第四关 以多结论的几何及二次函数问题为背景的选择填空题
【考查知识点】
以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】
1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.
2. 以二次函数为背景的选择填空题中,根据图象的位置确定a、b、c的符号,a>0开口向上,a<0开口向下.抛物线的对称轴为x=,由图像确定对称轴的位置,由a的符号确定出b的符号.由x=0时,y=c,知c的符号取决于图像与y轴的交点纵坐标,与y轴交点在y轴的正半轴时,c>0,与y轴交点在y轴的负半轴时,c<0.确定了a、b、c的符号,易确定abc的符号;根据对称轴确定a与b的关系;根据图象还可以确定△的符号,及a+b+c和a-b+c的符号。
【典型例题】
【例1】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论是________.
【答案】①②③④⑤
【解析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE=∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.根据同底等高的三角形的面积相等即可得到结论.
解:∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中,AB=AE,AG=AG,
∴Rt△ABG≌Rt△AFG(HL),
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG=∠BAD=45°,所以①正确;
设BG=x,则GF=x,C=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG,所以②正确;
∵EF=ED,GB=GF,
∴GE=GF+EF=BG+DE,所以③正确;
∵GF=GC,
∴∠GFC=∠GCF,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
而∠BGF=∠GFC+∠GCF,
∴∠AGB+∠AGF=∠GFC+∠GCF,
∴∠AGB=∠GCF,
∴CF∥AG,所以④正确;
过F作FH⊥DC
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴=,
EF=DE=2,GF=3,
∴EG=5,
∴△EFH∽△EGC,
∴相似比为: =,
∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)==3.6,
连接AC,
∵CF∥AG,
∴S△FCA=S△FGC=3.6,
所以⑤正确.
故正确的有①②③④⑤,
故答案为:①②③④⑤.
本题考查了:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质,勾股定理和正方形的性质.
【名师点睛】本题考查了折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质及勾股定理;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
【例2】(2017湖北鄂州)如图抛物线的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b﹣c=2;②a=;③ac=b﹣1;④>0
其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】解:据图象可知a>0,c<0,b>0,∴ <0,故④错误;
∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;
∵A(﹣2,0),B(﹣c,0),抛物线线与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;
∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1,∴2b﹣c=2,故①正确;
故选C.
【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
【方法归纳】
1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.
【针对练习】
1.(2017四川广安)如图所示,抛物线的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:
①;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正确的有( )
A.1 B.2 C.3 D.4
2.(2017四川达州)已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:
①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;
②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;
③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;
④当点P移动到使∠AOB=90°时,点A的坐标为(,).
其中正确的结论个数为( )
A.1 B.2 C.3 D.4
3.(2017山东烟台)二次函数的图象如图所示,对称轴是直线,下列结论:
①;②;③;④.
其中正确的是( )
A.①④ B.②④ C. ①②③ D.①②③④
4.(2017湖北随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;②AM=DE+BM;③DE2=AD?CM;④点N为△ABM的外心.其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
5.(2017辽宁盘锦)如图,抛物线 与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程 有两个不相等的实数根,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
6.(2017四川广元)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD=;③DF=DC;④CF=2AF,正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
7.(2017广东广州)如图,平面直角坐标系中是原点, 的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:
①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 __________.(填写所有正确结论的序号)
8.(2017贵州黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为( ,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0,正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
9.(2017浙江嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是( )
A.① B.② C.③ D.④
10.(2017山东日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )
A.①②③ B.③④⑤ C.①②④ D.①④⑤
11.(2017黑龙江绥化)如图,在中, 相交于点,点是的中点,连接并延长交于点,已知,则下列结论:
①,②,③,④∽,其中正确的是( )
A.①②③④ B.①④ C. ②③④ D.①②③
12.(2017黑龙江齐齐哈尔)如图,抛物线()的对称轴为直线,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:①;②;③;④(为实数);⑤点,,是该抛物线上的点,则,正确的个数有( )
A.4个 B.3个 C.2个 D.1个
13.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是____________.
14.如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H.下列说法: ;②点F是GB的中点; ; ,其中正确的结论的序号是_____________
15.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;
③EC平分∠DCH;④当点H与点A重合时,EF=.
以上结论中,你认为正确的有______.(填序号)
第四关 以多结论的几何及二次函数问题为背景的选择填空题
【考查知识点】
以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】
1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.
2. 以二次函数为背景的选择填空题中,根据图象的位置确定a、b、c的符号,a>0开口向上,a<0开口向下.抛物线的对称轴为x=,由图像确定对称轴的位置,由a的符号确定出b的符号.由x=0时,y=c,知c的符号取决于图像与y轴的交点纵坐标,与y轴交点在y轴的正半轴时,c>0,与y轴交点在y轴的负半轴时,c<0.确定了a、b、c的符号,易确定abc的符号;根据对称轴确定a与b的关系;根据图象还可以确定△的符号,及a+b+c和a-b+c的符号。
【典型例题】
【例1】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论是________.
【答案】①②③④⑤
【解析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE=∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.根据同底等高的三角形的面积相等即可得到结论.
解:∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中,AB=AE,AG=AG,
∴Rt△ABG≌Rt△AFG(HL),
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG=∠BAD=45°,所以①正确;
设BG=x,则GF=x,C=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG,所以②正确;
∵EF=ED,GB=GF,
∴GE=GF+EF=BG+DE,所以③正确;
∵GF=GC,
∴∠GFC=∠GCF,
又∵Rt△ABG≌Rt△AFG,
∴∠AGB=∠AGF,
而∠BGF=∠GFC+∠GCF,
∴∠AGB+∠AGF=∠GFC+∠GCF,
∴∠AGB=∠GCF,
∴CF∥AG,所以④正确;
过F作FH⊥DC
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴=,
EF=DE=2,GF=3,
∴EG=5,
∴△EFH∽△EGC,
∴相似比为: =,
∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)==3.6,
连接AC,
∵CF∥AG,
∴S△FCA=S△FGC=3.6,
所以⑤正确.
故正确的有①②③④⑤,
故答案为:①②③④⑤.
本题考查了:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质,勾股定理和正方形的性质.
【名师点睛】本题考查了折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质及勾股定理;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
【例2】(2017湖北鄂州)如图抛物线的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:
①2b﹣c=2;②a=;③ac=b﹣1;④>0
其中正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】解:据图象可知a>0,c<0,b>0,∴ <0,故④错误;
∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;
∵A(﹣2,0),B(﹣c,0),抛物线线与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;
∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1,∴2b﹣c=2,故①正确;
故选C.
【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
【方法归纳】
1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.
【针对练习】
1.(2017四川广安)如图所示,抛物线的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:
①;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正确的有( )
A.1 B.2 C.3 D.4
【答案】B.
【解析】
考点:抛物线与x轴的交点;二次函数图象与系数的关系.
2.(2017四川达州)已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:
①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;
②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;
③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;
④当点P移动到使∠AOB=90°时,点A的坐标为(,).
其中正确的结论个数为( )
A.1 B.2 C.3 D.4
【答案】C.
【解析】
④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OPA=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴,∴OP2=PB?PA,∴m2=﹣?(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(,﹣),故④正确,∴②③④正确,故选C.
考点:反比例函数综合题;综合题.
3.(2017山东烟台)二次函数的图象如图所示,对称轴是直线,下列结论:
①;②;③;④.
其中正确的是( )
A.①④ B.②④ C. ①②③ D.①②③④
【答案】C.
【解析】
试题解析:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a<0,
∴ab<0,所以①正确;
而x=﹣1时,y>0,即a﹣b+c>0,
∴a+2a+c>0,所以④错误.
故选C.
考点:二次函数图象与系数的关系.
4.(2017湖北随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;②AM=DE+BM;③DE2=AD?CM;④点N为△ABM的外心.其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
综上所述,正确的结论有2个,故选B.
点睛:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.
5.(2017辽宁盘锦)如图,抛物线 与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程 有两个不相等的实数根,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
【答案】B
点睛:本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a、b的关系.
6.(2017四川广元)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD=;③DF=DC;④CF=2AF,正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
【答案】C
【解析】解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴ ,∵AE=AD=BC,∴=,∴CF=2AF,故④正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有,即b=a,∴tan∠CAD===.故②不正确;
正确的有①③④,故选C.
点睛:本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
7.(2017广东广州)如图,平面直角坐标系中是原点, 的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:
①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 __________.(填写所有正确结论的序号)
【答案】①③
,
是OA的中点,故①正确;
,
不是菱形,
,
,
,
故 和 不相似,故②错误;
由①得,点G是AB的中点, 是 的中位线,
,故④错误,
综上:①③正确,
故答案为:①③.
【点睛】本题考查了相似三角形的判定与性质、菱形的判定、三角形的中位线等,正确添加辅助线是解题的关键.
8.(2017贵州黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为( ,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0,正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
【答案】B
点睛:本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.
9.(2017浙江嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是( )
A.① B.② C.③ D.④
【答案】C.
【解析】
试题解析:∵y=x2-6x+10=(x-3)2+1,
∴当x=3时,y有最小值1,故①错误;
当x=3+n时,y=(3+n)2-6(3+n)+10,
当x=3-n时,y=(n-3)2-6(n-3)+10,
∵(3+n)2-6(3+n)+10-[(n-3)2-6(n-3)+10]=0,
∴n为任意实数,x=3+n时的函数值等于x=3-n时的函数值,故②错误;
∵抛物线y=x2-6x+10的对称轴为x=3,a=1>0,
∴当x>3时,y随x的增大而增大,
故选C.
考点:二次函数的性质.
10.(2017山东日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )
A.①②③ B.③④⑤ C.①②④ D.①④⑤
【答案】C.
考点:抛物线与x轴的交点;二次函数图象与系数的关系.
11.(2017黑龙江绥化)如图,在中, 相交于点,点是的中点,连接并延长交于点,已知,则下列结论:
①,②,③,④∽,其中正确的是( )
A.①②③④ B.①④ C. ②③④ D.①②③
【答案】D
【解析】
试题分析:∵在?ABCD中,AO=AC,
∵点E是OA的中点,∴AE= CE,∵AD∥BC,∴△AFE∽△CBE,∴=,
考点:1.相似三角形的判定与性质;2.平行四边形的性质.
12.(2017黑龙江齐齐哈尔)如图,抛物线()的对称轴为直线,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:①;②;③;④(为实数);⑤点,,是该抛物线上的点,则,正确的个数有( )
A.4个 B.3个 C.2个 D.1个
【答案】B
【解析】
试题分析:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;
考点:1.二次函数图象与系数的关系;2.二次函数的性质;3.二次函数图象上点的坐标特征;4.抛物线与x轴的交点.
13.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是____________.
【答案】①②④⑤
【解析】连接PC,
(1)∵PE⊥BC于点E,PF⊥CD于点F,∠C=90°可得四边形PECF是矩形,
∴CP=EF,
∵正方形ABCD关于BD对称,点P在BD上,
∴AP=CP,x--k/w
∴AP=EF,故①正确;
(2)延长AP交EF于点H,过点P作PM⊥AB于点M,则由已知易得PM=PE,∠PMA=∠EPF=90°,结合AP=EF,可得△APM≌△FEP,
∴∠EFP=∠PAM,
∵∠PAM+∠APM=90°,∠APM=∠FPH,
∴∠FPH+∠EFP=90°,
∴PD=CE,故⑤正确.
综上所述,上述5个结论中,正确的是①②④⑤.
14.如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H.下列说法: ;②点F是GB的中点; ; ,其中正确的结论的序号是_____________
【答案】①③④
由①③得:GB=2HG,∴BH=3HG,∴S△HAB=3S△AHG.∵△HAB≌△EBC,∴S△HAB=S△EBC=S△ABC,∴S△HAB=S△ABC.故④正确.
故①③④正确.
点睛:本题是四边形综合题.熟练掌握角平分线的性质以及相似三角形的判定与性质是解答本题的关键.
15.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;
③EC平分∠DCH;④当点H与点A重合时,EF=.
以上结论中,你认为正确的有______.(填序号)
【答案】①②④.
【解析】试题解析:①∵FH与EG,EH与CF都是原来矩形ABCD的对边AD、BC的一部分,
∴FHCG,EHCF,
∴四边形CFHE是平行四边形,
由翻折的性质得,CF=FH,
∴四边形CFHE是菱形,
故①正确;
∴只有时EC平分∠DCH,
故③错误;
过点F作FM⊥AD于M,
则ME=(8?3)?3=2,
由勾股定理得,
故④正确,
综上所述,结论正确的有①②④,
故答案为:①②④.