备考2018中考数学高频考点剖析
专题四 代数之方程(组)问题
考点扫描☆聚焦中考
方程和方程组问题,是历年中考的必考内容之一,考查的知识点包括一元一次方程、二元一次方程组、分式方程及其一元二次方程四个方面,总体来看,难度系数低,整式方程以选择填空为主,分式方程以计算为主,综合不等式进行考查,解析题也是重点考查内容。也有少量的解析题。解析题主要以二元一次方程和其它方程的综合为主。结合2017年全国各地中考的实例,我们从四方面进行方程与方程组问题的探讨:2·1·c·n·j·y
(1)一元一次方程;
(2)二元一次方程组;
(3)分式方程.
(4)一元二次方程
考点剖析☆典型例题
例1设x,y,c是实数,( )
A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc
C.若x=y,则 D.若,则2x=3y
【分析】根据等式的性质,可得答案.
【解答】解:A、两边加不同的数,故A不符合题意;
B、两边都乘以c,故B符合题意;
C、c=0时,两边都除以c无意义,故C不符合题意;
D、两边乘以不同的数,故D不符合题意;
故选:B.
【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.
例2某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )2-1-c-n-j-y
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.21*cnjy*com
【解答】解:设参观人次的平均年增长率为x,由题意得:
10.8(1+x)2=16.8,
故选:C.
【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
例3(2017·嘉兴)小明解不等式 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.
【答案】解:错误的编号有:①②⑤;去分母,得3(1+x)-2(2x+1)≤6去括号,得3+3x-4x-2≤6移项,得3x-4x≤6-3+2,合并同类项,得-x≤5两边都除以-1,得x≥-5. 【考点】解一元一次不等式 【解析】【分析】去分母时,每项都要乘以6,不等号的右边,没有乘以6,故后面的答案都错了;步骤②的去括号出错,步骤⑤的不等号要改变方向 21教育名师原创作品
考点过关☆专项突破
类型一 一元一次方程
1. 解方程:x-=2-.
2. (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.【来源:21cnj*y.co*m】
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
类型二 二元一次方程组
1. (2017·嘉兴)若二元一次方程组 的解为 则 (?? )
A、 B、 C、 D、
2.(2017浙江衢州)二元一次方程组的解是( )
A. B. C. D.
3.(1)(2016·永康模拟)已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为( )21·cn·jy·com
A.1 B.-1 C.2 D.-2
(2)(2017·南宁)已知是方程组的解,则3a-b=________;
(3)已知关于x,y的方程组的解为则m=___,n=_____.
4. 解方程(组):
(1)方程x+3y=9的正整数解是________;
(2)(2015·成都)
(3)
5. 已知方程组与的解相同,求a,b的值.
6. Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:21教育网
Pn=·(n2-an+b)(其中,a,b是常数,n≥4)
通过画图,可得四边形时,P4= (填数字);五边形时,P5=
(填数字);
(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.
7. 某景点的门票价格如下表:
购票人数/人
1-50
51-100
100以上
每人门票价/元
12
10
8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.21cnjy.com
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
类型三 分式方程
1.(1)(2017·湖州)解方程:=+1;
(2)(2017·陕西模拟)解方程:=-2.
2.(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.【来源:21·世纪·教育·网】
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
类型四 一元二次方程
1. (1)关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是________.
(2)若x=1是一元二次方程ax2+bx-40=0的一个解,且a≠b,则的值为________.
(3)关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.21·世纪*教育网
2.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.
(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).www-2-1-cnjy-com
3.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )【出处:21教育名师】
A.x1=1,x2=3 B.x1=1,x2=-3 C.x1=-1,x2=3 D.x1=-1,x2=-3
(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m++3的值是________.【版权所有:21教育】
4.今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.21*cnjy*com
(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:
试问去哪个商场购买足球更优惠?
类型五 方程与方程组及其它方程的综合应用
1.(2017湖北荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);21世纪教育网版权所有
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
上述结论中正确的有( )
A.①② B.③④ C.②③ D.②④
2. (2017湖北宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.www.21-cn-jy.com
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
备考2018中考数学高频考点剖析
专题四 代数之方程(组)问题
考点扫描☆聚焦中考
方程和方程组问题,是历年中考的必考内容之一,考查的知识点包括一元一次方程、二元一次方程组、分式方程及其一元二次方程四个方面,总体来看,难度系数低,整式方程以选择填空为主,分式方程以计算为主,综合不等式进行考查,解析题也是重点考查内容。也有少量的解析题。解析题主要以二元一次方程和其它方程的综合为主。结合2017年全国各地中考的实例,我们从四方面进行方程与方程组问题的探讨:21cnjy.com
(1)一元一次方程;
(2)二元一次方程组;
(3)分式方程.
(4)一元二次方程
考点剖析☆典型例题
例1设x,y,c是实数,( )
A.若x=y,则x+c=y﹣c B.若x=y,则xc=yc
C.若x=y,则 D.若,则2x=3y
【分析】根据等式的性质,可得答案.
【解答】解:A、两边加不同的数,故A不符合题意;
B、两边都乘以c,故B符合题意;
C、c=0时,两边都除以c无意义,故C不符合题意;
D、两边乘以不同的数,故D不符合题意;
故选:B.
【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.
例2某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )21·世纪*教育网
A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8
【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.www.21-cn-jy.com
【解答】解:设参观人次的平均年增长率为x,由题意得:
10.8(1+x)2=16.8,
故选:C.
【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
例3(2017·嘉兴)小明解不等式 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.
【答案】解:错误的编号有:①②⑤;去分母,得3(1+x)-2(2x+1)≤6去括号,得3+3x-4x-2≤6移项,得3x-4x≤6-3+2,合并同类项,得-x≤5两边都除以-1,得x≥-5. 【考点】解一元一次不等式 【解析】【分析】去分母时,每项都要乘以6,不等号的右边,没有乘以6,故后面的答案都错了;步骤②的去括号出错,步骤⑤的不等号要改变方向
考点过关☆专项突破
类型一 一元一次方程
1. 解方程:x-=2-.
【解析】∵6x-3(x-1)=12-2(x+2),
∴6x-3x+3=12-2x-4,
∴3x+3=8-2x,
∴3x+2x=8-3,
∴5x=5,
∴x=1.
【解后感悟】(1)去分母,方程两边同乘各分母的最小公倍数时,不要漏乘没有分母的项(尤其是常数项),若分子是多项式,则要把它看成一个整体加上括号;(2)去括号可用分配律,注意符号,勿漏乘.
2. (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.21*cnjy*com
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【解析】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:
x+2x-600=6600,
解得:x=2400,
2x-600=4200,
答:B花木数量为2400棵,则A花木数量是4200棵;
(2)设安排a人种植A花木,由题意得:
=,
解得:a=14,
经检验:a=14是原分式方程的解,
26-a=26-14=12,
答:安排14人种植A花木,12人种植B花木.
【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.
类型二 二元一次方程组
1. (2017·嘉兴)若二元一次方程组 的解为 则 (?? )
A、 B、 C、 D、
【答案】D 【考点】二元一次方程组的解,解二元一次方程组 【解析】【解答】解:将两个方程相加,可得(x+y)+(3x-5y)=3+4,得4x-4y=7,则x-y=。即a-b=故选D.【分析】求a-b,则由两方程相加,方程的左边可变为4x-4y,即可解出x-y。
2.(2017浙江衢州)二元一次方程组的解是( )
A. B. C. D.
【答案】B
【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故选B.
3.(1)(2016·永康模拟)已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为( )21世纪教育网版权所有
A.1 B.-1 C.2 D.-2
(2)(2017·南宁)已知是方程组的解,则3a-b=________;
(3)已知关于x,y的方程组的解为则m=___,n=_____.
【解析】(1)B;
(2)5;
(3)m=5,n=1.
【解后感悟】(1)解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程;(2)解题的关键是观察两方程的系数,从而求出3a-b的值;(3)通过二元一次方程组的解的概念,转化为解m,n的二元一次方程组,并且会用代入消元法或加减消元法解方程组.注意“消元法”的运用.21教育网
4. 解方程(组):
(1)方程x+3y=9的正整数解是________;
(2)(2015·成都)
(3)
【解析】(1)解得:x=-3y+9,当y=1时,x=6;当y=2时,x=3;故正整数解是
(2)两式相加得4x=4,解得x=1,将x=1代入第一个式子,解得y=2,所以方程组的解为
(3)方程组可化为由②得,x=5y-3③,③代入①得,5(5y-3)-11y=-1,解得y=1,把y=1代入③得,x=5-3=2,所以,原方程组的解是
【解后感悟】二元一次方程的解法,把一个未知数的代数式表示另一个末知数是解题的关键.对于二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.2-1-c-n-j-y
5. 已知方程组与的解相同,求a,b的值.
【解析】由题意得解之得把代入得
整理得解得
【解后感悟】几个方程(组)同解,可选择两个含已知系数的组成二元一次方程组求得未知数的解,然后将方程组的解代入含待定系数的另外的方程(或方程组),解方程(或方程组)即可.【来源:21cnj*y.co*m】
6. Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:【版权所有:21教育】
Pn=·(n2-an+b)(其中,a,b是常数,n≥4)
通过画图,可得四边形时,P4= (填数字);五边形时,P5=
(填数字);
(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.
【解析】(1)由画图,可得当n=4时,P4=1;当n=5时,P5=5.
(2)将上述数值代入公式,得
解之,得
【解后感悟】先通过数形结合和特殊数据来解决简单问题,再利用上述方法构建二元一次方程组模型解决一般性问题.2·1·c·n·j·y
7. 某景点的门票价格如下表:
购票人数/人
1-50
51-100
100以上
每人门票价/元
12
10
8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.21教育名师原创作品
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
【解析】(1)设七年级(1)班有x名学生,七年级(2)班有y名学生,若两班人数和多于50人且少于100人,有解得不合题意,舍去.若两班人数和多于100人,有解得答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票与单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元.
【解后感悟】本题是二元一次方程组解决实际问题的运用和分类思想的应用.解答时注意分两班人数和多于50人且少于100人和两班人数和多于100人两种情况讨论.
类型三 分式方程
1.(1)(2017·湖州)解方程:=+1;
(2)(2017·陕西模拟)解方程:=-2.
【解析】(1)方程两边都乘以x-1得:2=1+x-1,解得:x=2,检验:∵当x=2时,x-1≠0,∴x=2是原方程的解,即原方程的解为x=2.21*cnjy*com
(2)方程的两边同乘(x-3),得:2-x=-1-2(x-3),解得:x=3,检验:把x=3代入(x-3)=0,即x=3不是原分式方程的解.则原方程无解.
【解后感悟】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
2.(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【解析】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:
x+2x-600=6600,
解得:x=2400,
2x-600=4200,
答:B花木数量为2400棵,则A花木数量是4200棵;
(2)设安排a人种植A花木,由题意得:
=,
解得:a=14,
经检验:a=14是原分式方程的解,
26-a=26-14=12,
答:安排14人种植A花木,12人种植B花木.
【解后感悟】此题主要考查了分式方程的应用,此题关键是正确理解题意,找到合适的等量关系,列出方程.注意不要忘记检验.21·cn·jy·com
类型四 一元二次方程
1. (1)关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是________.
(2)若x=1是一元二次方程ax2+bx-40=0的一个解,且a≠b,则的值为________.
(3)关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.【来源:21·世纪·教育·网】
【解析】(1)①若a=6,则方程有实数根,②若a≠6,则Δ≥0,∴64-4×(a-6)×6≥0,整理得:a≤,∴a的最大值为8;
(2)∵x=1是一元二次方程ax2+bx-40=0的一个解,∴x=1满足一元二次方程ax2+bx-40=0,∴a+b-40=0,即a+b=40①,==,即=②,把①代入②,得=20.
(3)∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.
【解后感悟】(1)切记不要忽略一元二次方程二次项系数不为零这一隐含条件;(2)注意解题中的整体代入思想;(3)注意由两个方程的特点进行简便计算.
2.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.
(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).
【解析】(1)将方程(3x-1)2=(x+1)2移项得,(3x-1)2-(x+1)2=0,∴(3x-1+x+1)(3x-1-x-1)=0,∴4x(2x-2)=0,∴x(x-1)=0,解得x1=0,x2=1. (2)∵2x2+x-=0,可得,a=2,b=1,c=-,∴x=-±.
【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.
3.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )
A.x1=1,x2=3 B.x1=1,x2=-3 C.x1=-1,x2=3 D.x1=-1,x2=-3
(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m++3的值是________.
【分析与解】(1)先把方程(2x+3)2+2(2x+3)-3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=-3,所以x1=-1,x2=-3.故选D. (2)根据一元二次方程根的定义得到m2=2017m-1,再利用整体代入的方法得到原式=2017m-1-2018m++3=-1-m+m+3=2.故答案是2.
【方法与对策】(1)此题主要利用了方程结构相同的整体代入的方法求一元二次方程的解;(2)此题主要利用了一元二次方程的解得到已知式,再利用整体代入的方法求值.该题型是中考命题方法之一.
4.今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.
(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:
试问去哪个商场购买足球更优惠?
【分析】(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据2015年及2017年该品牌足球的单价,即可得出关于x的一元二次方程,解之即可得出结论;
(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.
【解答】解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,
根据题意得:200×(1﹣x)2=162,
解得:x=0.1=10%或x=﹣1.9(舍去).
答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.
(2)100×=≈90.91(个),
在A商城需要的费用为162×91=14742(元),
在B商城需要的费用为162×100×=14580(元).
14742>14580.
答:去B商场购买足球更优惠.
类型五 方程与方程组及其它方程的综合应用
1.(2017湖北荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);www-2-1-cnjy-com
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
上述结论中正确的有( )
A.①② B.③④ C.②③ D.②④
【答案】C
【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;
②设x2=2x1,得到x1?x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;
③根据“倍根方程”的定义即可得到结论;
④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;
【解答】解:①由x2﹣2x﹣8=0,得
(x﹣4)(x+2)=0,
解得x1=4,x2=﹣2,
∵x1≠2x2,或x2≠2x1,
∴方程x2﹣2x﹣8=0不是倍根方程.
故①错误;
②关于x的方程x2+ax+2=0是倍根方程,
∴设x2=2x1,
∴x1?x2=2x12=2,
∴x1=±1,
当x1=1时,x2=2,
当x1=﹣1时,x2=﹣2,
∴x1+x2=﹣a=±3,
∴a=±3,故②正确;
③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,
∴x2=2x1,
∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,
∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),
故③正确;
④∵点(m,n)在反比例函数y=的图象上,
∴mn=4,
解mx2+5x+n=0得x1=﹣,x2=﹣,
∴x2=4x1,
∴关于x的方程mx2+5x+n=0不是倍根方程;
故选C.
2. (2017湖北宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.21*cnjy*com【出处:21教育名师】
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.
(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.
(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.
【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);
(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,
根据题意,得:,
解得:,
∴市政府2015年年初对三项工程的总投资是7x=35亿元;
(3)由x=5得,2015年初搬迁安置的投资为20亿元,
设从2016年初开始,搬迁安置投资逐年递减的百分数为y,
由题意,得:20(1﹣y)2=5,
解得:y1=0.5,y2=1.5(舍)
答:搬迁安置投资逐年递减的百分数为50%.