2018年高考物理四轮复习押高考物理第20题

文档属性

名称 2018年高考物理四轮复习押高考物理第20题
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 通用版
科目 物理
更新时间 2018-05-11 19:56:51

图片预览

文档简介

5月13日 押高考物理第20题
高考频度:★★★☆☆
难易程度:★★★☆☆
如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1 cm,中点O与S间的距离d=4.55 cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10–4 T,电子质量m=9.1×10–31 kg,电荷量e=–1.6×10–19 C,不计电子重力。电子源发射速度v=1.6×106 m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则
A.θ=90°时,l=9.1 cm
B.θ=60°时,l=9.1 cm
C.θ=45°时,l=4.55 cm
D.θ=30°时,l=4.55 cm
【参考答案】AD
【试题解析】电子在磁场中受洛伦兹力的作用做匀速圆周运动,根据洛伦兹力大小计算公式和向心力公式有:evB=,解得电子圆周运动的轨道半径为:r=,恰好有:r=d=L/2,由于电子源S可向纸面内任意方向发射电子,因此电子的运动轨迹将是过S点的一系列半径为r的等大圆,能够打到板MN上的区域范围如下图所示,实线SN表示电子刚好经过板N端时的轨迹,实线SA表示电子轨迹刚好与板相切于A点时的轨迹,因此电子打在板上可能位置的区域的长度为:l=NA,
又由题设选项可知,MN与SO直线的夹角θ不定,但要使电子轨迹与MN板相切,根据图中几何关系可知,此时电子的轨迹圆心C一定落在与MN距离为r的平行线上,如下图所示,当l=4.55 cm时,即A点与板O点重合,作出电子轨迹如下图中实线S1A1,由图中几何关系可知,此时S1O与MN的夹角θ=30°,故选项C错误,选项D正确;当l=9.1 cm时,即A点与板M端重合,作出电子轨迹如下图中实线S2A2,由图中几何关系可知,此时S2O与MN的夹角θ=90°,故选项A正确,选项B错误。
【知识补给】
带电粒子在磁场中运动的临界、多解问题
1.临界问题:带电粒子在磁场中做匀速圆周运动时,由于磁场边界的存在及速度大小和方向、磁感应强度的大小和方向的不确定性,往往引起粒子运动的临界问题。
2.粒子圆周运动的多解问题:
(1)带电粒子的电性不确定形成多解,可能出现两个方向的运动轨迹。
(2)磁场方向不确定形成多解,可能出现两个方向的运动轨迹。
(3)临界状态不唯一形成多解,需要根据临界状态的不同,分别求解。
(4)圆周运动的周期性形成多解。
3.方法技巧总结:
(1)利用极限思维法求解带电粒子在磁场中的临界问题:
极限思维法是把某个物理量推向极端(即极大和极小)的位置,并以此作出科学的推理分析,从而做出判断或导出一般结论的一种思维方法。
分析带电粒子在磁场中做匀速圆周运动的临界问题时,通常以题目中的“恰好”“最高”“最长”“至少”等为突破口,将不确定的物理量推向极端(如极大、极小;最上、最下;最左、最右等),结合几何关系分析得出临界条件,列出相应方程求解结果。
(2)常见的三种几何关系:
a.刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
b.当速率v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
c.当速率v变化时,圆心角大的,运动时间长。
(3)两种动态圆的应用方法:
a.如图所示,一束带负电的粒子以初速度v垂直进入匀强磁场,若初速度v方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度方向的直线上,速度增大时,轨道半径随之增大,所有粒子的轨迹组成一组动态的内切圆,与右边界相切的圆即为临界轨迹。
b.如图所示,一束带负电的粒子以初速度v垂直进入匀强磁场,若初速度v大小相同,方向不同,则所有粒子运动的轨道半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点O为圆心、以轨道半径为半径的圆上,从而可以找出动态圆的圆心轨迹。利用动态圆可以画出粒子打在边界上的最高点和最低点。
(4)求解带电粒子在磁场中运动多解问题的技巧:
a.分析题目特点,确定题目多解性形成原因。
b.作出粒子运动轨迹示意图(全面考虑多种可能性)。
c.若为周期性重复的多解问题,寻找通项式,若是出现几种解的可能性,注意每种解出现的条件。
如图所示,竖直平行线MN、PQ间距离为a,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度为B,MN上O处的粒子源能沿不同方向释放比荷为q/m的带负电粒子,速度大小相等、方向均垂直磁场。粒子间的相互作用及重力不计。设粒子速度方向与射线OM夹角为θ,当粒子沿θ=60°射入时,恰好垂直PQ射出。则
A.从PQ边界射出的粒子在磁场中运动的最短时间为
B.沿θ=120°射入的粒子,在磁场中运动的时间最长
C.粒子的速率为
D.PQ边界上有粒子射出的长度为
如图所示,光滑固定金属导轨与水平面成一定角度θ,将完全相同的两个导体棒P、Q相继从导轨顶部同一位置M处无初速释放,在导轨中某部分(图中两虚线之间)有一与导轨平面垂直的匀强磁场。已知P棒进入磁场时恰好做匀速运动,则从P棒进入磁场开始计时,到Q棒离开磁场(设导轨足够长,除P、Q杆外其余电阻不计),P棒两端电压随时间变化的图象可能正确的是
A. B.
C. D.
在匀强磁场中有一不计电阻的单匝矩形线圈,绕垂直于磁场的轴匀速转动,产生如图甲所示的正弦交流电,把该交流电输入到图乙中理想变压器的A、B两端。图中的电压表和电流表均为理想交流电表,为热敏电阻(温度升高时其电阻减小),为定值电阻。下列说法正确的是
A.在图甲的t=0.01 s时刻,矩形线圈平面与磁场方向平行
B.变压器原线圈两端电压的瞬时值表达式为
C.Rt处温度升高时,电压表V1示数与V2示数的比值变大
D.Rt处温度升高时,电压表V2示数与电流表A2示数的乘积可能变大、也可能变小,而电压表V1示数与电流表A1示数的乘积一定变大
如图a,A、B是一对平行金属板,在两板间加有周期为T的交变电压u,A板电势uA=0,B板电势uB随时间t变化的规律如图b中。现有一电子从A板的小孔进入两板间的电场中,设电子的初速和重力的影响均可忽略,则
A.若电子是在t=0时刻进入的,它将一直向B板运动
B.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
C.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上
D.若电子是在t=时刻进入的,它可能时而向B板运动,时而向A板运动
半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同。下列说法中正确的是
A.如果v0=,则小球能够上升的最大高度等于R/2
B.如果v0=,则小球能够上升的最大高度小于3R/2
C.如果v0=,则小球能够上升的最大高度等于2R
D.如果v0=,则小球能够上升的最大高度等于2R
【参考答案】
正确,C错误;由于v一定,则弧长最短时,时间最短,根据分析可知当粒子沿着边界MN方向向上射入时最短,此时圆心在MN上,θ=30°,所以,此时是粒子打在边界PQ的最上端,根据几何知识可得该点相对O点竖直位移为,故PQ边界上有粒子射出的长度为,A错误,D正确。
AC 因导体棒P、Q完全相同,又是从导轨顶部同一位置M处无初速释放,所以P、Q在进入磁场时的速度大小是相等的,当P进入磁场,而Q还没有进入磁场的过程中,P做匀速直线运动,设此时的电动势为E,由闭合电路的欧姆定律可得P两端的电压为E/2,且保持不变。当Q进入磁场时,分为两种情况来分析:当Q进入磁场时,P已经出了磁场,所以在PQ都不在磁场中时,P的两端的电压为零,当Q进入磁场后,产生的电动势也为E,此时P的两端的电压仍为E/2,当Q离开磁场时,电压为零,选项A是有可能的。当Q进入磁场时,P还没有出磁场,此时PQ会以相同的速度开始做匀加速直线运动,回路中没有电流,所以P两端的电压等于P产生的电动势,因PQ都在做匀加速直线运动,所以电压是从E均匀增加的,当P到达磁场的边缘时,设产生的电动势为E′,P离开磁场时,只有Q在切割磁感线,此时P两端的电压为Q产生的电动势的一半,即为E′/2,此后Q将做加速度减小的减速运动,P两端的电压也就逐渐减小,且随Q的加速度的减小,电压减小的幅度也越来越小,所以选项C是有可能的,BD不可能。
CD 在图甲的t=0.01 s时刻,e=0,则磁通量最大,此时矩形线圈平面与磁场方向垂直,故A错误;根据图甲可知,Em=36 V,T=0.02 s,则,变压器原线圈两端电压的瞬时值表达式为u=36sin 100πt (V),故B错误;Rt处温度升高时,电阻减小,电压表V2测量Rt的电压,则电压表V2示数减小,V1示数不变,则电压表V1示数与V2示数的比值变大,故C正确;副线圈电压不变,若Rt电阻原来大于R,则温度升高时,电压表V2示数与电流表A2示数的乘积增大,若Rt电阻原来小于R,则电压表V2示数与电流表A2示数的乘积变小,当Rt处温度升高时,电阻减小,则副线圈总功率增大,所以原线圈功率增大,即电压表V1示数与电流表A1示数的乘积一定变大,故D正确。
动,但是向B板运动的位移大,最后打在B板上,故B正确;若电子是在t=3T/8时刻进入时,在一个周期内:在3T/8~T/2,电子受到的电场力向上,向上做加速运动,在T/2~5T/8内,受到的电场力向下,继续向上做减速运动,5T/8时刻速度为零;在5T/8~T内,受到的电场力向下,向下加速运动,在T~11T/8内,受到的电场力向上,继续向下做减速运动,11T/8时刻速度为零;接着向B板运动,周而复始,所以电子时而向B板运动,时而向A板运动,但是向B板运动的位移小,最后打在A板上,故C错误;若电子是在t=T/2时刻进入时,在一个周期内:在T/2~T,电子受到的电场力向下,向下做加速运动,在T~3T/2内,受到的电场力向上,继续向下做减速运动,3T/2时刻速度为零;接着向A板运动,周而复始,所以电子一直向A板运动,最后打在A板上,故D错误。
ABD 如果,根据机械能守恒定律得:,解得:,即小球能够上升的最大高度为,故A正确;设小球恰好能运动到与圆心等高处时在最低点的速度为v,则根据机械能守恒定律得:,解得,,故如果,则小球能够上升的最大高度为R。设小球恰好运动到圆轨道最高点时在最低点的速度为v1,在最高点的速度为v2,则在最高点,有;从最低点到最高点的过程中,根据机械能守恒定律得:;联立以上两式得:;所以如果和,小球不能到达圆轨道的最高点,即上升的高度小于2R,如果,根据机械能守恒定律得:,解得:,当根据竖直平面内的圆周运动知识可知,小球在上升到处之前就做斜抛运动了,小球能够上升的最大高度小于,故BD正确、C错误。

同课章节目录