.数 列
一.数列的概念:
(1)已知,则在数列的最大项为__(答:);
(2)数列的通项为,其中均为正数,则与的大小关系为__(答:);
(3)已知数列中,,且是递增数列,求实数的取值范围(答:);
二.等差数列的有关概念:
1.等差数列的判断方法:定义法或。
设 是等差数列,求证:以bn= 为通项公式的数列为等差数列。
2.等差数列的通项:或。
(1)等差数列中,,,则通项 (答:);
(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:)
3.等差数列的前和:,。
(1)数列 中,,,前n项和,求,(答:,);
(2)已知数列 的前n项和,求数列的前项和(答:).
三.等差数列的性质:
1.当公差时,等差数列的通项公式是关于的一次函数,且率为公差;前和是关于的二次函数且常数项为0.21cnjy.com
2.若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
3.当时,则有,特别地,当时,则有.
(1)等差数列中,,则=____ (答:27)
(2)在等差数列中,,且,是其前项和,则
A、都小于0,都大于0 B、都小于0,都大于0
C、都小于0,都大于0 D、都小于0,都大于0
(答:B)
4.若、是等差数列,则、 (、是非零常数)、、 ,…也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 等差数列的前n项和为25,前2n项和为100,则它的前3n和为 。(答:225)
5.在等差数列中,当项数为偶数时,;项数为奇数时,,(这里即);。如
(1)在等差数列中,S11=22,则=______(答:2);
(2)项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).
6.若等差数列、的前和分别为、,且,则 .
如设{}与{}是两个等差数列,它们的前项和分别为和,若,求(答:)
“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);
法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。
等差数列中,,,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,
若是等差数列,首项,,则使前n项和成立的最大正整数n是
(答:4006)
8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究.
四.等比数列的有关概念:
1.等比数列的判断方法:定义法,其中或。
(1)一个等比数列{}共有项,奇数项之积为100,偶数项之积为120,则为____(答:);
(2)数列中,=4+1 ()且=1,若 ,求证:数列{}是等比数列。
2.等比数列的通项:或。
设等比数列中,,,前项和=126,求和公比. (答:,或2)
3.等比数列的前和:当时,;当时,。如
(1)等比数列中,=2,S99=77,求 (答:44)
特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。
4.提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,…(公比为);但偶数个数成等比时,不能设为…,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)
5.等比数列的性质:
(1)当时,则有,特别地,当时,则有.
(1)在等比数列中,,公比q是整数,则=___(答:512);
(2)各项均为正数的等比数列中,若,则 (答:10)。
(2) 若是等比数列,则、、成等比数列;若成等比数列,则、成等比数列; 若是等比数列,且公比,则数列 ,…也是等比数列。当,且为偶数时,数列 ,…是常数数列0,它不是等比数列. 21教育网
(1)已知且,设数列满足,且,则 答:);
(2)在等比数列中,为其前n项和,若,求的值(答:40)
(3)若,则为递增数列;若, 则为递减数列;若 ,则为递减数列;若, 则为递增数列;若,则为摆动数列;若,则为常数列.
(4) 当时,,这里,但,这是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。21·cn·jy·com
若是等比数列,且,则= (答:-1)
(5) .如设等比数列的公比为,前项和为,若成等差数列,则的值为_____(答:-2)www.21-cn-jy.com
(6) 在等比数列中,当项数为偶数时,;项数为奇数时,.
(7)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。2·1·c·n·j·y
设数列的前项和为(), 关于数列有下列三个命题:①若,则既是等差数列又是等比数列;②若,则是等差数列;③若,则是等比数列。这些命题中,真命题的序号是 【来源:21·世纪·教育·网】
(答:②③)
五.数列的通项的求法:
⑴公式法:
⑵已知(即)求,用作差法:。
①已知的前项和满足,求(答:);
②数列满足,求(答:)
⑶已知求,用作商法:。如数列中,对所有的都有,则______(答:)
⑷若求用累加法:
。如已知数列满足,,则=_______(答:)
⑸已知求,用累乘法:。如已知数列中,,前项和,若,求(答:)
⑹已知递推关系求,用构造法(构造等差、等比数列)。
特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求。21世纪教育网版权所有
已知,求(答:);
已知,求(答:);
(2)形如的递推数列都可以用倒数法求通项。
①已知,求(答:);
②已知数列满足=1,,求(答:)
注意:(1)用求数列的通项公式时,你注意到此等式成立的条件了吗?(,当时,);(2)一般地当已知条件中含有与的混合关系时,常需运用关系式,先将已知条件转化为只含或的关系式,然后再求解。如数列满足,求(答:)
六.数列求和的常用方法:
1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:,,.如21·世纪*教育网
(1)等比数列的前项和Sn=2n-1,则=_____(答:);
2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 如求:(答:)www-2-1-cnjy-com
3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法). 2-1-c-n-j-y
已知,则=______(答:)
4.错位相减法:
设为等比数列,,已知,,①求数列的首项和公比;②求数列的通项公式.(答:①,;②);21*cnjy*com
5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:【来源:21cnj*y.co*m】
①; ②;
③,;
④ ;⑤;
⑥.
(1)求和: (答:);
(2)在数列中,,且Sn=9,则n=_____(答:99);
6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如
①求数列1×4,2×5,3×6,…,,…前项和= (答:);
②求和: (答:)