2018届高考数学大题狂练
第五篇 解析几何 专题03 直线与双曲线的位置关系
1.已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且,求k的取值范围.
【答案】(1);(2)
【解析】试题分析:(1)由两曲线长轴与焦点关系,求出双曲线C2的方程。(2)设A(x1,y1),B(x2,y2),直线与双曲线组方程组,得到韦达定理关系,注意判别式控制参数k范围。把向量关系>2,坐标化即x1x2+y1y2>2,代入韦达可求。
(2)将y=kx+代入-y2=1,
得(1-3k2)x2-6kx-9=0.
由直线l与双曲线C2交于不同的两点,
得
∴k2<1且k2≠.①
设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=.
∴x1x2+y1y2=x1x2+(kx1+)(kx2+)
=(k2+1)x1x2+k(x1+x2)+2=.
又∵>2,即x1x2+y1y2>2,∴ >2 >2,即>0,
解得由①②得故k的取值范围为
2.设圆的圆心为,直线过点且不与轴、轴垂直,且与圆于, 两点,过作的平行线交直线于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设点的轨迹为曲线,直线交于两点,过且与垂直的直线与圆交于两点,求与的面积之和的取值范围.
【答案】(1).(2)
角形面积公式可得三角形面积之和成关于 的函数,利用单调心求解即可.
试题解析:(1)
圆,圆心,半径,如图所示.
根据双曲线的定义,可知点的轨迹是以为焦点的双曲线(顶点除外),
易得点的轨迹方程为.
(2).
依题意可设,
由于,设.
圆心到直线的距离,
所以,
又因为,解得.
联立直线与双曲线的方程,消去得,
则,
又因为,所以,
所以的取值范围为.
3.已知双曲线:的一条渐近线为,右焦点到直线的距离为.
(1)求双曲线的方程;
(2)斜率为且在轴上的截距大于的直线与曲线相交于、两点,已知,若证明:过、、三点的圆与轴相切.
【答案】(1);(2)证明见解析.
【解析】
试题分析:(1)设双曲线的方程,若焦点明确,设双曲线的标准方程,结合条件用待定系数法求出的值,若不明确,需分焦点在轴和轴上两种情况讨论;(2)解决直线和双曲线的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与双曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:(1)依题意有,
∵
∴
∴,
∴
∴曲线的方程为 6分
∴,
∵,即
∴(舍)或
∴, 点的横坐标为
∵
∴
∴过、、三点的圆以点为圆心,为直径
∵点的横坐标为
∴
∵
∴过、、三点的圆与轴相切
4.如图,已知双曲线=1(a>0,b>0),定点(c是双曲线的半焦距),双曲线虚轴的下端点为B.过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足(O为原点),且三点共线.
(1)求双曲线的离心率;
(2)若a=2,过点B的直线l交双曲线的左、右支于M、N两点,且△OMN的面积S△OMN=2,求l的方程.
【答案】(1);(2).
线方程联立得(1-4k2)x2+8kx-8=0,注意判别式的隐含条件,同时将△OMN的面积用含有的式子表示,进而得关于的方程,解方程求即得所求直线方程.
试题解析:(1)∵, ,易求得,
∵,即D为线段FP的中点,
∴D.(3分)
又A、B、D共线.
而, ,
∴,得a=2b, (5分)
∴e===.(6分)
(2)∵a=2,而e=,∴b2=1,
故双曲线的方程为.① (7分)
∴B点的坐标为(0,-1),设的方程为,②
②代入①得(1-4k2)x2+8kx-8=0,
由题意得: ,得: .(9分)
= ==, (11分)
整理得24k4-11k2+1=0,解得:k2=或k2=(舍去).
∴所求l的方程为.(13分)
5.如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得与交于两点,与只有一个公共点,且?证明你的结论.
【答案】(1);(2)见解析.
【解析】试题分析:(1)利用正方形面积为2,即可得到对角线的长为2,则可得的两个顶点和的两个焦点的坐标,求的的值,再结合点在双曲线上,代入双曲线结合之间的关系即可求的的值,得到双曲线的方程,椭圆的焦点坐标已知,点在椭圆上,利用椭圆的定义即为到两焦点的距离之和,求出距离即可得到的值,利用之间的关系即可求出的值,得到椭圆的标准方程.
可得到内积不可能等于0,进而得到,即,即不存在这样的直线.
的焦距为,由题可得,从而,因为点在双曲线上,所以,由椭圆的定义可得
,于是根据椭圆之间的关系可得,所以的方程为.
(2)不存在符合题设条件的直线.
①若直线垂直于轴,即直线的斜率不存在,因为与只有一个公共点,所以直线的方程为或,
当时,易知所以,此时.
当时,同理可得.
于是,联立直线与椭圆可得
,因为直线与椭圆只有一个交点,
所以,化简可得,因此
,
于是,即,所以,
6.已知椭圆C的两个焦点分别为,且点在椭圆C上,又.
(1)求焦点F2的轨迹的方程;
(2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
【答案】(1)(2)
【解析】
试题分析:(1)因为点在椭圆上,由椭圆定义知
恰好符合双曲线的定义.动点 在以、 为焦点的双曲线上;
(2)由(1)得曲线的方程 ,设 ,联立方程组
消去得方程有两个正根.由韦达定理可建立与 的关系
另外,由 将由韦达定理得到的关系式代入其中可得关于关系式,再结合即可求得 的取值范围.
故轨迹方程为. (6分)
(2)由
方程有两个正根.
设,由条件知.
而
即
整理得,即
由(1)知,即显然成立.
由(2)、(3)知
而.
.
故的取值范围为