热点06概率与统计解答题(理)-2018年高考数学三轮讲练测核心热点总动员(新课标版)

文档属性

名称 热点06概率与统计解答题(理)-2018年高考数学三轮讲练测核心热点总动员(新课标版)
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2018-05-11 16:31:24

图片预览

文档简介

2018年学易高考三轮复习系列:讲练测之核心热点 【全国通用版】
热点六 概率与统计解答题(理)
【名师精讲指南篇】
【高考真题再现】
1【2017全国1卷理科19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记表示一天内抽取的个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的个零件的尺寸:
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得,,其中为抽取的第个零件的尺寸,.
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到).
附:若随机变量服从正态分布,则,,.
【解析】(1)由题可知尺寸落在之内的概率为,落在之外的概率为.,

由题可知,所以.
(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在
之外为小概率事件,因此上述监控生产过程的方法合理.
2.【2017全国2卷理科18】淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了个网箱,测量各箱水产品的产量(单位:)的频率分布直方图如图所示.
(1)设两种养殖方法的箱产量相互独立,记表示事件:旧养殖法的箱产量低于,新养殖法的箱产量不低于,估计的概率;
(2)填写下面列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关;
箱产量 箱产量
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到).
附:
0.050 0.010 0.001
3.841 6.635 10.828
.
【解析】(1)记:“旧养殖法的箱产量低于” 为事件,“新养殖法的箱产量不低于”为事件,由题图并以频率作为概率得

,.
(3),,,,,所以中位数为.
3.【2017课标3,理18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
20元.
【解析】(1)由题意知,所有的可能取值为200,300,500,由表格数据知
,,.
因此的分布列为
0.2 0.4 0.4
4.【2016全国卷2理】某险种的基本保费为(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 0 1 2 3 4
保 费 0.85a a 1.25a 1.5a 1.75a 2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 0 1 2 3 4
概 率 0.30 0.15 0.20 0.20 0.10 0.05
(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
【解析】(1)设续保人本年度的保费高于基本保费为事件,则.
(2)设续保人保费比基本保费高出为事件,.
(3)设本年度所交保费为随机变量.
平均保费为:,所以平均保费与基本保费比值为.
5.【2016全国卷2理】某公司计划购买台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个元.在机器使用期间,如果备件不足再购买,则每个元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这台机器更换的易损零件数的频率代替台机器更换的易损零件数发生的概率,记表示台机器三年内共需更换的易损零件数,表示购买台机器的同时购买的易损零件数.
(1)求的分布列;
(2)若要求,确定的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
【解析】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为,,,的概率分别为,,,. 从而:;;
;;
;;.
所以的分布列为:
(2)由(1)知,,,故的最小值为.
(3)记表示台机器在购买易损零件上所需的费用(单位:元).
当时,.
当时,.
可知当时所需费用的期望值小于时所需费用的期望值,故应选.
6.【2016全国卷3理】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明
(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
【解析】(1)由折线图中数据和附注中参考数据得,, ,
,.
因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系.
(2),,所以,
,所以线性回归方程为.
当时,.因此,我们可以预测2016年我国生活垃圾无害化处理亿吨.
【热点深度剖析】
1.从近几年的高考试题来看,频率分布直方图、茎叶图、平均数、方差、分布列是高考的热点,题型既有选择题、填空题,又有解答题,客观题考查知识点较单一,解答题考查得较为全面,常常和概率、平均数等知识结合在一起,考查学生应用知识解决问题的能力.独立性检验、回归分析高考对此部分内容考查有加强趋势,主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来考查一些基本的统计思想,在高考中多为选择、填空题,也有解答题出现.根据这几年高考试题预测2018年高考,频率分布直方图、茎叶图、平均数、方差,离散型随机变量的分布列与期望仍然是考查的热点,同时应注意和概率、平均数、分布列,期望,二项分布,正态分布等知识的结合,同时应注意独立性检验在实际生活中的应用,有可能涉及一道与独立检验有关的大题.
【重点知识整合】
一,统计初步
1.简单随机抽样
简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.
2.系统抽样
(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.
(2)系统抽样的步骤:
①编号.采用随机的方式将总体中的个体编号.
②分段.先确定分段的间隔k.当(N为总体中的个体数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.
④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S+k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.
3.分层抽样
(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.
分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.
(2)分层抽样的步骤
①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.
(3)分层抽样的优点
分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.
4.绘制频率分布直方图
把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.
5.茎叶图
统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.
6.平均数、中位数和众数
(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.
(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.
(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).
(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.
7.方差、标准差
(1)设样本数据为x1,x2,…,xn样本平均数为,则s2=[(x1-)2+(x2-)2+…+(xn-)2]=[(x12+x22+…+xn2)-n2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.
(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.
8.两个变量的线性相关
(1)散点图
将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.
(2)正相关、负相关
如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.
反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.
9.回归分析
对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.
(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
(2)回归直线方程的求法——最小二乘法.
设具有线性相关关系的两个变量x、y的一组观察值为(xi,yi)(i=1,2,…,n),则回归直线方程=+x的系数为:
其中=i,=i,(,)称作样本点的中心.
,表示由观察值用最小二乘法求得的a,b的估计值,叫回归系数.
10.独立性检验
(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.
(2)两个分类变量X与Y的频数表,称作2×2列联表.
二.随机事件的概率
1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.
(1)在条件下,一定会发生的事件叫做相对于条件的必然事件.
(2)在条件下,一定不会发生的事件叫做相对于条件的不可能事件.
(3)必然事件与不可能事件统称为确定事件.
(4)在条件下可能发生也可能不发生的事件,叫做随机事件.
(5)确定事件和随机事件统称为事件,一般用大写字母表示.
2.频率与概率
(1)在相同的条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的次数为事件出现的频数,称事件出现的比例为事件出现的频率.
(2)对于给定的随机事件,如果随着试验次数的增加,事件发生的频率稳定在某个常数上,把这个常数记作,称为事件的概率,简称为的概率.
3.互斥事件与对立事件
互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即为不可能事件(),则称事件与事件互斥,其含义是:事件与事件在任何一次试验中不会同时发生.
一般地,如果事件中的任何两个都是互斥的,那么就说事件彼此互斥.
对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即为不可能事件,而为必然事件,那么事件与事件互为对立事件,其含义是:事件与事件在任何一次试验中有且仅有一个发生.
互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.
4.事件的关系与运算
定义 符号表示
包含关系 如果事件发生,则事件一定发生,这时称事件包含事件 (或称事件包含于事件) (或)
相等关系 若且,那么称事件与事件相等
并事件(和事件) 若某事件发生当且仅当事件发生或事件发生,则称此事件为事件与事件的并事件(或和事件) (或)
交事件(积事件) 若某事件发生当且仅当事件发生且事件发生,则称此事件为事件与事件的交事件(或积事件) (或)
互斥事件 若为不可能事件,那么称事件与事件互斥
对立事件 若为不可能事件,为必然事件,那么称事件与事件互为对立事件 且
5.随机事件的概率
事件的概率:在大量重复进行同一试验时,事件发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.
由定义可知,显然必然事件的概率是,不可能事件的概率是.
5.概率的几个基本性质
(1)概率的取值范围:.
(2)必然事件的概率:.
(3)不可能事件的概率:.
(4)互斥事件的概率加法公式:
①(互斥),且有.
② (彼此互斥).
(5)对立事件的概率:.
三.古典概型
1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=.
基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件都可以表示成基本事件的和(除不可能事件).
2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
①试验中所有可能出现的基本事件只有有限个,即有限性.
②每个基本事件发生的可能性相等,即等可能性.
概率公式:P(A)=.
四.几何概型
1.(1)随机数的概念:
随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.
(2)随机数的产生方法
①利用函数计算器可以得到0~1之间的随机数;
②在Scilab语言中,应用不同的函数可产生0~1或a~b之间的随机数.
2.几何概型
(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.
(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个;
②等可能性:每个结果的发生具有等可能性.
(3)几何概型的解题步骤:
首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件 ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网 )构成的区域长度(角度、弧长等),最后代公式
;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件 ( http: / / www.21cnjy.com" \o "欢迎登陆21世纪教育网 )分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.
(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.
3.几种常见的几何概型
(1)设线段l是线段L的一部分,向线段L上任投一点.若落在线段l上的点数与线段L的长度成正比,而与线段l在线段l上的相对位置无关,则点落在线段l上的概率为:
P=l的长度/L的长度
(2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上概率为:
P=g的面积/G的面积
(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点.若落在区域v上的点数与区域v的体积成正比,而与区域v在区域v上的相对位置无关,则点落在区域V上的概率为:
P=v的体积/V的体积
五.条件概率
1.条件概率及其性质
(1)对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件概率,用符号来表示,其公式为.
在古典概型中,若用表示事件中基本事件的个数,则.
(2)条件概率具有的性质:
①;
② 如果和是两互斥事件,则.
2.相互独立事件
(1)对于事件、,若的发生与的发生互不影响,则称、是相互独立事件.
(2)若与相互独立,则,

(3)若与相互独立,则与,与,与也都相互独立.
(4)若,则与相互独立.
3.独立重复试验
独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.
六.离散型随机变量的分布列
离散型随机变量的分布列
(1)随机变量
如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.
(2)离散型随机变量
对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
若是随机变量,,其中是常数,则也是随机变量.
2.常见离散型随机变量的分布列
(1)两点分布:
若随机变量服从两点分布,即其分布列为
0 1
其中,则称离散型随机变量服从参数为的两点分布.其中称为成功概率.
(2)超几何分布:
在含有件次品的件产品中,任取件,其中恰有件次品,则事件{}发生的概率为,,其中,且,称分布列为超几何分布列.
0 1 … m

(3)设离散型随机变量可能取得值为,,…,,…,取每一个值 ()的概率为,则称表
… …
… …
为随机变量X的概率分布列,简称X的分布列.有时为了表达简单,也用等式,表示的分布列.
分布列的两个性质
①,;②.
七.二项分布:
1.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在次独立重复试验中这个事件发生的次数是一个随机变量.如果在一次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率是,(…, )于是得到随机变量的概率分布如下:
… …
… …
由于恰好是二项展开式
中的各项的值,所以称这样的随机变量服从二项分布,记作,其中,为参数,并记=.…
2.二项分布的期望与方差:若,则 ,
八.正态分布
1.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.
它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线及轴所围图形的面积.
2.正态分布密度函数:
,(,)
其中π是圆周率;是自然对数的底;是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为
正态分布的定义及表示
函数,其中实数和(>0)为参数.我们称的图像为正态分布密度曲线,简称正态曲线.
如果对于任何实数,随机变量满足则称随机变量服从正态分布,正态分布完全由参数确定,因此正态分布常记作,如果随机变量服从正态分布,则记为~.正态分布)是由均值和标准差唯一决定的分布
3.正态曲线有以下性质:
(1)曲线位于轴上方,与轴不相交;
(2)曲线是单峰的,它关于直线对称;
(3)曲线在处达到峰值;
(4)曲线与轴围成的图形的面积为1;
(5)当一定时,曲线随着的变化而沿轴平移;
(6)当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散.
4.正态总体在三个特殊区间内取值的概率值
①P(μ-σ②P(μ-2σ③P(μ-3σ5.标准正态曲线:标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-∞<x<+∞),其相应的曲线称为标准正态曲线 .标准正态总体N(0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题.,以及标准正态总体在任一区间(a,b)内取值概率.
6.一般正态分布与标准正态分布的转化
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率.只要会用它求正态总体在某个特定区间的概率即可.
7.“小概率事件”和假设检验的基本思想
“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的.这种认识便是进行推断的出发点.关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能.
课本是借助于服从正态分布的有关零件尺寸的例子来介绍假设检验的基本思想.进行假设检验一般分三步:
第一步,提出统计假设.课本例子里的统计假设是这个工人制造的零件尺寸服从正态分布;
第二步,确定一次试验中的取值a是否落入范围(μ-3σ,μ+3σ);
第三步,作出推断.如果a∈(μ-3σ,μ+3σ),接受统计假设;如果,由于这是小概率事件,就拒绝统计假设.
【应试技巧点拨】
1.三种抽样方法的比较
类别 共同点 各自特点 相互联系 适用范围
简单随机抽样 抽样过程中每个个体被抽取的机会均等 从总体中逐个抽取 总体中的个体数较少
系统抽样 将总体均匀分成几部分,按事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样 总体中的个体数较多
分层抽样 将总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
2.样本频率直方图与样本的数字特征
在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;中位数的估计值,应使中位数左右两边的直方图面积相等;最高小长方形的中点所对应的数据值即为这组数据的众数.
3.方差是刻画一组数据离散程度的量,方差越大,这组数据波动越大,越分散.讨论产品质量、售价高低、技术高低、产量高低、成绩高低、寿命长短等等问题,一般都是通过方差来体现.
5.判断两变量是否有相关关系很容易将相关关系与函数关系混淆.相关关系是一种非确定性关系,即是非随机变量与随机变量之间的关系,而函数关系是一种因果关系.
6.求回归方程,关键在于正确求出系数a,b,由于a,b的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意回归直线方程中一次项系数为b,常数项为a,这与一次函数的习惯表示不同)
7.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出回归直线方程.
8.独立性检验是一种假设检验,在对总体的估计中,通过抽取样本,构造合适的随机变量,对假设的正确性进行判断.
9.独立重复试验概率公式的特点
关于Pn(k)=Cnkpk(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,需要弄清公式中n、p、k的意义,才能正确运用公式.1.求离散型随机变量分布列的步骤:
要确定随机变量的可能取值有哪些.明确取每个值所表示的意义;
分清概率类型,计算取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;
列表对应,给出分布列,并用分布列的性质验证.
10几种常见的分布列的求法
取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.
射击问题:若是一人连续射击,且限制在次射击中发生次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.
对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解.
【考场经验分享】
1.进行分层抽样时应注意以下几点:
(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠;
(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性应相同;
(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.
2.在作茎叶图时,容易出现茎两边的数字不是从小到大的顺序排列,从而导致结论分析错误,在使用茎叶图整理数据时,要注意:一是数据不能遗漏,二是数据最好按从小到大顺序排列,对三组以上的数据,也可使用茎叶图,但没有表示两组记录那么直观、清晰.
3.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.
4.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.
5.r的大小只说明是否相关并不能说明拟合效果的好坏,R2才是判断拟合效果好坏的依据.
6.独立性检验的随机变量K2=2.706是判断是否有关系的临界值,K2<2.076应判断为没有充分证据显示X与Y有关系,而不能作为小于90%的量化值来判断.
7. 概率计算题的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.
8.在解含有相互独立事件的概率题时,首先把所求的随机事件分拆成若干个互斥事件的和,其次将分拆后的每个事件分拆为若干个相互独立事件的乘积,这两个事情做好了,问题的思路就清晰了,接下来就是按照相关的概率值进行计算的问题了,如果某些相互独立事件符合独立重复试验概型,就把这部分归结为用独立重复试验概型,用独立重复试验概型的概率计算公式解答.
9.相当一类概率应用题都是比如掷硬币、掷骰子、摸球等概率模型赋予实际背景后得出来的,我们在解题时就要把实际问题再还原为我们常见的一些概率模型,这就要根据问题的具体情况去分析,对照常见的概率模型,把不影响问题本质的因素去除,抓住问题的本质.
10.求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算.
【名题精选练兵篇】
1.【齐鲁名校教科研协作体 山东、湖北部分重点中学2018届高考冲刺模拟】某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试。已知各年龄段两项培训结业考试成绩优秀的人数如下表所示。假设两项培训是相互独立的,结业考试也互不影响。
年龄分组 A项培训成绩优秀人数 B项培训成绩优秀人数
[20,30) 27 16
[30,40) 28 18
[40,50) 16 9
[50,60] 6 4
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
【解析】 (1)由频率分布直方图可知,年龄段[20,30),[30,40),[40,50),[50,60]的人数的频率分别为0.3,0.35,0.2,0.15.
因为40×0.3=12,40×0.35 =14,40×0.2=8,40×0.15 =6,
所以年龄段[20,30),[30,40),[40,50),[50,60]应抽取人数分别为12,14,8,6.
(2)因为各年龄段的中点值分别为25,35,45,55,对应的频率分别为0.3,0.35,0.2,0.15,则25×0.3+35×0.35 +45×0.2+55×0.15= 37.由此估计全厂工人的平均年龄约为37岁.
由题设知,X的可能取值为0,1,2.
其中,


所以X的分布列如下表:
X 0 1 2
P
所以.
2.【湖南省永州市2018届高三下学期第三次模拟】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):
已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(1)求保险公司在该业务所或利润的期望值;
(2)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;
方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.
请根据企业成本差异给出选择合适方案的建议.
【解析】(Ⅰ)设工种A、B、C职工的每份保单保险公司的收益为随机变量X、Y、Z,则X、Y、Z的分布列为
X 25
P
Y 25
P
Z 40
P
保险公司的期望收益为
;    
;       
;   
保险公司的利润的期望值为,
保险公司在该业务所获利润的期望值为9万元.      
(Ⅱ)方案1:企业不与保险公司合作,则企业每年安全支出与固定开支共为:

方案2:企业与保险公司合作,则企业支出保险金额为:
, 
,故建议企业选择方案2.
3.【内蒙古鄂伦春自治旗2018届高三下学期二模】根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:
降水量
工期延误天数 0 1 3 6
根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.
(1)根据降水量的折线图,分别求该工程施工延误天数的频率;
(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.
【解析】(1)∵的天数为,∴的频率为.
∵的天数为,∴的频率为.
∵的天数为,∴的频率为.
∵的天数为,∴的频率为.
(2)的分布列为
0 1 3 6
0.5 0.3 0.1 0.1
.
.
4.【湖南省株洲市2018届高三年级教学质量统一检测】在党的第十九次全国代表大会上,习近平总书记指出:“房子是用来住的,不是用来炒的”.为了使房价回归到收入可支撑的水平,让全体人民住有所居,近年来全国各一、二线城市打击投机购房,陆续出台了住房限购令.某市一小区为了进一步了解已购房民众对市政府出台楼市限购令的认同情况,随机抽取了本小区 50 户住户进行调查,各户人平均月收入(单位:千元,)的户数频率分布直方图如下图:
其中,赞成限购的户数如下表:
人平均月收入
赞成户数 4 9 12 6 3 1
(1)求人平均月收入在的户数,若从他们中随机抽取两户,求所抽取的两户都赞成楼市限购令的概率;
(2)求所抽取的 50户的人平均月收入的平均数;
(3)若将小区人平均月收入不低于7千元的住户称为“高收入户”,人平均月收入低于7千元的住户称为“非高收入户”.根据已知条件完成如图所给的列联表,并说明能否在犯错误的概率不超过 0.01 的前提下认为“收入的高低”与“赞成楼市限购令”有关.
非高收入户 高收入户 总计
赞成
不赞成
总计
附:临界值表
0.15 0.10 0.05 0.025 0.010 0.005 0.001
2.072 2.706 3.841 5.024 6.635 7.879 10.828
参考公式:.
【解析】(1)千元
(1)由直方图知:月收入在的住户共有8户,赞成楼市限购令的有4户,从中随机抽取两户,设为赞成楼市限购令的用户数.
则 
所以的分布列为:
0 1 2
P
(3)依题意,列联表如下
非高收入户 高收入户 总计
赞成 25 10 35
赞成 5 10 15
总计 30 20 50
所以不能在犯错误的概率不超过的前提下认为“收入的高低”与“赞成楼市限购令”有关.
5.【贵阳第一中学2018届高考适应性月考】从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:
数据分组
频数
(1)根据频数分布表,求该产品尺寸落在的概率;
(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)
(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值,近似为样本方差,经过计算得,利用该正态分布,求.
附:①若随机变量服从正态分布,则,;②.
【解析】(Ⅰ)根据频数分布表可知,产品尺寸落在内的概率.
(Ⅱ)样本平均数
.
6.【辽宁省鞍山市2017届高三下学期第一次质量检测】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.
【解析】(1)平均分 分.
众数的估计值是75分.
(2)在段的人数(人),
设每次抽取两个数恰好是两名学生的成绩的概率为,则,
显然, 的可能取值为0,1,2,3. ,
的分布列为:
0 1 2 3
,
7.【湖南省娄底市2017届高考仿真模拟(二模)】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:
质量指标值
等级 三等品 二等品 一等品
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?
(Ⅱ)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(Ⅲ)该企业为提高产品质量,开展了“质量提升月”活动,活动后在抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
(Ⅲ)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为
,
“质量提升月”活动后,产品质量指标值近似满足,则.
所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了17.6.
8.【河北省唐山市2016-2017学年度高三年级第二次模拟】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目 生产成本 检验费/次 调试费 出厂价
金额(元) 1000 100 200 3000
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.
【解析】(Ⅰ)记每台仪器不能出厂为事件,则,
所以每台仪器能出厂的概率.
(Ⅱ)生产一台仪器利润为1600的概率.
(Ⅲ)可取, , , , , .
, , , , , .
的分布列为:
3800 3500 3200 500 200

9.【安徽省淮南市2017届高三下学期第二次模拟】随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:
(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.
【解析】 (1)由直方图知:T∈[4,8)时交通指数的中位数在T∈[5,6),且为 5+1×=
T∈[4,8)时交通指数的平均数为:
4.5×0.2+5.5×0.24+6.5×0.2+7.5×0.16=4.72.
(2)设事件A为“1条路段严重拥堵”,则P(A)=0.1,
则3条路段中至少有2条路段严重拥堵的概率为:
P=C32×()2×(1-)+C33×()3=,
所以3条路段中至少有2条路段严重拥堵的概率为.
(3)由题意,所用时间X的分布列如下表:
X 30 35 45 60
P 0.1 0.44 0.36 0.1
则E(X)=30×0.1+35×0.44+45×0.36+60×0.1=40.6,
所以此人上班路上所用时间的数学期望是40.6分钟.
10.【陕西省汉中市2017届高三下学期第二次教学质量检测(4月模拟)】为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:
高血压 非高血压 总计
年龄20到39岁 12 100
年龄40到60岁 52 100
总计 60 200
(1)计算表中的、、值;是否有99%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据: =
P(k2≥k0) 0.100 0.050 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828
【解析】(1)由, ,解得=88, =48; =52+ =140,
∴=≈30.857,
由于30.857>10.828,所以有99.9%的把握认为“高血压与年龄有关”.
11.【黑龙江省哈尔滨市第三中学2017届高三二模】近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级, 为优; 为良; 为轻度污染; 为中度污染; 为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的的茎叶图如下:
(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)
(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;
(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.
【解析】(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,
故该样本中空气质量优良的频率为,从而估计该月空气质量优良的天数为
(2)由题意可知,10天中有6天是优良,其中2天优,所以
(3)由(1)估计某天空气质量优良的概率为, 的所有可能取值为0,1,2,3
, ,
,
故的分布列为:
显然, .
12.【重庆市2017届高三4月调研测试(二诊)】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 0.05 0.025 0.010
2.706 3.841 5.024 6.635
【解析】(Ⅰ)由题知,40人中该日走路步数超过5000步的有34人,频率为,所以估计他的所有微信好友中每日走路步数超过5000步的概率为;
(Ⅱ)
,故没有95%以上的把握认为二者有关.
13.【山西省三区八校2017届高三第二次模拟】山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的调查,其结果(人数分布)如表:
学历 35岁以下 3550岁 50岁以上
本科 80 30 20
研究生 20
(Ⅰ)用分层抽样的方法在岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;
(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中35岁以下48人,50岁以上10人,再从这个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求、的值.
13.【江西省2017届高三4月新课程教学质量监测】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面列联表,并判断是否有的把握认为“空间想象能力突出”与性别有关;
空间想象能力突出 空间想象能力正常 合计
男生
女生
合计
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为,求随机变量的分布列和数学期望.
下面公式及临界值表仅供参考:
0.100 0.050 0.010
2.706 3.841 6.635
【解析】(1)列联表如下:
由公式,计算得,
因为,所以没有的把握认为“空间想象能力突出”与性别有关;
(2), ,
,
,
,
所以的分布列是:
数学期望是: .
14.【江西省南昌市十所省重点中学命制2017届高三第二次模拟】王明参加某卫视的闯关活动,该活动共3关.设他通过第一关的概率为0.8,通过第二、第三关的概率分别为p,q,其中,并且是否通过不同关卡相互独立.记ξ为他通过的关卡数,其分布列为:
ξ 0 1 2 3
P 0.048 a b 0.192
(Ⅰ)求王明至少通过1个关卡的概率;
(Ⅱ)求p,q的值.
【名师原创测试篇】
1.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右3个小组的频率之比为,其中第2小组的频数为.
(Ⅰ)求该校报名学生的总人数;
(Ⅱ)若从报名的学生中任选3人,设表示体重超过60kg的学生人数,求的数学期望与方差.
【解析】(Ⅰ)设该校报名的总人数为,前三个小组的频率为
则,解得.
由于,故
(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过公斤的概率为,
由题意知服从二项分布即:~.,
2. 某市举行青年教师数学解题大赛,从中随机抽取30名老师,将他们的竞赛成绩(满分100分,成绩均为不低于30分的整数)分成六段:,,…,后得到如图的频率分布直方图.
(Ⅰ)在这30名老师中随机抽取3名老师.求的值,以及同时满足下列两个条件的概率:①有且仅有1名老师成绩不低于90分;②成绩在内至多1名老师;
(Ⅱ)在成绩在内的老师中随机抽取3名老师进行诊断调查,设成绩在内的人数为随机变量,求的分布列及其期望.
【解析】(Ⅰ)由于图中所有小矩形的面积之和等于1,所以
解得.由题意可得,成绩落在的老师有3人;成绩落在的老师有6人;成绩落在的老师有3人.记事件A:“抽取的3人中,同时满足 条件①②”,其中包括“抽取的3人中,有1名成绩不低于90分,且成绩在内有0名老师”和“抽取的3人中,有1名成绩不低于90分,且成绩在内有1名老师”..
(Ⅱ)随机变量的所有可能取值为.;;

所以随机变量的分布列为:
0 1 2 3

3. 根据我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,人类可正常活动.某市环保局对该市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,, , ,由此得到样本的空气质量指数频率分布直方图.
(Ⅰ)若空气质量指数大于或等于15分且小于35认为是良好的,求该市在这次监测中空气质量
良好的天数,并根据频率分布直方图估计这一年度的空气质量指数的平均值;
(Ⅱ)如果空气质量指数不超过15,就认定空气质量为“优”,则从这一年的监测数据中随机
抽取3天的数值,其中达到“优”的天数为,求的分布列和数学期望.
【解析】(Ⅰ)由频率分布直方图知,空气质量指数在 内的天数为:,所以该市空气质量指数良好的天数为25天. 由题意得,个样本中空气质量指数的平均值为:,由样本估计总体,可估计这一年度空气质量指数的平均值约为.
(Ⅱ)利用样本估计总体,该年度空气质量指数在内为“优”,且指数达到“优”的概率为,则. 的取值为0,1,2,3.
∴的分布列为:
,(或者)
4. 2015年3月15日,中央电视台揭露部分汽车4S店维修黑幕,国家工商总局针对汽车制造行业中的垄断行为加大了调查力度,对汽车零部件加工的相关企业开出了巨额罚单.某品牌汽车制造商为了压缩成本,计划对、、三种汽车零部件进行招标采购,某著名汽车零部件加工厂参入了该次竞标,已知种零部件中标后即可签合同,而、两种汽车零部件具有很强的关联性,所以公司规定两者都中标才能签合同,否则都不签合同,而三种零部件是否中标互不影响.已知该汽车零部件加工厂中标种零部件的概率为,只中标种零部件的概率为,、两种零部件签订合同的概率为.
(Ⅰ)求该汽车零部件加工厂种汽车零部件中标的概率;
(Ⅱ)设该汽车零部件加工厂签订合同的汽车零部件种数为,求的分布列与期望.
【解析】(Ⅰ)记种零部件为事件;种零部件为事件;种零部件为事件.由题意,三个事件相互独立.设种汽车零部件中标的概率为,种汽车零部件中标的概率为.
则只中标种零部件的概率为,、两种零部件签订合同,即两种零件都中标,其概率为.由题意,,即,解得.
(Ⅱ)由已知,的可能取值为0,1,2,3.记、两种零部件签订合同为事件,则,.
; ; ; .
所以的分布列为
0 1 2 3
的数学期望为.
5. 已知广东省某校高三(1)班有名学生,从中按照系统抽样的方法抽取名学生.
(1)若第组抽出的号码为,写出所有被抽出学生的号码;
(2)分别统计这名学生某高校自主招生考试成绩(满分:分),获得成绩数据的茎叶图如图所示,现从这名学生中随机抽取名学生成绩,其中有名学生的成绩是超过的,求的分布列与期望.
,,所以的分布列如下:
期望
6. 某医药公司研制了甲、乙两种抗“ABL病毒”的药物,用若干试验组进行临床对比试验.每个试验组由4位该病毒的感染者组成,其中2人服用甲种药物,另2人服用乙种药物,然后观察疗效.若在一个试验组中,服用甲种药物有效的人数比服用乙种药物有效的人数多,就称该试验组为甲类组.设每为感染者服用甲种药物有效的概率为,服用乙种药物有效的概率为.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
(Ⅱ)由题意知X的可能值为0,1,2,3,故有
P(X=0)==,×=,×=,
=.
从而,X的分布列为
X 0 1 2 3
P
数学期望 +1×+2×+3×=.
(分数)
0 40 50 60 70 80 90 100
频率
组距
0.010
0.020
a
0.005
0.025
同课章节目录