第二关:以数字及图形规律探究问题为背景的选择填空题
【考查知识点】探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。这种类题型的题目主要考查了学生分析问题解决问题的能力,也考察了初中数学中的各种数学思想。
【解题思路】掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论),然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.
【典型例题】
【例1】(2017黑龙江龙东地区)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第2017个图形中有 个三角形.
【答案】8065
【解析】
试题解析:第1个图形中一共有1个三角形,
第2个图形中一共有1+4=5个三角形,
第3个图形中一共有1+4+4=9个三角形,
…
第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,
当n=2017时,4n﹣3=8065
考点:图形的变化类
【名师点睛】图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.
【例2】(2017湖南岳阳)观察下列等式:,,,,,,,根据这个规律,则的末尾数字是
A. B. C. D.
【答案】B.
【解析】
试题解析:∵21=2,22=4,23=8,24=16,25=32,26=64,…,
∴2017÷4=506…1,
∵(2+4+8+6)×506+2=10122,
∴21+22+23+24+…+22017的末位数字是2,
故选B.
考点:尾数特征.
【名师点睛】数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位置的数量关系),找出各部分的特征,写出符合条件的格式. 对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.
【例3】(2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为 .
【答案】(0,﹣)
【解析】
试题解析:由题意可得,
OB=OA?tan60°=1×=,
OB1=OB?tan60°=,
OB2=OB1?tan60°=()3,
…
∵2017÷4=506…1,
∴点B2017的坐标为(0,﹣),
考点:点的坐标.
【名师点睛】坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.
【例4】(2017四川自贡)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )
A.180 B.182 C.184 D.186
【答案】C.
【解析】
试题解析:由前面数字关系:1,3,5;3,5,7;5,7,9,
可得最后一个三个数分别为:11,13,15,
∵3×5﹣1=14,;
5×7﹣3=32;
7×9﹣5=58;
∴m=13×15﹣11=184.
故选C.
考点:数字规律.
【名师点睛】数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.
【方法归纳】
1.图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.
2.对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.
3.对于坐标变化规律问题,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.
4. 对于数形结合规律型问题,解决此类问题的关键是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.
【针对练习】
1. (2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )
A.116 B.144 C.145 D.150
2.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为( )
A. B. C. D.
3.(2016山西卷)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有 个涂有阴影的小正方形(用含有n的代数式表示).
4.(2017山东日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A. 23 B. 75
C. 77 D. 139
5.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( )
A. 121 B. 362 C. 364 D. 729
6.(2017山东临沂)将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第个图形中“”的个数是78,则的值是( )
A.11 B.12 C.13 D.14
7.(2017四川内江)如图,过点A(2,0)作直线l:的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:AA1,A1A2,A2A3,…,则线段A2016A2107的长为( )
A. B. C. D.
8.(2017山东淄博)设△ABC的面积为1.
如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.
如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;
如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;
…
按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnEnFn,其面积S= .
9.(2017山东潍坊)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
10.(2017山东威海)某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……按照只有的规律进行下去,第次拼成的图案用地砖 块.
11.(2017山东东营)如图,在平面直角坐标系中,直线l: 与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是______.
12.(2017湖南娄底)刘莎同学用火柴棒依图的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第______个.
13.(2017湖南郴州)已知 ,则 .
14.(2017四川凉山州)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是______.
15.(2017黑龙江绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为______.
16.(2017辽宁盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为______.
17. (2017安徽)【阅读理解】
我们知道,,那么结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即;第2行两个圆圈中数的和为,即;……;第行个圆圈中数的和为,即.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为.
【规律探究】
将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第行的第一个圆圈中的数分别为,2,),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为: .因此,= .
【解决问题】
根据以上发现,计算的结果为 .
18.(2017年湖北省荆州市第14题)观察下列图形:
它们是按一定规律排列的,依照此规律,第9个图形中共有______个点.
第二关:以数字及图形规律探究问题为背景的选择填空题
【考查知识点】探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。这种类题型的题目主要考查了学生分析问题解决问题的能力,也考察了初中数学中的各种数学思想。
【解题思路】掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论),然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.
【典型例题】
【例1】(2017黑龙江龙东地区)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第2017个图形中有 个三角形.
【答案】8065
【解析】
【名师点睛】图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.
【例2】(2017湖南岳阳)观察下列等式:,,,,,,,根据这个规律,则的末尾数字是
A. B. C. D.
【答案】B.
【解析】
试题解析:∵21=2,22=4,23=8,24=16,25=32,26=64,…,
∴2017÷4=506…1,
∵(2+4+8+6)×506+2=10122,
∴21+22+23+24+…+22017的末位数字是2,
故选B.
考点:尾数特征.
【名师点睛】数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位置的数量关系),找出各部分的特征,写出符合条件的格式. 对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.
【例3】(2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为 .
【答案】(0,﹣)
【解析】
试题解析:由题意可得,
OB=OA?tan60°=1×=,
OB1=OB?tan60°=,
OB2=OB1?tan60°=()3,
…
∵2017÷4=506…1,
∴点B2017的坐标为(0,﹣),
考点:点的坐标.
【名师点睛】坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.
【例4】(2017四川自贡)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )
A.180 B.182 C.184 D.186
【答案】C.
【解析】
试题解析:由前面数字关系:1,3,5;3,5,7;5,7,9,
可得最后一个三个数分别为:11,13,15,
∵3×5﹣1=14,;
5×7﹣3=32;
7×9﹣5=58;
∴m=13×15﹣11=184.
故选C.
考点:数字规律.
【名师点睛】数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.
【方法归纳】
1.图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.
2.对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.
3.对于坐标变化规律问题,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.
4. 对于数形结合规律型问题,解决此类问题的关键是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.
【针对练习】
1. (2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )
A.116 B.144 C.145 D.150
【答案】B.
【解析】
试题分析:∵4=1×2+2,11=2×3+2+3,21=3×4+2+3+4
第 4个图形为:4×5+2+3+4+5,
∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.
故选B.
考点:规律型:图形的变化类.
2.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为( )
A. B. C. D.
【答案】C.
【解析】
考点:规律型:图形的变化类;综合题.
3.(2016山西卷)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有 个涂有阴影的小正方形(用含有n的代数式表示).
【答案】4n+1
【解析】
试题分析:由图可知,涂有阴影的正方形有5+4(n-1)=4n+1个
考点:找规律
4.(2017山东日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A. 23 B. 75
C. 77 D. 139
【答案】B
考点:规律型:数字的变化类.
5.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( )
A. 121 B. 362 C. 364 D. 729
【答案】C
【解析】试题分析:①图1,0×3+1=1;
②图2,1×3+1=4;
③图3,4×3+1=13;
④图4,13×3+1=40;
⑤图5,40×3+1=121;
⑥图6,121×3+1=364;
故选C
考点:探索规律
6.(2017山东临沂)将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第个图形中“”的个数是78,则的值是( )
A.11 B.12 C.13 D.14
【答案】B
【解析】
考点:规律探索
7.(2017四川内江)如图,过点A(2,0)作直线l:的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:AA1,A1A2,A2A3,…,则线段A2016A2107的长为( )
A. B. C. D.
【答案】B.
【解析】
考点:一次函数图象上点的坐标特征;规律型;综合题.
8.(2017山东淄博)设△ABC的面积为1.
如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.
如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;
如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;
…
按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnEnFn,其面积S= .
【答案】.
【解析】
考点:规律型:图形的变化类;三角形的面积;规律型;综合题.
9.(2017山东潍坊)如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
【答案】9n+3.
【解析】试题分析:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+3;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+3;
∵第3个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=30=9×3+3,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+3.
故答案为:9n+3.
考点:规律型:图形的变化类
10.(2017山东威海)某广场用同一种如图所示的地砖拼图案.第一次拼成形如图1所示的图案,第二次拼成形如图2所示的图案,第三次拼成形如图3的图案,第四次拼成形如图4的图案……按照只有的规律进行下去,第次拼成的图案用地砖 块
【答案】2n2+2n
【解析】
考点:规律题目
11.(2017山东东营)如图,在平面直角坐标系中,直线l: 与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是______.
【答案】.
考点:1、一次函数图象上点的坐标特征,2、等边三角形的性质
12.(2017湖南娄底)刘莎同学用火柴棒依图的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第______个.
【答案】2017.
【解析】解:由图可知:
点睛:本题考查了图形的变化类问题,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.
13.(2017湖南郴州)已知 ,则 .
【答案】.
【解析】
试题分析:由题意给出的5个数可知:an= ,所以当n=8时,a8=.
考点:数字规律问题.
14.(2017四川凉山州)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是______.
【答案】5050.
点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“an=1+2+…+n=”.
15.(2017黑龙江绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为______.
【答案】.
【解析】试题分析:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,
∵s1=?s=?s,
s2=?s=?s,
s3=?s,
……
∴sn=?s=??2?2=.
考点:1.三角形中位线定理;2.等腰直角三角形.
16.(2017辽宁盘锦)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为______.
【答案】.
同理,可得:点An的坐标为(, ).故答案为: .
点睛:本题考查了一次函数图象上点的坐标特征、解直角三角形以及规律型,通过解直角三角形找出点A2、A3、…、An的坐标是解题的关键.
17. (2017安徽)【阅读理解】
我们知道,,那么结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即;第2行两个圆圈中数的和为,即;……;第行个圆圈中数的和为,即.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为.
【规律探究】
将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第行的第一个圆圈中的数分别为,2,),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为: .因此,= .
【解决问题】
根据以上发现,计算的结果为 .
【答案】 1345
【解析】
=
考点: 探究问题、解决问题的能力.
18.(2017年湖北省荆州市第14题)观察下列图形:
它们是按一定规律排列的,依照此规律,第9个图形中共有______个点.
【答案】135
【解析】
考点:规律型:图形的变化类