5.1 认识分式(课件+教案)

文档属性

名称 5.1 认识分式(课件+教案)
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2018-05-14 09:50:30

文档简介

《认识分式》教学设计
执教者
本节课共设计了 5个教学环节:情景引入——自主探索——练习提高——课堂反馈——自我小结
第一环节 情景引入
活动内容:
以一个“土地沙化”的问题情景引入,让学生思考讨论,用式分式表达题目中的数量关系:
问题情景(1):面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成一原计划的任务。这一问题中有哪些等量关系?
如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要 个月,实际完成一期工程用了 个月。
问题情景(2):新华书店库存一批图书,其中一种图书的原价是每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?
活动目的:
让学生进一步经历探索实际问题中的数量关系的过程;通过问题情景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感.
注意事项:
要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况教师可以给予适当的提示和引导.
第二环节 自主探索
活动内容:
以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义.
讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?
活动目的:
让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.
注意事项:
学生通过观察、类比,及小组激烈的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,还可理解为字母是可以表示任何数的。这样获得的知识,理解的更加透彻,掌握的更加牢固,运用起来会更灵活。
第三环节 练习提高
活动内容:
例题(1)当 a=1,2时,分别求分式 的值;
解:(1)当 a=1时,

(2)当 a=2时,

(2)当 a取何值时,分式 有意义?
解:当分母的值为零时,分式没有意义,除此以外,分式都有意义.
由分母2a=0,得a=0,
所以,当a取零以外的任何数时,分式 都有意义.
活动目的:
让学生体会分式的意义,理解如果a的取值使得分母的值为零,则分式没有意义,反之有意义.
注意事项:
通过例题讲解,让学生从两方面来理解,一是分式分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零。学生基本能够通过计算出分式的值,但对于分式什么条件下有意义,一下子掌握还有一定的难度, 需要通过与分数进行类比,多举例才能理解的更深刻。
第四环节 课堂反馈
活动内容:
1、下列各式中,哪些是整式?哪些是分式?
答:(2)、(4)是整式,(1)、(3)是分式.
活动目的:
考察学生对分式、整式概念的理解.
注意事项:
学生完成的较好,能抓住分式与整式概念的区别,准确的判断出分式、整式.
活动内容:
2、x取什么值时,下列分式无意义?
解:(1)因为当分母的值为零时,分式没有意义.
由2 x -3=0,得x =
所以当x = 时, 分式无意义.
(2)因为当分母的值为零时,分式没有意义.
由5x+10=0,得x = -2
所以当x = -2 时, 分式无意义.
活动目的:让学生体会分式的意义,知道如果a的取值使的分母的值为零,则分式没有意义,反之有意义.
3、把甲、乙两种饮料按质量比x:y混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料?
活动目的:体会分式可以表示现实情景中的数量关系,分式是表示现实世界中的一类量的数学模型,学会列分式。
注意事项:学生通过类比分数的分母不能为零,基本能理解分式的分母也不能为零。在学习中,有些学生错误的理解为只是分式的分母中的字母不为零,应该及时纠正,是整个分母不为零分母可能是单项式,也可能是多项式。
第五环节 自我小结
活动内容
这节课你有哪些收获?
1、学习了分式的概念,掌握了整式与分式的异同.
2、知道当分式的分母不等于零时分式才有意义.
3、在学习新知识时,可把它与所学的旧知识比较,通过观察、类比、归纳它们的异同的方法来学习新知识.
4、我们应该多种树,保护人类生存环境.
活动目的
让学生畅所欲言,大胆谈自己的收获和感想,鼓励和引导学生发现和挖掘新事物.
注意事项:
检查学生这节课的学习情况,是否把握了重难点,对于没有提到的,要给予补充,对于容易出错的,如当分式的分母不等于零时分式才有意义,要给予强调,另外,还要让学生掌握学习新知识的方法,如可把它与所学的旧知识比较,通过观察、类比、归纳它们的异同的方法来学习新知识.
让可能多的学生谈谈自己的收获,只要积极的正确的都要给予肯定,并及时的鼓励。
课件18张PPT。第五章 分式与分式方程1 认识分式(1)例1、面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林 2 400 公顷,实际每月固沙造林的面积比原计划多 30 公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林 x 公顷,那么
(1)原计划完成造林任务需要多少个月?
(2)实际完成造林任务用了多少个月?练习1、2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前 a 天日均参观人数 35 万人,后 b 天日均参观人数 45 万人,这(a + b)天日均参观人数为多少万人?
练习2、文林书店库存一批图书,其中一种图书的原价是每册 a 元,现每册降价 x 元销售,当这种图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库存量是多少?上面问题中出现了代数式 它们有什么共同特征?它们与整式有什么不同?
例2、下列各式中,哪些是整式?哪些是分式?为什么(2)、(4)不是分式?判断的关键是什么?解:属于整式的有(2)、(4)
属于分式的有(1)、(3)分母含有字母是分式,
分母不含字母是整式.1、下列各式中,哪些是整式?哪些是分式?例3、(1)当 a=1,2,-1时,分别求分式 的值;
解:(1)当 a=1时

当 a=2时
当a=-1时

(2)当 a取何值时,分式 有意义?
解:当分母的值为零时,分式没有意义,除此以外,分式都有意义。 由分母2a=0,得a=0,所以,当a取零以外的任何数时,分式 都有意义。
注意:分母等于零分母不等于零分子等于零
且分母不等于零三个条件分式有意义的条件分式无意义的条件分式的值为零的条件(2) 当x为何值时,分式有意义? (1) 当x为何值时,分式无意义? 已知分式 ,解:       (2)由(1)得 当x= -2时,分式无意义    ∴当x ≠ -2时(1)当分母等于零时,分式无意义。∴x = -2时即 x+2=0(3)当分子等于零而分母不等于零时,分式的值为零。(4) 当x= 1时,分式的值是多少?(3) 当x为何值时,分式的值为零?已知分式 ,(4)随堂练习:1.当x取什么值时,下列分式无意义?随堂练习:谈谈你的收获吧!一个概念总结分母等于零分母不等于零分子等于零
且分母不等于零两个应用列分式求分式的值三个条件分式有意义的条件分式无意义的条件分式的值为零的条件阅读下面一题的解答过程,试判断是否正确,如果不正确,请加以改正。
当x是什么数时,分式     的值是零?解答过程:由分子 |x| -4=0,得x=±4
所以当x=±4时,分式 的值是零 .巩固练习