问题9.1复杂的排列组合问题-2018届高三数学成功在我之优等生提分精品

文档属性

名称 问题9.1复杂的排列组合问题-2018届高三数学成功在我之优等生提分精品
格式 zip
文件大小 696.9KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2018-05-11 16:48:10

图片预览

文档简介

2018届高三数学成功在我
专题九 计数原理
问题一:复杂的排列组合问题
一、考情分析
高考对这部分的要求还是比较高的.考查两个计数原理、排列、组合在解决实际问题上的应用.值得提醒地是:计数模型不一定是排列或组合.画一画,数一数,算一算,是基本的计数方法,不可废弃.
二、经验分享
1.排列应用问题的分类与解法
(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
2.组合问题常有以下两类题型变化
(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.
3.排列与组合综合问题的常见类型及解题策略
(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.
(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.
(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.
(4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.
三、知识拓展
1.分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.
2.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
3.解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件.
4.解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类.
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重不漏;按事情的发生的连续过程分步,做到分步层次清楚.
四、题型分析
(一)“相邻”与“不相邻”问题
【例1】甲、乙、丙、丁四名同学排成一排,分别计算满足下列条件的排法种数:
(1)甲不在排头、乙不在排尾;
(2)甲不在第一位、乙不在第二位、丙不在第三位、丁不在第四位;
(3)甲一定在乙的右端(可以不相邻).
【点评】对于相邻问题,可以先将要求相邻的元素作为一个元素与其他元素进行排列,同时要考虑相邻元素的内部是否需要排列,这种方法称为“捆绑法”;对于不相邻的元素,可先排其他元素,然后将这些要求不相邻的元素插入空当,这种方法称为“插空法”;对于“在”或者“不在”的排列问题的计算方法主要有:位置优先法、元素优先法、间接计算法.
【小试牛刀】【山西大学附属中学2017级上学期11月模块诊断】已知身穿红,黄两种颜色衣服的各两人,身穿蓝衣服的有1人,现将五人排成一列,要求穿相同颜色衣服的人不能相邻,则不同的排法有( )
A. 72种 B. 78种 C. 48种 D. 84种
【答案】C
【解析】方法一: 方法二:a,a,c c,a,a, , a,c,a ,故共有选C.
(二)涂色问题
【例2】如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.
【分析】由于区域1,2,3与区域4相邻,由条件宜采用分步处理,又相邻区域不同色,因此应按区域1和区域3是否同色分类求解.
【点评】(1)解决涂色问题,一定要分清所给的颜色是否用完,并选择恰当的涂色顺序.
(2)切实选择好分类标准,分清哪些可以同色,哪些不同色.
【小试牛刀】【河南省天一大联考2017届高三上学期阶段性测试】如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,
其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有( )
A.360种 B.720种 C.780种 D.840种
【答案】B
【解析】先排,有种方法,再排有种方法,故一共有种.
(三)分配问题
【例3】有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?
(1)分成每组都是2本的三组;
(2)分给甲、乙、丙三人,每人2本.
【分析】(1)组合知识及分步计数原理求解;(2)均匀分组问题.
【点评】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.
【小试牛刀】【2017届广东七校联合体高三上学期联考二】把四件玩具分给三个小朋友,每位小朋友至少分到一件玩具,且两件玩具不能分给同一个人,则不同的分法有( )
A.36种 B.30种 C.24种 D.18种
【答案】B
【解析】分两步进行分析:?先计算把四件玩具分给三个小朋友,每位小朋友至少分到一件玩具的分法数目:首先将件玩具分成组,其中组有件,剩余组各件,有种分组方法,再将这组对应三个小朋友,有种方法,则有种情况;?计算两件玩具分给同一个人的分法数目,若两件玩具分给同一个人,则剩余的件玩具分给其他人,有种情况.综上可得,两件玩具不能分给同一个人的不同分法有种,故选B.
(四)排数问题
【例4】在某种信息传输过程中,用四个数字的一个排列(数字允许重复)表示以一个信息,不提排列表示不同信息. 若所有数字只有0,1,则与信息0110之多由四个相对应位置上数字相同的信息个数为( )
A. 9 B.10 C.11 D. 12
【分析】信息0110是四个数字,此类“至多”、“至少”类型的问题,可以直接利用分类讨论求解,也可以转化为反面的问题,利用间接法求解.
【解析一】(直接法)若0相同,只有1个;若1相同,共有个;若2相同,共有个,故共有个.
【解析二】(间接法)若3个数字相同,共有个,若4个数字相同共4个,二不同排列个数为个,所以共有个.
【点评】该题中要求的是“至多”有两个位置上数字相同,易出现的问题是分类混淆,漏掉各位数字信息均不同的情况,解决此类问题的关键是准确确定分类标准,分类计数时要做到不重不漏.
【小试牛刀】【2016届湖南省长沙市雅礼中学高三月考】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )
A.144个 B.120个 C.96个 D.72个
【答案】B
【解析】据题意,万位上只能排4、5.若万位上排4,则有个;若万位上排5,则有个.所以共有个.选B.
(五)摸球问题
【例5】【浙江温州市十校联合体2014届高三上学期期初联考】将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l,2,…,8.则红球的编号之和小于黑球编号之和的排法有 种.
【分析】注意到4个相同的红球没有区别,4个相同的黑球也没有区别,先求出任意排放的排法,编号相等的结果必有四组,其中每组一黑球一白球的编号和为9,则有,,,四种,红黑互换编号就有8种,因为红球的编号之和小于黑球编号之和的排法和大于的排法一样,则红球的编号之和小于黑球编号之和的排法有种.
【解析】依题意,任意排放的排法,红球编号与黑球编号相等的情况有,,,四种,红黑互换编号就是8种,所以红球的编号之和小于黑球编号之和的排法有种.
【点评】要搞清组合与排列的区别与联系:组合与顺序无关,排列与顺序有关;排列可以分成先选取(组合)后排列两个步骤进行.
【小试牛刀】四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有 种(用数字作答).
【答案】42

(六)“至多”、“至少”问题
【例6】某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中
(1)甲、乙两人至少有一人参加,有多少种选法?
(2)队中至少有一名内科医生和一名外科医生,有几种选法?
【分析】“无序问题”用组合,注意分类处理.
【解析】(1)分两类:甲、乙中有一人参加,甲、乙都参加,共有CC+C=6 936(种);
(2)方法一(直接法):至少有一名内科医生和一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有CC+CC+CC+CC=14 656(种).
方法二(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C-(C+C)=14 656(种).
【点评】 对于有条件的组合问题,可能遇到含某个(些)元素与不含某个(些)元素问题;也可能遇到“至多”或“至少”等组合问题的计算,此类问题要注意分类处理或间接计算,切记不要因为“先取再后取”产生顺序造成计算错误.选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用.
【小试牛刀】【江西省新余市第一中学2017届高三上学期调研考试】西部某县委将位大学生志愿者(男女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多人, 则不同的分配方案共有( )
A.种 B.种 C.种 D.种
【答案】C
【解析】分组的方案有3、4和2、5两类,第一类有种;第二类有种,所以共有N=68+36=104种不同的方案.
(七)信息迁移题
【例7】回文数是指从左到右与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.(*)
则:(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.(**)
【分析】由(*)式,理解“特殊”背景——回文数的含义,借助计数原理计算.
结合(**),可从2位回文数,3位回文数,4位回文数探索求解方法,从特殊到一般发现规律.
【解析】(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法.共计9×10=90(种)填法,即4位回文数有90个.
(2)根据回文数的定义,此问题也可以转化成填方格.由计数原理,共有9×10n种填空.
【点评】 (1)一题两问,以“回文数”为新背景,考查计数原理,体现了化归思想,将确定回文数的问题转化为“填方格”问题,进而利用分步乘法计数原理解决,将新信息转化为所学的数学知识来解决.
(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.
【小试牛刀】【浙江省金华、丽水、衢州市十二校2017届高三8月联考数学(理)试题】回文数是指从左到右读与从右到左读都一样的正整数,如2,11,242,6776,83238等,设位回文数个数为(为正整数),如11是2位回文数,则下列说法正确的是( )
A. B. C. D.以上说法都不正确
【答案】B.
【解析】A:,故A错误;根据对称性可知,,故B正确,C,错误,故选
B.
四、迁移运用
1.【湖南省长沙市雅礼中学、河南省实验中学2018届高三联考】郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有( )
A. 168种 B. 156种 C. 172种 D. 180种
【答案】B
【解析】分类:(1)小李和小王去甲、乙,共种(2)小王,小李一人去甲、乙,共种,(3)小王,小李均没有去甲、乙,共种,总共N种,选B.
2.【四川省资阳市2018届高三4月模拟】从0,1,2,3这4个数字中选3个数字组成没有重复数字的三位数,则该三位数能被3整除的概率为
A. B. C. D.
【答案】C
3.【贵州省凯里市第一中学2018届高三模拟】2017年11月30日至12月2日,来自北京、上海、西安、郑州、青岛及凯里等七所联盟学校(“全国理工联盟”)及凯里当地高中学校教师代表齐聚凯里某校举行联盟教研活动,在数学同课异构活动中,7名数学教师各上一节公开课,教师甲不能上第三节课,教师乙不能上第六节课,则7名教师上课的不同排法有( )种
A. 5040 B. 4800 C. 3720 D. 4920
【答案】D
【解析】由题意可得:
故选
4.【2018届湖南省(长郡中学、衡阳八中)、江西省(南昌二中)等十四校高三第二次联考】甲、乙、丙、丁、戊五位同学相约去学校图书室借、、、四类课外书(每类课外书均有若干本),已知每人均只借阅一本,每类课外书均有人借阅,且甲只借阅类课外书,则不同的借阅方案种类为( )
A. B. C. D.
【答案】C
【解析】分两类:乙、丙、丁、戊四位同学、、、四类课外书各借1本,共种方法;
乙、丙、丁、戊四位同学、、三类课外书各借1本,共有中方法,故方法总数为60种.
故选C.
5.已知数列{an}共有5项,a1=0,a5=2,且|ai+1-ai|=1,i=1,2,3,4,则满足条件的数列{an}的个数为(  )
A. 2 B. 3
C. 4 D. 6
【答案】C
【解析】因为,所以或,即数列从前往后,相邻两项之间增加1或减少1,因为,所以从到有3次增加1,有1次减少1,故数列的个数为;故选C.
6.【2017届湖南长沙雅礼中学高三月考四】四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是( )
A.72 B.96
C. 144 D.240
【答案】C
【解析】先从为男生中选为捆绑在一起,和剩余的为男生,插入到为女生所形成的空隙中,所以共有种不同的排法,故选C.
7.【2017届重庆市第一中学高三12月月考】某班某学习小组共7名同学站在一排照相,要求同学甲和乙必须相邻,同学丙和丁不能相邻,则不同的站法共有( )种.
A. B.
C. D.
【答案】A
8.【2017届湖南师大附中高三上学期月考四】从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )
A.40种 B.60种 C.100种 D.120种
【答案】B
【解析】
试题分析:先排星期五,从人中选人有,种,再从剩下的人中选人参加星期六、星期日,有种,故共有种,选B.
9.【2017届福建闽侯县三中高三上期中】将3本相同的诗集,2本相同的小说全部分给4名同学,每名同学至少1本,则不同的分法有( )
A.24种 B.28种
C.32种 D.36种
【答案】B
【解析】第一类:有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有种分法,将剩余的本小说,本诗集分给剰余个同学,有种分法,那共有种;第二类:有一个人分到两本诗集,这种情况下的分法有:先两本诗集分到一个人手上,有种情况,将剩余的本小说分给剩余个人,只有一种分法,那共有:种,第三类:有一个人分到两本小说,这种情况的分法有:先将两本小说分到一个人手上,有种情况,再将剩余的两本诗集和一本小说分给剩余的个人,有种分法,那共有:种,综上所述:总共有:种分法,故选B.
10.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有5种颜色可供使用,则不同的染色方法总数有 (  )
A.240种 B.300种 C.360种 D.420种
【答案】D
11.某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有________种.
【答案】216
【解析】先进行分组,从其余4列火车中任取2列与甲一组,不同的分法为C=6种.
由分步计数原理得不同的发车顺序为C·A·A=216种.
12.【广东郴州市2017届高三第二次教学质量监测试卷,14】两所学校分别有2名、3名学生获奖,这5名学生要排成一排合影,则同校学生排在一起的概率是__________.
【答案】
【解析】5名学生要排成一排合影共有种不同的排法,同校学生排在一起共有种不同的排法,所以所求概率为.
13.某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是_________________(用数字作答).
【答案】
14.【2017届四川双流中学高三上学期必得分】某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为 .
【答案】
【解析】分两步完成:第一步将名调研员按分成三组,其分发有种;第二步将分好的三组分配到三个学校,其分发有种,所以不同的分配方案种数种,故填.
15.【2017届甘肃肃南裕固族自治县一中高三理12月月考】将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰好1个盒子放有2个连号小球的所有不同方法有 种.(用数字作答)
【答案】
【解析】由题意这四个数有,,;,,;,,三种分组方式,将其放入三个盒子有种方法,故应填答案.
16.【2017届山东寿光现代中学高三理12月月考】三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为 .
【答案】
【解析】
试题分析:由题设运用插空法可得.故应填答案.
17.【2017届浙江省高三上学期高考模拟】如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是 ____________(用数字作答).
【答案】.
【解析】如下图所示,对集装箱编号,则可知排列相对顺序为,,(即1号箱子一定在2号箱子前被取走,2号箱子一定在3号箱子前被取走),,,故不同取法的种数是,故填:.
18.某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有 .
【答案】600种
【解析】若甲、乙其中一人参加,有种情况,若甲、乙两人都参加,有种情况,其中甲、乙相邻的有种情况,则不同的发言顺序有种情况.
同课章节目录