现,但要使有生殖隔离的种间生物实现基因交流,就显得力不从心了。基因工程的诞生,为克服这一远缘杂交的障碍问题,带来了新的希望。基因工程成果丰硕植物方面
提高植物的抗虫、抗病、抗逆性
改良植物的品质
动物方面
提高动物生长速度
改善畜产品的品质
用转基因动物生产药物
用转基因动物作器官移植的供体
研制药物
基因治疗 基因工程原则上只能生产自然界已存在的蛋白质。生物产生的天然蛋白质是在长期进化过程中形成的,它的结构、性能不能完全满足人类生产和生活的需要。于是要对现有蛋白质进行改造,制造出目前从天然蛋白质中找不到的蛋白质。这样人们又开始了新一轮的探索,蛋白质工程应运而生了。一、蛋白质工程崛起的缘由干扰素用于治疗病毒的感染和癌症,但在体内不易保存,如果将它的一个半胱氨酸转化为丝氨酸,则可在-700C条件下保存半年。为什么要开展蛋白质工程?玉米中赖氨酸的含量比较低 在已研究过的几千种酶中,只有极少数可以应用于工业生产,绝大多数酶都不能应用于工业生产,这些酶虽然在自然状态下有活性,但在工业生产中没有活性或活性很低。这是因为工业生产中每一步的反应体系中常常会有酸、碱或有机溶剂存在,反应温度较高,在这种条件下,大多数酶会很快变性失活。提高蛋白质的稳定性是工业生产中一个非常重要的课题。一般来说,提高蛋白质的稳定性包括:延长酶的半衰期,提高酶的热稳定性,延长药用蛋白的保存期,抵御由于重要氨基酸氧化引起的活性丧失等。例如:玉米中赖氨酸含量比较低天冬氨酸激酶
(352位的苏氨酸)二氢吡啶二羧酸合成酶(104位的天冬酰胺)天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(异亮氨酸)玉米中赖氨酸含量可提高数倍 对天然蛋白质进行改造,你认为应该直接对蛋白质分子进行操作,还是通过对基因的操作来实现?答:应该从对基因的操作来实现对天然蛋白质改造,主要原因如下:
(1)任何一种天然蛋白质都是由基因编码的,改造了基因即对蛋白质进行了改造,而且改造过的蛋白质可以遗传下去。如果对蛋白质直接改造,即使改造成功,被改造过的蛋白质分子还是无法遗传的。
(2)对基因进行改造比对蛋白质直接改造要容易操作,难度要小得多。二、蛋白质工程的概念蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造或制造一种新的蛋白质,以满足人类对生产和生活的需求。前提:了解蛋白质的结构和功能的关系
空间结构的测定: X射线晶体衍射法、
核磁共振
( 一级结构的测定(氨基酸序列))蛋白质的结构蛋白质的一级结构 蛋白质的结构蛋白质的二级结构 蛋白质的结构胰岛素的三级结构蛋白质的结构血红蛋白质的四级结构 血红蛋白分子就是由二个由141个氨基酸残基组成的α亚基和二个由146个氨基酸残基组成的β亚基按特定的接触和排列组成的一个球状蛋白质分子,每个亚基中各有一个含亚铁离子的血红素辅基。 关键技术:基因工程
蛋白质工程称为第二代基因工程目的:定向改造或制造蛋白质原理:改造基因(基因修饰或基因合成)三、蛋白质工程的基本原理根据人们对蛋白质功能的特定要求,对蛋白质的结构进行分子设计。由于基因决定蛋白质,要对蛋白质结构进行设计改造,必须从基因入手。基因表达流程图蛋白质工程流程图从预期的蛋白质功能出发
设计预期的蛋白质结构
推测应有的氨基酸序列
找到相应的脱氧核苷酸序列讨论:
1、怎样得出决定这一段肽链的脱氧核苷酸序列? 请把相应的碱基序列写出来。活动2 某多肽链的一段氨基酸序列是:
……-丙氨酸-色氨酸-赖氨酸-甲硫氨酸-苯丙氨酸-……丙氨酸:GCU、GCC、GCA、GCG
色氨酸:UGG 赖氨酸:AAA、AAG
甲硫氨酸:AUG 苯丙氨酸:UUU、UUC 每种氨基酸都有对应的密码子,只要查一下遗传密码子表,就可以将上述氨基酸序列的编码序列查出来。但是由于上述氨基酸序列中有几个氨基酸是由多个密码子编码,因此其碱基排列组合起来就比较复杂,至少可以排列出16种。同学们可以根据学过的排列组合知识自己排列一下。首先应该根据密码子推出mRNA序列为GCU(或C或A或G)UGGAAA(或G)AUGUUU(或C),再根据碱基互补配对规律推出脱氧核苷酸序列:CGA(或G或T或C)ACCTTT(或C)TACAAA(或G)。2、确定目的基因的碱基序列后,怎样才能合成或改造目的基因(DNA)?可以通过人工合成的方法获取或基因的定点诱变技术来改变。四、蛋白质工程的进展与前景蛋白质工程目前的现状:成功的例子不多,主要是因为蛋白质发挥其功能需要依赖于正确的空间结构,而科学家目前对大多数蛋白质的空间结构了解很少。前景:制造速效型药品、蛋白质电子元件等活动3 比较基因工程和蛋白质工程基因分子新基因基因(型)新的蛋白质基因工程基因工程蛋白质改造工程举例
1.水蛭素改造
水蛭素是水蛭唾液腺分泌的凝血酶特异抑制剂,它有多种变异体,由65或66个氨基酸残基组成。水蛭素在临床上可作为抗栓药物用于治疗血栓疾病。为提高水蛭素活性,在综合各变异体结构特点的基础上提出改造水蛭素主要变异体HV2的设计方案,将47位的Asn(天冬酰胺)变成Lys(赖氨酸),使其与分子内第4或第5位Thr(苏氨酸)间形成氢键来帮助水蛭素N端肽段的正确取向,从而提高凝血效率,试管试验活性提高4倍,在动物模型上检验抗血栓形成的效果,提高20倍。2.生长激素改造
生长激素通过对它特异受体的作用促进细胞和机体的生长发育,然而它不仅可以结合生长激素受体,还可以结合许多种不同类型细胞的催乳激素受体,引发其他生理过程。在治疗过程中为减少副作用,需使人的重组生长激素只与生长激素受体结合,尽可能减少与其他激素受体的结合。经研究发现,二者受体结合区有一部分重叠,但并不完全相同,有可能通过改造加以区别。由于人的生长激素和催乳激素受体结合需要锌离子参与作用,而它与生长激素受体结合则无需锌离子参与,于是考虑取代充当锌离子配基的氨基酸侧链,如第18和第21位His(组氨酸)和第17位Glu(谷氨酸)。实验结果与预先设想一致,但要开发作为临床用药还有大量的工作要做。3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓胰岛素从注射部位进入血液,从而延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。该速效胰岛素已通过临床实验。 4.治癌酶的改造
癌症的基因治疗分二个方面:药物作用于癌细胞,特异性地抑制或杀死癌细胞;药物保护正常细胞免受化学药物的侵害,可以提高化学治疗的剂量。疱疹病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其它结构类似物磷酸化而使这些碱基3’-OH缺乏,从而阻断DNA的合成,杀死癌细胞。HSV—TK催化能力可以通过基因突变来提高。从大量的随机突变中进行筛选出一种酶,在酶活性部位附近有6个氨基酸被替换,催化能力20倍以上。
蛋白质工程的发展很快,研究工作很多,以上仅介绍了几个例子。蛋白质工程除了用于改造天然蛋白质或设计制造新的蛋白质外,其本身还是研究蛋白质结构功能的一种强有力的工具,它在解决生物理论方面所起的作用,可以和任何重大的生物研究方法相提并论。蛋白质工程的主要步骤通常包括:
(1)从生物体中分离纯化目的蛋白;
(2)测定其氨基酸序列;
(3)借助核磁共振和X射线晶体衍射等手段,尽可能地了解蛋白质的二维重组和三维晶体结构;(4)设计各种处理条件,了解蛋白质的结构变化,包括折叠与去折叠等对其活性与功能的影响;
(5)设计编码该蛋白的基因改造方案,如定点突变;
(6)分离、纯化新蛋白,功能检测后投入实际使用。