第十一章 三角形
(时间:25分,满分60分)
班级 姓名 得分
1.(5分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
【答案】A
考点:三角形的外角性质.
2.(5分)点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是( )
A.∠A>∠2>∠1
B.∠A>∠1>∠2
C.∠2>∠1>∠A
D.∠1>∠2>∠A
【答案】D
考点:三角形的外角性质;三角形内角和定理.
3.(5分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )
A.110° B.80° C.70° D.60°
【答案】C.
【解析】
试题分析:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.
考点:三角形的外角性质.
4.(5分)如图,△ABC中,∠E=18°,BE平分∠ABC,CE平分∠ACD,则∠A等于( )
A.36° B.30° C.20° D.18°
【答案】A
【解析】
试题分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系,即可得到结论.
证明:∵∠ACD=∠A+∠ABC,
∴∠ECD=(∠A+∠ABC).
又∵∠ECD=∠E+∠EBC,
∴∠E+∠EBC=(∠A+∠ABC).
∵BE平分∠ABC,
∴∠EBC=∠ABC,
∴∠ABC+∠E=(∠A+∠ABC),
∴∠E=∠A=18°,
∴∠A=36°.
故选A.
考点:三角形内角和定理.
5. (5分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )
A.90° B.100° C.130° D.180°
【答案】B
考点:三角形外角的性质.
6.(5分)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是 .
【答案】75°.
考点:1.三角形的外角性质;2.三角形内角和定理.
7.(5分)如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.
【答案】29°
【解析】
试题分析:因为AB∥CD,∠A=56°所以∠DFE=∠A=56°,又因为∠DFE=∠C+∠E,∠C=27°所以∠E=∠DFE-∠C=56°-27°=29°,故答案为29°.
考点:1.平行线的性质;2.三角形的外角性质.
8.(5分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3= .
【答案】20°
【解析】
试题分析:首先由平行线的性质可求得∠4的度数,然后再根据三角形的外角的性质即可求得∠3的度数.
如图:
∵a∥b, ∴∠4=∠1=50°. 由三角形的外角的性质可知:∠4=∠2+∠3, ∴∠3=∠4﹣∠2=50°﹣30°=20°
考点:平行线的性质;三角形的外角性质
9.(5分)△ABC中, ∠ABC=40°,∠ACB=80°,BO、CO分别平分∠ABC,∠ACB,交于O,CI为外角∠ACD的平分线,BO的延长线交CI于I点,记∠BAC=∠1,∠BIC=∠2,则∠1:∠2= (求比值).
【答案】2:1;
考点:1.角的平分线;2.三角形外角的性质.
10. (5分)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°. ∠BCD=n°,则∠BED的度数为_____________度.
【答案】35+
【解析】∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,
∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,
∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,
∴∠BAD+∠BCD=2∠E,
∵∠BAD=70°,∠BCD=n°,
∴∠E=(∠D+∠B)=35+n.
故答案为:35+n.
11.(10分)
已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
①若CE∥AB,求∠BEC的度数;
②若CE平分∠ACD,求∠BEC的度数.
(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.
【答案】(1)①40°;②30°;(2)50°,130°,10°
(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.
试题解析:(1)①∵∠A=60°,∠ACB=40°,
∴∠ABC=80°,
∵BM平分∠ABC,
∴∠ABE=∠ABC=40°,
∵CE∥AB,
∴∠BEC=∠ABE=40°;
②∵∠A=60°,∠ACB=40°,
∴∠ABC=80°,∠ACD=180°-∠ACB=140°,
∵BM平分∠ABC,CE平分∠ACD,
∴∠CBE=∠ABC=40°,∠ECD=∠ACD=70°,
∴∠BEC=∠ECD-∠CBE=30°;第十一章 三角形
(时间:25分,满分60分)
班级 姓名 得分
1.(5分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
A.15° B.25° C.30° D.10°
2.(5分)点P是△ABC内一点,连接BP并延长交AC于D,连接PC,则图中∠1,∠2,∠A的大小关系是( )
A.∠A>∠2>∠1
B.∠A>∠1>∠2
C.∠2>∠1>∠A
D.∠1>∠2>∠A
3.(5分)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )
A.110° B.80° C.70° D.60°
4.(5分)如图,△ABC中,∠E=18°,BE平分∠ABC,CE平分∠ACD,则∠A等于( )
A.36° B.30° C.20° D.18°
5. (5分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )
A.90° B.100° C.130° D.180°
6.(5分)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是 .
7.(5分)如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.
8.(5分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=
9.(5分)△ABC中, ∠ABC=40°,∠ACB=80°,BO、CO分别平分∠ABC,∠ACB,交于O,CI为外角∠ACD的平分线,BO的延长线交CI于I点,记∠BAC=∠1,∠BIC=∠2,则∠1:∠2= (求比值).
10. (5分)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°. ∠BCD=n°,则∠BED的度数为_____________度.
11.(10分)
已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
①若CE∥AB,求∠BEC的度数;
②若CE平分∠ACD,求∠BEC的度数.
(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.