课件13张PPT。(2)它是一次函数?(3)它是正比例函数?(1)它是二次函数?温故知新 2.二次函数y=(2x-1)2+2的二次项系数
是________,常数项是______.学习目标:
1.会用描点法画出形如 y = ax 2 的二次函数图象,了 解抛物线的有关概念;
2.通过观察图象,能说出二次函数 y = ax 2 的图象特
征和性质;
3.在类比探究二次函数 y = ax 2 的图象和性质的过程 中,进一步体会研究函数图象和性质的基本方法 和数形结合的思想.
学习重点:
观察图象,得出二次函数 y = ax 2 的图象特征和性质.22.1 二次函数的图象和性质 问题1
你认为我们应该如何研究函数的图象和性质?1.复习研究函数的一般方法2.类比探究二次函数 y = ax 2 的图象和性质 问题2
类比一次函数的研究内容和研究方法,画出二次函数 y = x 2 的图象,你能说说它的图象特征和性质吗? 问题3
在同一直角坐标系中,画出函数 ,
的图象,这两个函数的图象与函数 y = x 2 的图象相比, 有什么共同点?有什么不同点?当 a>0 时,二次函数 y = ax 2 的图象有什么特点?2.类比探究二次函数 y = ax 2 的图象和性质 问题4
类比 a>0 时的研究过程,画图研究当 a<0 时,二次函数 y = ax 2 的图象特征.2.类比探究二次函数 y = ax 2 的图象和性质 问题5
你能说出二次函数 y = ax 2 的图象特征和性质吗?2.类比探究二次函数 y = ax 2 的图象和性质 归纳:
一般地, 抛物线 y = ax 2 的对称轴是 y 轴, 顶点是原点.
当 a>0 时, 抛物线开口向上,顶点是抛物线的最低点;
当 a<0 时, 抛物线开口向下,顶点是抛物线的最高点.
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.2.类比探究二次函数 y = ax 2 的图象和性质 归纳:
如果 a>0,当 x<0 时,y 随 x 的增大而减小,当 x>0 时,y 随 x 的增大而增大;
如果 a<0,当 x<0 时,y 随 x 的增大而增大,当 x>0 时,y 随 x 的增大而减小.2.类比探究二次函数 y = ax 2 的图象和性质 说出下列抛物线的开口方向、对称轴和顶点:
(1) ;
(2) ;
(3) ;
(4) .3.巩固练习开口向上、y 轴、原点.开口向下、y 轴、原点.开口向上、y 轴、原点.开口向下、y 轴、原点. 抛物线 ,其对称轴左侧,y 随 x 的增大而 ;在对称轴的右侧,y 随 x 的增大而 .增大减小3.巩固练习 (1)本节课学了哪些主要内容?
(2)本节课是如何研究二次函数 y = ax 2 的图象和性质的?4.小结 说出下列抛物线的开口方向、对称轴和顶点:
(1) ;
(2) ;
(3) ;
(4) .课后练习 开口向上、y 轴、原点.开口向下、y 轴、原点.开口向上、y 轴、原点.开口向下、y 轴、原点.