物理高考专题复习资料七[上学期]

文档属性

名称 物理高考专题复习资料七[上学期]
格式 zip
文件大小 2.1MB
资源类型 教案
版本资源 通用版
科目 物理
更新时间 2006-12-12 18:21:00

文档简介

难点16 楞次定律与因果关联
楞次定律与力和运动的综合命题,多次以选择、填空的题型出现在高考卷面尤其是上海试卷中,充分考查考生的综合分析能力.
●难点磁场?
1.(★★★★)如图16-1(a),圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q、P和Q共轴.Q中通有变化电流,电流随时间变化的规律如图16-1(b)所示.P所受的重力为G,桌面对P的支持力为N,则
A.t1时刻N>G B.t2时刻N>G
C.t3时刻N<G D.t4时刻N=G
图16—1 图16—2
2.(★★★★)如图16-2所示,ab是一个可绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸内看,线框ab将
A.保持静止不动
B.逆时针转动
C.顺时针转动
D.发生转动,但电源极性不明,无法确定转动方向
●案例探究
[例1](★★★)(1996年全国,3)一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图16-3所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为
位置Ⅰ 位置Ⅱ
(A)逆时针方向 逆时针方向
(B)逆时针方向 顺时针方向
(C)顺时针方向 顺时针方向
(D)顺时针方向 逆时针方向
命题意图:考查对楞次定律的理解应用能力及逻辑推理能力.B级要求.
错解分析:由于空间想象能力所限,部分考生无法判定线圈经位置Ⅰ、Ⅱ时刻磁通量的变化趋势,从而无法依据楞次定律和右手螺旋定则推理出正确选项.
解题方法与技巧:线圈第一次经过位置Ⅰ时,穿过线圈的磁通量增加,由楞次定律,线圈中感应电流的磁场方向向左,根据右手定则,顺着磁场看去,感应电流的方向为逆时针方向.当线圈第一次通过位置Ⅱ时,穿过线圈的磁通量减小,可判断出感应电流为顺时针方向,故选项B正确.
[例2](★★★★)如图16-4甲所示,通电螺线管与电源相连,与螺线管同一轴线上套有三个轻质闭合铝环,b在螺线管中央,a在螺线管左端,c在螺线管右端.当开关S闭合时,若忽略三个环中感应电流的相互作用,则
A.a向左运动,c向右运动,b不动
B.a向右运动,c向左运动,b不动
C.a、b、c都向左运动
D.a、b、c都向右运动
命题意图:考查楞次定律、安培定则、左手定则的综合应用能力及逻辑推理能力.B级要求.
错解分析:找不到该题中现象间的因果关系,即感应磁场与原磁场磁通量变化之间的阻碍与被阻碍关系;感应电流与感应磁场间的产生和被产生的关系;寻找不到先行现象和后继现象间的关联点,从而无法顺利地推理判断出正确选项.
解题方法与技巧:首先应弄清楚,当开关S闭合时,由通电螺线管所产生的磁场在铝环a、b、c中的磁通量变化情况.电学知识告诉我们,通电后,该螺线管的磁场等效为一个N极在左、S极在右的条形磁铁的磁场(如图16-4乙所示),当开关S闭合时,向左通过各铝环的磁通量突然增大.
然后,由于向左通过各铝环的磁通量突然增大,根据楞次定律可知,各铝环的感应磁场方向必然与螺线管的磁场方向相反而向右.
接着,运用安培定则可确定,各铝环的感应电流方向如图16-4乙所示,从右向左看均为逆时针方向.
最后,根据图16-4丙所提供的感应电流和原磁场的分布情况,运用左手定则可判定a、b、c三个铝环所受的安培力分别如图16-4丙所示,于是a受安培力Fa作用,向左运动,c环受安培力Fc作用,向右运动,而由b环受力的对称性可知,b环所受的安培力Fb合力为零,b环仍然静止.因此正确答案为选项A.
●锦囊妙计
一、楞次定律中的因果关联
楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键.
二、运用楞次定律处理问题的思路
1.判断感应电流方向类问题的思路
运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:
(1)明确原磁场:弄清原磁场的方向及磁通量的变化情况.
(2)确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向.
(3)判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(见例1)
2.判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略
在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动.(如例2)对其运动趋势的分析判断可有两种思路方法:
(1)常规法:
据原磁场(B原方向及ΔΦ情况)确定感应磁场(B感方向)判断感应电流(I感方向)导体受力及运动趋势.(见例2)
(2)效果法
由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势作出判断,更简捷、迅速.
●歼灭难点训练
1.(★★★)如图16-5所示,一闭合矩形金属线框,一半在匀强磁场中,一半在磁场外,要使线框中的感应电流为顺时针,线框应
A.沿x轴正方向平动 B.沿y轴正方向平动
C.沿x轴负方向平动 D.沿y轴负方向平动
图16—5 图16—6
2.(★★★★)如图16-6所示,匀强磁场垂直于圆形线圈指向纸里,abcd为圆形线圈上等距离的四点,现用外力作用在上述四点,将线圈拉成正方形,设线圈导线不可伸长,且线圈仍处于原先所在的平面内,则在线圈发生形变的过程中:
A.线圈中将产生abcd方向的感应电流
B.线圈中将产生adcb方向的感应电流
3.(★★★★★)如图16-7所示,螺线管CD的导线绕法不明确,当磁铁AB插入螺线管时,电路中有图示方向的感应电流产生,下列关于螺线管极性的判断正确的是
A.C端一定是N极
B.C端一定是S极
C.C端的极性一定与磁铁B端的极性相同
D.无法判断极性的关系,因螺线的绕法不明确
4.(★★★★)如图16-8所示,A、B为两个相同的导线圈,共轴并靠近放置,若在线圈A中通有如图16-9所示的交流电,则
A.在t1~t2时间内,A、B相互吸引
B.在t2~t3时间内,A、B相互吸引
C.t1时刻两线圈间作用力为零
D.t2时刻两线圈间吸引力最大
图16—8 图16—9 图16—10
5.(★★★★)如图16-10所示,A、B为大小形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A、B管上端管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面.下面对于两管的描述中可能正确的是
A.A管是用塑料制成的,B管是用铜制成的
B.A管是用铝制成的,B管是用胶木制成的
C.A管是用胶木制成的,B管是用塑料制成的
D.A管是用胶木制成的,B管是用铝制成的
6.(★★★★)如图16-11所示,光滑平行的两导轨水平放置,两根导体棒ab和cd平行地跨放在导轨上形成一个闭合回路,当一条形磁铁从回路正上方迅速插入回路时,导体ab和cd的运动情况
A.互相远离 B.相互靠拢
C.都不动 D.都向右运动
图16—11 图16—12
7.(★★★★)(2001年科研,7)2000年底,我国宣布已研制成功一辆高温超导磁悬浮高速列车的模型车,该车的车速已达到每小时500千米,可载5人.如图16-12所示就是磁悬浮的原理,图中A是圆柱形磁铁,B是用高温超导材料制成的超导圆环.将超导圆环B水平放在磁铁A上,它就能在磁力的作用下悬浮在磁铁A上方的空中
A.在B放入磁场的过程中,B中将产生感应电流.当稳定后,感应电流消失
B.在B放入磁场的过程中,B中将产生感应电流.当稳定后,感应电流仍存在
C.如A的N极朝上,B中感应电流的方向如图中所示
D.如A的N极朝上,B中感应电流的方向与图中所示的相反
参考答案:
[难点磁场]
1.AD 2.C
[歼灭难点训练]
1A 2.A 3.C 4.AC 5.AD 6.B 7.BD
图16-3
图16-4
图16-7考点3 电场和磁场中的带电粒子
山东 贾玉兵
命题趋势
带电粒子在电场、磁场中的运动是中学物理中的重点内容,这类问题对学生的空间想象能力、分析综合能力、应用数学知识处理物理问题的能力有较高的要求,是考查考生多项能力的极好载体,因此历来是高考的热点,在实行了三年的理科综合能力测试中也是每年都考,且分值分别达18分、14分和20分,预计以后每年都不会低于10%的分值。
带电粒子在电场、磁场中的运动与现代科技密切相关,在近代物理实验中有重大意义,因此考题有可能以科学技术的具体问题为背景。
当定性讨论这类问题时,试题常以选择题的形式出现,定量讨论时常以填空题或计算题的形式出现,计算题还常常成为试卷的压轴题。
知识概要
带电粒子在电场、磁场中的运动可分为下列几种情况
带电粒子在电场、磁场、重力场中的运动,简称带电粒子在复合场中的运动,一般具有较复杂的运动图景。这类问题本质上是一个力学问题,应顺应力学问题的研究思路和运用力学的基本规律。
分析带电粒子在电场、磁场中运动,主要是两条线索:
(1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。
(2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。
处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。
处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。
点拨解疑
【例题1】(1999年高考全国卷)如图1所示,图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外。O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;
(2)求这两个粒子从O点射入磁场的时间间隔。
【点拨解疑】(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律得
,则
(2)如图2所示,以OP为弦可以画两个半径相同的圆,分别表示在P点相遇的两个粒子的轨迹。圆心分别为O1、O2,过O点的直径分别为OO1Q1、OO2Q2,在O点处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角。由几何关系可知,,从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1P=Rθ,粒子2的路程为半个圆周减弧长PQ2=Rθ
粒子1的运动时间为 ,其中T为圆周运动的周期。
粒子2运动的时间为
两粒子射入的时间间隔为
因为 所以
有上述算式可解得
点评:解带电粒子在磁场中运动的题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”)之外,更应侧重于运用数学知识进行分析。本题在众多的物理量和数学量中,角度是最关键的量,它既是建立几何量与物理量之间关系式的一个纽带,又是沟通几何图形与物理模型的桥梁。
【例题2】 如图3所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿Y轴负方向的匀强电场,第四象限内无电场和磁场。质量为m、带电量为q的粒子从M点以速度v0沿x轴负方向进入电场,不计粒子的重力,粒子经N、P最后又回到M点。设OM=L,ON=2L,则:
关于电场强度E的大小,下列结论正确的是 ( )
A. B. C. D.
(2)匀强磁场的方向是 。
(3)磁感应强度B的大小是多少?
【点拨解疑】 (1)由带电粒子在电场中做类平抛运动,易知,且则E= 故选C
(2)由左手定则,匀强磁场的方向为垂直纸面向里。
(3)根据粒子在电场中运动的情况可知,粒子带负电。粒子在电场中做类平抛运动,设到达N点的速度为v,运动方向与x轴负方向的夹角为θ,如图4所示。
由动能定理得
将(1)式中的E代入可得 所以θ=45°
粒子在磁场中做匀速圆周运动,经过P点时速度方向也与x轴负方向成45°角。
则OP=OM=L NP=NO+OP=3L
粒子在磁场中的轨道半径为R=Npcos45°= 又
解得
点评:带电粒子的复杂运动常常是由一些基本运动组合而成的。掌握基本运动的特点是解决这类问题的关键所在。该题中,粒子在匀强磁场中运动轨迹的圆心不在y轴上,注意到这一点是很关键的。
【例题3】 如图5所示,在水平正交的匀强电场和匀强磁场中,半径为R的光滑绝缘竖直圆环上,套有一个带正电的小球,已知小球所受电场力与重力相等,小球在环顶端A点由静止释放,当小球运动的圆弧为周长的几分之几时,所受磁场力最大?
【点拨解疑】 小球下滑的过程中,要使磁场力最大,则需要速度最大。OC为与小球受到的重力、电场力的合力平行的半径。由功能关系寻找速度最大的点,因为洛伦兹力不做功,所以不考虑磁场的作用,从图中A到C,上述合力有切向分力,且与速度同向,因此做正功,小球动能增加;在C点时,该合力为径向,没有切向分力;此后切向分力与线速度反向,动能将减小;故在C点时速度最大,所受磁场力也最大。由受力分析知
mg=qE mg=qEtanα 得α= 45°
由图知θ=α+90°=135°
故小球运动的弧长与周长之比为,
所以运动的弧长为周长的。
点评:讨论带电粒子的运动,必须熟悉各种力做功的特点。该题也可用等效法处理。把电场和重力场合起来当作一个新的重力场,这个重力场的竖直方向与原水平方向成45°角斜向下,这样就很容易确定速度最大的点。
【例题4 】 从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有纪录纸的圆筒。整个装置放在真空内,电子发射时的初速度不计,如图6所示,若在金属板上加一U =1000cos2πt V的交流电压,并使圆筒绕中心轴按图示方向以n=2r/s匀速转动,分析电子在纪录纸上的轨迹形状并画出从t=0开始的1s内所纪录到的图形。
【点拨解疑】 对电子的加速过程,由动能定理得:
eU0=mv02
得电子加速后的速度 v0==4.2×107m/s
电子进入偏转电场后,由于在其中运动的时间极短,可以忽略运动期间偏转电压的变化,认为电场是稳定的,因此电子做类平抛的运动。如图7所示。
交流电压在A、B两板间产生的电场强度 V/m
电子飞离金属板时的偏转距离
电子飞离金属板时的竖直速度
电子从飞离金属板到到达圆筒时的偏转距离
所以在纸筒上的落点对入射方向的总偏转距离为
m
可见,在纪录纸上的点在竖直方向上以振幅0.20m、周期T=1s做简谐运动。因为圆筒每秒转2周,故转一周在纸上留下的是前半个余弦图形,接着的一周中,留下后半个图形,合起来,1s内,在纸上的图形如图8所示。
点评:偏转电场如果不稳定,电子在其中的运动将非常复杂,因此理想化处理是解答本题的关键。示波器是常用的电子仪器,其原理与该题的情景有相似之处。
针对训练
1.(2002年广西、河南、广东卷)在图9中虚线所示的区域存在匀强电场和匀强磁场。取坐标如图。一带电粒子沿x轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转。不计重力的影响,电场强度E和磁感强度B的方向可能是(  )
A. E和B都沿x轴正方向 B. E沿y轴正向,B沿z轴正向
C. E沿x轴正向,B沿y轴正向 D. E、B都沿z轴正向
2.如图10所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是 ,穿透磁场的时间是 。
3.(2000年全国卷)如图11所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)
4.如图12所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:
(1)中间磁场区域的宽度d;
(2)带电粒子从O点开始运动到第一次回到O点所用时间t。
参考答案:
1.AB
解析:E和B都沿x轴正方向,由于带电粒子速度与磁感应强度B平行或反向平行,故不受磁场力只受电场力,而不论粒子带何种电荷,电场力与速度均共线,由此知粒子作直线运动,A正确。若E沿y轴正向则电场力沿y轴正向(带正电)或负向(带负电),而B沿z轴正向,则由左手定则知其所受洛仑兹力沿y轴负向(带正电)或正向(带负电),合外力可能为零,故B正确。若E沿z轴正向,则电场力沿z轴正向(带正电)或负向(带负电),B沿y轴正向,则洛仑兹力也沿z轴正向(带正电)或负向(带负电),合力不为零,且与速度不共线,粒子必然发生偏转,故C错。若E、B都沿z轴方向,则电场力也沿z轴方向,而洛仑兹力沿y轴方向,合力不为零,且与速度不共线,粒子必发生偏转,故D错。
2.解析:电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆弧的一部分,又因为f⊥v,故圆心在电子穿入和穿出磁场时受到洛仑兹力指向交点上,如图10中的O点,由几何知识知,AB间圆心角θ=30°,OB为半径。
∴r=d/sin30°=2d,又由r=mv/Be得m=2dBe/v
又∵AB圆心角是30°,∴穿透时间t=T/12,故t=πd/3v。
3.解析:如图13所示,带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。设粒子进入磁场区的速度大小为v,根据动能定理,有
设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有
由前面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r。由以上各式解得

4.解析:(1)带电粒子在电场中加速,由动能定理,可得:
带电粒子在磁场中偏转,由牛顿第二定律,可得:
由以上两式,可得 。
可见在两磁场区粒子运动半径相同,如图14所示,三段圆弧的圆心组成的三角形ΔO1O2O3是等边三角形,其边长为2R。所以中间磁场区域的宽度为
(2)在电场中 ,
在中间磁场中运动时间
在右侧磁场中运动时间,
则粒子第一次回到O点的所用时间为

半径公式: 周期公式:
带电粒子在电场磁场中的运动
带电粒子在电场中的运动
带电粒子在磁场中的运动
带电粒子在复合场中的运动
直线运动:如用电场加速或减速粒子
偏转:类似平抛运动,一般分解成两个分运动求解
圆周运动:以点电荷为圆心运动或受装置约束运动
直线运动(当带电粒子的速度与磁场平行时)
圆周运动(当带电粒子的速度与磁场垂直时)
直线运动:垂直运动方向的力必定平衡
圆周运动:重力与电场力一定平衡,由洛伦兹力提供向心力
一般的曲线运动
图6
图7
图8
B
A
B
d
v
v
300
O
图10
a
b
c
d
S
o
图11
B
B
E
L
d
O
图12
a
b
c
d
S
o
图13
O
O3
O1
O2
图14
600
PAGE
1设计型实验
山东 贾玉兵
命题趋势
近几年,高考实验题发生了明显的变化,已跳出了课本分组实验的范围,不仅延伸到演示实验中,而且出现了设计型实验。关于试验能力提出了“能灵活地运用已学过的物理理论、实验方法和实验仪器去处理问题”,在理科综合《考试说明》中,更明确地把“设计和完成实验的能力”作为五个考试目标中的一个目标。
在上海的高考试题中,设计型实验具有很好的测试效果。全国的高考试题中对实验的考查也在逐步转向设计型的实验,它必将是今后高考物理实验命题的热点。
完整的设计一个实验,要经历多个环节,在实际考查中,一般不会考查全部环节,而是只考查其中的几个环节,有的题目给出条件和实验器材,要求阐述实验原理;有的给出实验电路图,要求领会实验原理,确定需测物理量及计算公式;有的则要求考生根据操作步骤及测定的物理量判断出实验原理……虽然考查方式不尽相同,但目前高考中几乎所有的设计型实验题都有一个共同点,都是在给出实验器材的前提下进行考查的,而且都以不同方式或多或少的对实验原理作一定的提示。
由于考查环节和要求的不同,题型也不尽相同,但较多的是选择、填空、作图题。
知识概要
中学的设计型实验一般要求考生根据题目提出的目的要求和给出的器材,设计出实验方案。这类题对考生的要求较高,要求考生能将课本中分组实验和演示实验的实验原理、实验方法迁移到新的背景中,要求考生深刻理解物理概念和规律,并能灵活运用,要求考生有较强的创新能力。
1.设计原则
(1)正确性:实验原理所依据的原理应当符合物理学的基本原理。
(2)安全性:实验方案的实施要安全可靠,实施过程中不应对仪器及人身造成危害。要注意到各种电表均有量程、电阻均有最大允许电流和最大功率,电源也有最大允许电流。
(3)方便性:实验应当便于操作,便于读数,便于进行数据处理。
(4)精确性:在实验方案、仪器、仪器量程的选择上,应使实验误差尽可能的小。
2.设计思路
实验设计可用下面的框图表示
解决设计型实验问题的关键是确定实验原理,它是进行实验设计的根本依据和起点,它决定应当测量那些物理量、如何安排实验步骤、如何处理数据等。实验原理的确定,要根据问题的要求和给出的条件,回顾分组实验和演示实验,寻找能够迁移应用的实验原理,或者回顾物理原理,寻找有关的物理规律,设法创设相关的物理情景,并根据已掌握的基本仪器核对是否能够测出必须测定的物理量。因此,掌握基本仪器的使用方法、基本的实验方法和基本物理原理是解答设计型实验题的基础。
点拨解疑
【例题1】有一个同学用如下方法测定动摩擦因数:用同种材料做成如图1所使得AB、BD平面,其中AB为一斜面,其高为h、长为L1,BD是一足够长的水平面,两面在B点以小弧形光滑连接。现让质量为m的小物块从A点由静止开始下滑,到达B点后顺利进入水平面,最后滑到C点而停止,并测出BC=L2,小物块与两个平面的动摩擦因数相同,由以上数据可以求出物体与平面间的动摩擦因数μ= 。
【点拨解疑】该题为设计型实验,但由于给出了实验装置、器材和实验情景,因此对实验原理已有了很多提示。回顾力学分组实验,没有相关的可以迁移的原理。因此要用物理原理分析题给的实验情景。设斜面的倾角为,根据动能定理,在全过程中
mgh –μmgcos·L1 -μmgL2=0,
题中未给出斜面倾角,寻找别的关系,有
解得
【例题2】(2001年高考理综卷)实验室中现有器材如实物图2所示,有:电池E,电动势约10V,内阻约1Ω;电流表A1,量程约10A,内阻1约为0.2Ω;电流表A2,量程300mA,内阻2约5Ω;电流表A3,量程250mA,内阻3约5Ω;电阻箱R1,最大阻值999.9Ω,最小阻值改变量为0.1Ω;滑线变阻器R2,最大值100Ω;开关S;导线若干。
要求用图3所示的电路测量图中电流表A的内阻。
(1)在所给的三个电流表中,那几个可以用此电路精确测出其内阻?答: 。
(2)在可测的电流表中任选一个作为测量对象,在实物图上连成测量电路。
(3)你要读出的物理量是 。用这些物理量表示待测内阻的计算公式是 。
【点拨解疑】该题要求根据电路图设想出实验原理。属于有一定提示的设计型实验。与我们学过的伏安法测电阻相比较,这里被测电阻是电流表的内阻,它能显示出通过自身的电流,因此只要知道其上的电压就行,但没有电压表,却有另一只电流表。根据电路图可以看出,如果图中表A是被测表,则其上电压就是电阻箱上电压,利用两只电流表的读数差和电阻箱上显示的阻值可以求出该电压,这样就可以求出电流表的电阻。
(1)电流表A1不能精确测出其内阻,因这时图中的电流表Aˊ应为A2、A3中的一只,这使得电流表A1中的电流不能超过300mA,其指针的偏转极其微小,误差很大。而A2、A3可用此电路精确测出其内阻。
(2)若测3,实物连线如图4所示。
(3)根据前面的分析,要读出的物理量是A、Aˊ两电流表的示数I、Iˊ和电阻箱的阻值R1,待测内阻的计算公式是
评注:该题是分组实验原理迁移型的实验题,是高考实验题中常出现的一种。因此在做设计型实验题时,首先应回顾分组实验的实验原理,看看是否有迁移的可能。该题实际上是用比较法测电阻,比较待测电流表和电阻箱上的电流,从而比较出待测电流表的电阻。
【例题3】(1999年高考上海卷)现有一阻值为10.0Ω的定值电阻、一个开关、若干根导线和一个电压表,该电压表表面上有刻度但无刻度值,要求设计一个能测定某电源内阻的实验方案(已知电压表内阻很大,电压表量程大于电源电动势,电源内阻约为几欧)要求:
(1)在右边方框中画出实验电路图:
(2)简要写出完成接线后的实验步骤;
(3)写出用测得的量计算电源内阻的表达式= 。
【点拨解疑】在分组实验中有测定电源的电动势和内电阻的实验,我们从该实验知道测定电源的电动势和内电阻,至少应使电源连接不同负载两次,然后利用全电路欧姆定律求解。但现在只有一个定值电阻可用作负载;另外,应由电流表和电压表两个表,但现在只有一只电压表,而且是没有刻度值的;不过考虑到电压表电阻很大,而且题目只要求测出电源的内阻,应该有变通的办法。
(1)我们可以把断路也作为一种负载状态,实验电路如图5所示。S断开时,因电压表内阻远大于电源内阻,可认为是断路状态,S闭合时,又是一种负载状态。
(2)实验步骤如下:
①按电路图连接好电路。
②在开关S断开状态下读出电压表指针所在处的分度格数n1.
③闭合开关S,读出电压表指针所在处的分度格数n2.
(3)设电压表每一小分度表示的电压为U0。
S断开时,有 E=n1U0
S闭合时,有
解以上两式,得
【例题4】(2000高考上海卷)如图6所示为一实验小车中利用光电脉冲测量车速和行程的装置示意图。A为光源,B为光电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮。车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示。若实验显示单位时间内脉冲数为n,累计脉冲数为N,则要测出小车的速度和行程还必须测量的物理量和数据是 ,小车速度的表达式为v= ;行程的表达式为= 。
【点拨解疑】 这是一道以实际问题为背景的实验题,显然无法通过迁移课本实验中的方法来解决。但是题目给出了装置图,该图及题文中的相关说明给我们一定提示,光束原来是连续的,是转动的齿轮使光束变为脉冲,因此脉冲情况必定与齿轮(或车轮)的转动有关,也就与速度和行程有关。
根据速度的意义和车正常行驶的情况,应有v=2πR f,其中R为车轮的半径,f为单位时间内车轮转过的圈数;若车轮的齿数为P,则转一圈应有P个脉冲被B接收到,因此有,代入上式,有。
同样,根据行程的意义,应有,其中f为整个行程中车轮转过的圈数;而,所以。可见,还必须测量的物理量和数据是车轮的半径R和齿轮齿数P,速度和行程的表达式如上面两式所示。
针对训练
1.(1999全国)图7为测量电阻的电路,R x为待测电阻,R的阻值己知,Rˊ为保护电阻,阻值未知。电源E的电动势未知,K1、K2均为单刀双掷开关。A为电流表,其内阻不计。
图7
(1)按图(a)所示的电路,在图(b)的实物图上连线。
(2)测量R x的步骤为:将K2向d闭合,K1向__________闭合,记下电流表读数I1,再将K2向c闭合, K1________向闭合,记电流表读数I2。计算R x的公式是R x=__________
2.(2002年高考上海卷)已知一个区域的地下埋有一根与地表面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此可以通过在地面上测量闭合试探小线圈中的感应电动势来确定电缆的确切位置、走向和深度。当线圈平面平行地面测量时,在地面上a、c两处测得试探线圈中的电动势为零,b、d两处的电动势不为零,当线圈平面与地面成45°夹角时,在b、d两处测得试探线圈中的电动势为零。经过测量发现:a、b、c、d恰好位于边长为1m的正方形的四个顶角上,如图8所示,据此可以判断地下电缆在 两点连线的正下方,离地表面的深度为 m。
3.如图9所示,将轻弹簧放在凹形轨道上,一端与轨道的相应端固定,轨道放在水平桌面的边缘上,桌边悬一重锤。利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系。
(1)为完成实验,还需那些器材?答: 。
(2)如果在实验中,得到弹簧压缩量x和小球离开桌面后的水平位移s的一些数据如下表,则得到的实验结论是: 。
实验次数 1 2 3 4
x/cm 2.00 3.00 4.00 5.00
s/cm 29.20 45.05 60.52 75.40
4.(2000年全国高考卷)从下表中选出适当的实验器材,设计一电路来测量电流表A1的内阻r1,要求方法简捷,有尽可能高的测量精度,并能测出多组数据。
(1)画出电路图,标明所用器材的代号。
(2)若选测量数据中的一组来计算r1,则所用的表达式为r1= ,式中各符号的意义是: 。
器材(代号) 规格
电流表(A1) 量程10mA、内阻r1待测(约40Ω)
电流表(A2) 量程500μA、内阻r2=750Ω
电压表(V) 量程10V、内阻r3=10kΩ
电阻(R1) 阻值约为100Ω、做保护电阻用
滑动变阻器(R2) 总阻值约为50Ω
电源(E) 电动势1.5V、内阻很小
开关(S2)、电线若干
参考答案:
1.1.(1)如下图所示 (2)a,b,I 2R / I 1,
2.a 、c 0.71
3.(1)白纸、复写纸、刻度尺 (2)弹性势能与压缩量的平方成正比
4.(1)如下图所示的两个图中任一个均可 (2),I1、I2分别表示通过电流表A1和A2的电流,r1、 r2分别是它们的电阻。
题目要求和给出的条件
演示和分组实验的实验原理
物理规律和原理
基本仪器的使用知识
需测物理量和所需器材
实验步骤
数据处理
实验原理
A
h
B
C
D
图 1
图5
图6
PAGE
1考点6 物理问题的一般分析方法
命题趋势
与原来的考试不同,“综合能力测试”多以现实生活中有关的理论问题和实际问题立意命题,要求更加真实和全面地模拟现实。试题要求学生的能力主要不是对事物的结局或某一侧面进行描述,而是注重对事物整体的结构、功能和作用的认识,以及对事物发展过程的分析理解。解答这类问题,构建物理模型是关键,而且是难点。由于情境的新颖,原来储存在头脑中的模型无法直接应用,完全要凭借自己的思维品质来构建模型,对考生的能力是一个极大的考验。实际上这也是命题者的用心所在,因为考生构建模型的情况,能真实地反映他的理解能力、分析综合能力、获取知识的能力等多种能力。
四年的综合考试中,以实际问题立意的题确实成了热点。2000年的理综卷中有关霍尔效应的问题,要求考生把它构建成一个带电粒子在平行板电容器的电场中平衡的模型,这里情景是新的,模型是旧的。2001年的理综卷中有关于电磁流量计的问题,要构建出两个模型,一个与上述的相同,另一个是直流电路的模型。同年还有太阳能量辐射一道压轴题,其中的一道小题,要构建出太阳向各个方向辐射能量的能量流的模型,这是新情景,新模型。预计在以后的综合能力测试中,必定会有这方面的题,而且构建模型的要求会是各种各样的。
知识概要
互相关联的物理状态和物理过程构成了物理问题,解决物理问题的一般方法可归纳为以下几个环节:
在这几个环节中,根据问题的情景构建出物理模型是最关键的、也是较困难的环节。由问题情景转化出来的所谓“物理模型”,实际上就是由理想的对象参与的理想的过程。如质点的自由落体运动、质点的匀速圆周运动、单摆的简谐运动、点电荷在匀强电场中的运动、串并联电路等等。这种物理模型一般由更原始的物理模型构成。原始的物理模型可分为如下两类:
所谓“建模”就是将带有实际色彩的物理对象或物理过程通过抽象、理想化、简化和类比等方法转化成理想的物理模型。正确构建物理模型应注意以下几点:
(1)养成根据物理概念和物理规律分析问题的思维习惯。结合题目描述的现象、给出的条件,确定问题的性质;同时抓住现象的特征寻找因果关系。这样能为物理模型的构建打下基础。
(2)理想化方法是构建物理模型的重要方法,理想化方法的本质是抓住主要矛盾,近似的处理实际问题。因此在分析问题时要养成比较、取舍的习惯。
(3)要透彻掌握典型物理模型的本质特征、不断积累典型模型,并灵活运用他们。如研究碰撞时,总结出弹性碰撞和完全非弹性碰撞两个模型,但后来发现一些作用时间较长的非碰撞类问题,也有相同的数学形式,这就可以把这些问题也纳入到这两个模型中去,直接应用这两个模型的结论。在粒子散射实验中,粒子与重金属原子核的作用是非接触性的静电力作用,由于动能守恒也可纳入弹性碰撞模型。
点拨解疑
【例题1】(1999年高考全国卷)一跳水运动员从离水面10m高的平台上向上跃起,举双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是______s。(计算时,可以把运动员看作全部质量集中在重心的一个质点,g取10m/s2,结果保留二位数)
【点拨解疑】
运动员的跳水过程是一个很复杂的过程,主要是竖直方向的上下运动,但也有水平方向的运动,更有运动员做的各种动作。构建运动模型,应抓主要因素。现在要讨论的是运动员在空中的运动时间,这个时间从根本上讲与运动员所作的各种动作以及水平运动无关,应由竖直运动决定,因此忽略运动员的动作,把运动员当成一个质点,同时忽略他的水平运动。当然,这两点题目都作了说明,所以一定程度上“建模”的要求已经有所降低,但我们应该理解这样处理的原因。这样,我们把问题提炼成了质点作竖直上抛运动的物理模型。
在定性地把握住物理模型之后,应把这个模型细化,使之更清晰。可画出如图1所示的示意图。由图可知,运动员作竖直上抛运动,上升高度h,即题中的0.45m;从最高点下降到手触到水面,下降的高度为H,由图中H、h、10m三者的关系可知H=10.45m。
由于初速未知,所以应分段处理该运动。运动员跃起上升的时间为:s
从最高点下落至手触水面,所需的时间为:s
所以运动员在空中用于完成动作的时间约为:=1.7s
点评:构建物理模型时,要重视理想化方法的应用,要养成化示意图的习惯。
【例题2】 精密测量电子比荷的现代方法之一是双电容法,其装置如图2所示,在真空管中由阴极K发射电子,其初速度可忽略不计。此电子被阴极K与阳极A间的电场加速后穿过屏障D1上的小孔,然后依次穿过电容器C1、屏障D2上的小孔和第二个电容器C2而射到荧光屏F上。阳极与阴极之间的电势差为U,分别在电容器C1、C2上加有频率为f的完全相同的正弦式交变电压,C1、C2中心间的距离为L,选择频率f使电子束在荧光屏上的亮点不发生偏转。试证明电子的比荷为(其中n为正整数)。
【点拨解疑】 由题意,研究对象必然是电子,其对象模型显然是带电的质点;对其过程模型的构建,可按先后顺序考虑;首先是在电场中的变加速运动,这是我们能处理的模型;接着进入电容器,遇到偏转电场,由于电容器上加的是变化电压,那么其中的电场是不稳定的,随时间变化的,电子沿电场方向的运动不是匀变速运动,这是我们没办法处理的。但考虑到电子加速后,速度很大,通过电容器的时间极短,如果忽略这一段时间内的电压变化,那么可把电子通过电容器的过程抽象为带电质点在稳定匀强电场中的物理模型,电场的强度取决于进入电场的时机。
现在有两个电容器,而且要求电子最后不偏转,那么电子在电容器中的运动是否有更具体的物理模型呢?模型很简单,就是进入每个电容器的时机都正好是电场强度等于零的时候,电子作匀速直线运动通过两个电容器。
电子进入第一个电容器的时刻t1应满足条件U0sin2πft1 =0,即2πft1=n1π。其中n1是自然数。
同样,进入第二个电容器的时刻t2应满足条件U0sin2πft2 =0,即2πft1=n2π。其中n2是自然数。
所以,当t2-t1=,即时,电子束不发生偏转,其中n是正整数。
又因为
所以
点评:该题让我们又一次体验到了理想化方法的重要性。带电粒子在电容器中运动,一般是要考虑偏转,但该题却是不偏转,因此构想出这一模型确是该题的难点。
【例题3】 如图3所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自由下落到一固定支架C上,支架上有一半径为R′(r【点拨解疑】 (1)本题的研究对象显然是M和m,它们都可以看作质点,也可以合在一起看作一个质点。本题可把整个过程分三个阶段处理:
第一阶段,两板看成一个质点自由下落直到与固定支架发生碰撞。故碰撞前的速度为=2m/s
第二阶段,以地面为参考系,M与支架C碰撞后,M以速率返回,向上做竖直上抛运动,m以速率向下做匀加速运动。两个质点同时做不同的运动,这样的物理模型比较复杂。若改变参考系,可以选择其他的运动模型,从而使过程简化。以大圆板为参考系,则M静止,小圆板以速率2向下做匀速直线运动。一个静止,一个匀速运动,这个运动模型简单多了。设经过时间t后两板间绳绷紧,有:L=2t ①
再回到以地面为参考系的情况, ②

解以上三式得m/s m/s
第三阶段,绳绷紧瞬间,由于板间绳作用力远大于它们的重力,所以动量守恒,设向上为正方向,有 ④
得: ⑤
(2)M = m,即k=1,代入上式得,v=-1m/s,两板获得向下的共同速度。还可知道:
当k>3时,两板获得向上的共同速度;
当k<3时,两板获得向下的共同速度;
当k=3时,v=0,两板瞬时速度为零,接着再自由下落。
【例题4】 某商场安装了一台倾角为30°的自动扶梯,该扶梯在电压为380V的电动机带动下以0.4m/s的恒定速率向斜上方移动,电动机的最大输出功率为4.9kW。不载人时测得电动机中的电流为5A,若载人时扶梯的移动速率与不载人时相同,则这台自动扶梯可同时乘载的最多人数为 。(设人的平均质量为60kg,g=10m/s2)
【点拨解疑】 忽略电动机内阻的热损耗,电动机的输入功率和输出功率相等。即空载时维持扶梯运行的电功率为 W
故可用于载送乘客的多余功率为kW
扶梯斜向上作匀速运动,故每位乘客受重力mg和支持力F作用,且F =mg。
电动机通过扶梯支持力对人做功,其功率为P′,
P′=Fvcosa =mgcos(90°-30°)=120W,
故同时乘载的最多人数为
点评:本题取自日常社会生活问题,怎样把这个同学们所熟悉的实际问题转化为物理模型,从而运用有关功能关系来解决它,这是一种实际应用能力。
针对练习
1.(1999年广东高考题)如图5所示,在某装置中有一匀强磁场,磁感应强度为B,方向垂直于Oxy所在的纸面向外.某时刻在x=,y= 0处,一质子沿y轴的负方向进入磁场;同一时刻,在x = -,y=0处,一个α粒子进入磁场,速度方向与磁场垂直.不考虑质子与α粒子的相互作用.设质子的质量为m,电量为e 。
(1)如果质子经过坐标原点O,它的速度为多大
(2)如果α粒子与质子在坐标原点相遇,α粒子的速度应为何值 方向如何
2.如图6所示,在xOy平面内,有相互正交且沿水平方向的匀强电场和匀强磁场,匀强电场的场强E=12N/C,方向沿x轴正方向,匀强磁场的磁感应强度B=2T,方向垂直xOy平面指向纸内.一质量为m=4×10-5kg,电量Q=+2.5×10-5C的带电粒子,沿xOy平面做匀速直线运动,运动到原点时,撤去磁场,经过一段时间后,带电粒子运动到x轴上的P点.求P点到O点的距离和带电粒子通过P点的速度大小各是多少。(g=10m/s2,sin53°=0.8)
3.如图7所示,在空间存在水平方向的匀强磁场和竖直方向的匀强电场,电场强度为E,磁感应强度为B,在场区某点由静止释放一个带电液滴a,它运动到最低点处恰与一个原来处于静止的液滴b相碰,碰后两液滴合为一体,沿水平方向做直线运动,已知液滴a质量是液滴b质量的2倍,液滴a所带的电量是液滴b所带电量的4倍。求两液滴初始位置之间的高度差h(设a、b之间的静电力不计)
4.图8为推行节水灌溉工程中使用的转动式喷水龙头的示意图。“龙头”离地面高h m,将水水平喷出,其喷灌半径为10h m,每分钟可喷水m kg,所用的水从地面以下H m深的井里抽取。设所用水泵(含电动机)的效率为η,不计空气阻力。求:⑴水从龙头中喷出时的速度v0 ⑵水泵每分钟对水做的功W ⑶带动该水泵的电动机消耗的电功率P。
5.如图9所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B。物体A、B和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2 ,求:
(1)此过程中所加外力F的最大值和最小值。
(2)此过程中外力F所做的功。
6.如图10所示,S为一个电子源,它可以在纸面的3600范围内发射速率相同的质量为m、电量为e的电子,MN是一块足够大的挡板,与S的距离OS=L,挡板在靠近电子源一侧有垂直纸面向里的匀强磁场,磁感强度为B,问:
(1)若使电子源发射的电子有可能到达挡板,则发射速率最小为多大?
(2)如果电子源S发射电子的速率为(1)中的2倍,则挡板上被电子击中的区域范围有多大?
7.有一电子束穿过具有匀强电场和匀强磁场的空间区域,该区域的电场强度和磁感强度分别为E和B。
(1)如果电子束的速度为v0,要使电子束穿过上述空间区域不发生偏转,电场和磁场应满足什么条件?
(2)如果撤去磁场,电场区域的长度为l,电场强度的方向和电子束初速方向垂直,电场区域边缘离屏之间的距离为d,要使电子束在屏上偏移距离为y,所需加速电压为多大?
8.如图12甲所示,在空间存在一个变化的电场和一个变化的磁场,电场的方向水平向右(图中由B到C),场强大小随时间变化如图乙所示;磁感强度方向垂直于纸面、大小随时间如图丙所示。从t=1s末开始,在A点每隔2s有一个同种的粒子以沿AB方向(垂直于BC)的初速度v0射击,恰好能击中C点,若AB=BC=l,且粒子在AC间的运动时间小于1s。求:
(1)磁场的方向;
(2)图象中E0和B0的比值
(3)1s末射出的粒子和3s末射出的粒子由A点运动到C点四经历的时间t1和t2之比.
9.如图13所示,在地面附件,坐标系xoy在竖直平面内,空间有沿水平方向垂直于纸面向里的匀强磁场,磁感强度大小为B。在x<0的空间内还有沿x轴负方向的匀强电场,场强大小为E。一个带正电荷的油滴经图中x轴上的M点,始终沿着与水平方向成α=300的斜向下的直线运动,进入x>0区域。要使油滴进入x>0的区域后能在竖直平面内做匀速圆周运动,需在x>0区域内加一个匀强电场。若带电油滴做圆周运动通过x轴的N点,且MO=NO。求:
(1)油滴运动的速度大小。
(2)在x>0空间内所加电场的场强大小和方向。
(3)油滴从x轴上的M点开始到达x轴上的N点所用的时间。
10.(2004年春季高考卷第34题,22分)如图14所示,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直平面内的半圆,半径R=0.30m。质量m=0.20kg的小球A静止在轨道上,另一质量M=0.60kg、速度v0=5.5m/s的小球B与小球A正碰。已知相碰后小球A经过半圆的最高点c落到轨道上距b点为处,重力加速度g=10m/s2,求:
(1)碰撞结束后,小球A和B的速度的大小。
(2)试论证小球B是否能沿着半圆轨道到达c点。
参考答案
1.解析:(1)根据质子进入磁场处的位置和进入磁场时速度的方向,可知其圆周轨道的圆心必在x轴上,又因质子经过原点O,故其轨道半径,设质子的速度为,由牛顿定律得:
(2)质子做圆周运动的周期为
由于α粒子电荷为,质量,故α粒子做圆周运动的周期
质子在做圆周运动的过程中,在…各时刻通过O点,α粒子如与质子在O点相遇,必在同一时刻到达O点,这些时刻分别对应t= … ,如果α粒子在t=T/4到达O点,它运行了1/4周期,如在到达O点,它运行了3/4周期,由此可知α粒子进入磁场处与O点之间的连线必为1/4圆周或3/4圆周所对的弦,如图15(实际上等情形不必再考虑),进而得出α粒子的轨道半径
设α粒子的速度为,则由牛顿定律得:
注意到,得,
但方向可有两个,用α粒子速度方向与x轴正方向夹角表示。
点评: 本题关键是确定α粒子的轨道半径及轨迹,注意到α粒子速度方向的不确定性,这也正是本题容易出错之处。
2.设粒子匀速运动的速度为v0,带电粒子匀速运动时受到重力G=mg,方向竖直向下,电场力F = Eq,方向水平向右,洛伦兹力f=Bv0q,方向斜向左上方和粒子的速度v0垂直,如图16所示。
由平衡条件知重力和电场力的合力跟洛仑兹力等值反向,当撤去磁场时,因重力和电场力的合力F′与v0垂直,则粒子做类平抛运动

可解得v0 = 10m/s,F′= 5ⅹ10-4N,
∴ 加速度 = 12.5m/s2
设P到原点O的距离为x,x轴与合力F′的夹角为θ,则
所以θ= 530
粒子运动到P点沿v0方向运动的距离;沿合力的位移h=xcos53°;粒子的运动时间
可求出x = 15m
粒子运动到P点的速度
【点评】本题情景较复杂,由题意先判断出粒子必受重力,并且电场力和重力的合力一定与v0垂直,做类平抛运动,运用运动的独立性求解。
3.因液滴b静止在场中,则它一定带正电,设b的质量为m,带电量为 q,a的质量为2m,电量为4q,受力平衡则有

开始时a受重力2mg,电场力4qE,但向右下方运动,这说明a只能带负电且电场力做正功.设a运动到最低点的速度为v0,它和b发生完全非弹性碰撞。由题意知,碰后它们的共同速度为v,沿水平方向动量守恒,则有

由电荷守恒定律,碰后它们的电量为-3q ,它们在竖直方向上受力平衡

带电液滴a从初始位置运动到最低点,由动能定理有

联立① ② ③ ④ 得
【点评】 本题对思维要求较高,涉及的知识点较多,必须能够根据a的运动轨迹判断出a带负电,灵活运用动量和能量的关系进行求解。
4.解:(1)平抛所用时间为t= ①
水平初速度为v= ②
(2)1min内喷出水的动能为 Ek=mv2=25mgh ③
水泵提水,1min内水所获得的重力势能为 Ep=mg(H+h) ④
1min内水泵对水所做功为 W=Ek+Ep=mg(H+26h) ⑤
(3)带动水泵的电动机的最小输出功率等于水泵输入功率P=
5.解:(1)A原来静止时:kx1=mg ①
当物体A开始做匀加速运动时,拉力F最小,设为F1,对物体A有:
F1+kx1-mg=ma ②
当物体B刚要离开地面时,拉力F最大,设为F2,对物体A有:
F2-kx2-mg=ma ③
对物体B有:kx2=mg ④
对物体A有:x1+x2= ⑤
由①、④两式解得 a=3.75m/s2 ,分别由②、③得F1=45N,F2=285N
(2)在力F作用的0.4s内,初末状态的弹性势能相等,由功能关系得:
WF=mg(x1+x2)+49.5J
6.解:(1)设电子发射的最小速率为v,电子轨道半径至少为L/2,
eBv=,则v=
(2)发射速率v′=2v时,轨道半径为L,如图10,挡板被电子击中的范围为:
AB=()L
7.解:(1)要使电子不发生偏转则:eE=e v0B ,E=v0B
(2)电子在电场中向上偏转量:s= 且tanθ= 其中
在加速电场中eU=
偏移距离:y=s+dtanθ ,
由以上各式可得:U=
8.解:(1)磁场方向垂直纸面向外。
(2)粒子由A运动到C所经历的时间小于1s,1s末射出的粒子受洛伦兹力作用,做匀速圆周运动,洛伦兹力提供向心力,有:,粒子由A运动到C,转过1/4圆弧,故R=l,所以
3s末射出的粒子受电场力作用做类平抛运动,有y=l=,则
所以=2 v0
(3)做圆周运动的粒子由A运动到C所经历的时间为。
做类平抛运动的粒子由A运动到C所经历的时间为,所以=
9.解:(1)因油滴沿直线运动,重力和电场力又为
恒力,则与运动方向垂直的洛伦兹力的大小运动不能
变化,油滴必然做匀速直线运动。
则有:,
(2)油滴进入x>0的区域后,要做
匀速圆周运动,则:qE1=mg
因为mg=qEcotα,所以E1=E,
电场方向竖直向上。
(3)油滴的运动轨迹如图17所示,∠OPN=600,过P
作PM的垂线交x轴于O1,因∠O1PN=∠O1NP=300,ΔO1PN
为等腰三角形,所以O1P=O1N,O1为油滴做圆周运动的圆心。
设O1P=R,R=,θ=,油滴由M点到P点的时间:,油滴由P点到N点做匀速圆周运动的时间:。因为mg=qEcotα所以。所以油滴由P点到N点的时间
10.(1)以v1表示小球A碰后的速度,v2表示小球B碰后的速度,表示小球A在半圆最高点的速度,t表示小球A从离开半圆最高点到落在轨道上经过的时间,则有




由①②③④求得
代入数值得
(2)假定B球刚能沿着半圆轨道上升到c点,则在c点时,轨道对它的作用力等于零。以vc表示它在c点的速度,vb表示它在b点相应的速度,由牛顿定律和机械能守恒定律,有
解得
代入数值得
由,所以小球B不能达到半圆轨道的最高点。
审视物理情景 构建物理模型 转化为数学问题 还原为物理结论
对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等)
过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等)
物理模型
h
H
10h
图 8
A
B
F
图 9
A
S
v‘
B
O2
O
O1
v‘

300
M
N
L
图 10
磁场
电场


d
l
y
加速电场
图 11
B0
E
E0
B
0 2 4 6 8 t/s
0 2 4 6 8 t/s
A
B
C
E
v0



图 12
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

α
E
M
N
B
O
y
x
图 13
图 15
qE
f
mg
α

O1
x
O
N
y
M
P
R
θ

图 17
PAGE
1考点12 电磁场在科学技术中的应用
山东 贾玉兵
命题趋势
电磁场的问题历来是高考的热点,随着高中新课程计划的实施,高考改革的深化,这方面的问题依然是热门关注的焦点,往往以在科学技术中的应用的形式出现在问题的情景中,这几年在理科综合能力测试中更是如此。2000年理科综合考霍尔效应,占16分;2001年理科综合考卷电磁流量计(6分)、质谱仪(14分),占20分;2002年、2003年也均有此类考题。每年都考,且分值均较高。
将其他信号转化成电信号的问题较多的会在选择题和填空题中出现;而用电磁场的作用力来控制运动的问题在各种题型中都可能出现,一般难度和分值也会大些,甚至作为压轴题。
知识概要
电磁场在科学技术中的应用,主要有两类,一类是利用电磁场的变化将其他信号转化为电信号,进而达到转化信息或自动控制的目的;另一类是利用电磁场对电荷或电流的作用,来控制其运动,使其平衡、加速、偏转或转动,已达到预定的目的。例如:
密立根实验—电场力与重力实验 速度选择器—电场力与洛伦兹力的平衡
直线加速器—电场的加速 质谱仪—磁场偏转
示波管—电场的加速和偏转 回旋加速器—电场加速、磁场偏转
电流表—安培力矩 电视机显像管—电场加速、磁场偏转
电动机—安培力矩 磁流体发电—电场力与洛伦兹力的平衡
霍尔效应—电场力与洛伦兹力作用下的偏转与平衡 磁流体发电机—电场力与洛伦兹力作用下的偏转与平衡
讨论与电磁场有关的实际问题,首先应通过分析将其提炼成纯粹的物理问题,然后用解决物理问题的方法进行分析。这里较多的是用分析力学问题的方法;对于带电粒子在磁场中的运动,还特别应注意运用几何知识寻找关系。
解决实际问题的一般过程:
点拨解疑
【例题1】(2001年高考理综卷)图1是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分子离子从狭缝s1以很小的速度进入电压为U的加速电场区(初速不计),加速后,再通过狭缝s2、s3射入磁感应强度为B的匀强磁场,方向垂直于磁场区的界面PQ。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝s3的细线。若测得细线到狭缝s3的距离为d
(1)导出分子离子的质量m的表达式。
(2)根据分子离子的质量数M可用推测有机化合物的结构简式。若某种含C、H和卤素的化合物的M为48,写出其结构简式。
(3)现有某种含C、H和卤素的化合物,测得两个M值,分别为64和66。试说明原因,并写出它们的结构简式。
在推测有机化合物的结构时,可能用到的含量较多的同位素的质量数如下表:
元 素 H C F Cl Br
含量较多的同位素的质量数 1 12 19 35,37 79,81
【点拨解疑】(1)为测定分子离子的质量,该装置用已知的电场和磁场控制其运动,实际的运动现象应能反映分子离子的质量。这里先是电场的加速作用,后是磁场的偏转作用,分别讨论这两个运动应能得到答案。
以m、q表示离子的质量电量,以v表示离子从狭缝s2射出时的速度,由功能关系可得

射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得

式中R为圆的半径。感光片上的细黑线到s3缝的距离
d=2R ③
解得

(2)CH3CH2F
(3)从M的数值判断该化合物不可能含Br而只可能含Cl,又因为Cl存在两个含量较多的同位素,即35Cl和37Cl,所以测得题设含C、H和卤素的某有机化合物有两个M值,其对应的分子结构简式为CH3CH235Cl M=64;CH3CH237Cl M=66
【例题2】(2000年高考理综卷)如图2所示,厚度为h、宽为d的导体板放在垂直于它的磁感应强度为B的均匀磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A′之间会产生电势差,这种现象称为霍尔效应。实验表明,当磁场不太强时电势差U,电流I和B的关系为U=k
式中的比例系数k称为霍尔系数。
霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。
设电流I是由电子定向流动形成的,电子的平均定向速度为v,电量为e,回答下列问题:
(1)达到稳定状态时,导体板上侧面A的电势 下侧面A的电势(填高于、低于或等于)。
(2)电子所受的洛伦兹力的大小为 。
(3)当导体板上下两侧之间的电势差为U时,电子所受的静电力的大小为 .
(4)由静电力和洛伦兹力平衡的条件,证明霍尔系数k=,其中n代表导体板单位体积中电子的个数。
【点拨解疑】霍尔效应对学生来说是课本里没有出现过的一个新知识,但试题给出了霍尔效应的解释,要求学生在理解的基础上,调动所学知识解决问题,这实际上是对学生学习潜能的测试,具有较好的信度和效度。
(1)首先分析电流通过导体板时的微观物理过程。由于导体板放在垂直于它的磁感应强度为B的匀强磁场中,电流是电子的定向运动形成的,电流方向从左到右,电子运动的方向从右到左。根据左手定则可判断电子受到的洛仑兹力的方向向上,电子向A板聚集,A 板出现多余的正电荷,所以A板电势低于A 板电势,应填“低于”。
(2)电子所受洛仑兹力的大小为
(3)横向电场可认为是匀强电场,电场强度 ,电子所受电场力的大小为
(4)电子受到横向静电力与洛伦兹力的作用,由两力平衡有
e=evB 可得U=h v B
通过导体的电流强度微观表达式为
由题目给出的霍尔效应公式 ,有

点评:①该题是带电粒子在复合场中的运动,但原先只有磁场,电场是在通电后自行形成的,在分析其他问题时,要注意这类情况的出现。②联系宏观量I和微观量的电流表达式 是一个很有用的公式。
【例题3】 正负电子对撞机的最后部分的简化示意图如图3所示(俯视图),位于水平面内的粗实线所示的圆环形真空管道是正、负电子作圆运动的“容器”,经过加速器加速后的正、负电子分别引入该管道时,具有相等的速度v,它们沿管道向相反的方向运动。在管道内控制它们转弯的是一系列圆形电磁铁,即图中的A1、A2、A3、…An,共n个,均匀分布在整个圆环上(图中只示意性地用细实线画了几个,其他的用虚线表示),每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下。磁场区域的直径为d,改变电磁铁内电流的大小,就可改变磁感应强度,从而改变电子偏转角度的大小。经过精确的调整,首先实现了电子沿管道的粗虚线运动,这时电子经每个磁场区域时入射点和出射点都是磁场区域的同一直径的两端,如图4所示。这就为正、负电子的对撞做好了准备。
(1)试确定正、负电子在管道中是沿什么方向旋转的。
(2)已知正、负电子的质量都是m,所带的电荷都是e,重力不计。求电磁铁内匀强磁场的磁感应强度的大小。
【点拨解疑】(1)根据洛伦兹力提供向心力和磁场方向向下,可判断出正电子沿逆时针方向转动,负电子沿顺时针方向转动。
(2)如图5所示,电子经过每个电磁铁,偏转角度是,射入电磁铁时与该处直径的夹角为,电子在磁场内作圆周运动的半径为。由几何关系可知,,解得:。
【例题4】 图6是生产中常用的一种延时继电器的示意图。铁芯上有两个线圈A和B。线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合电路。在拉开开关S的时候,弹簧k并不能立即将衔铁D拉起,从而使触头C(连接工作电路)立即离开,过一段时间后触头C才能离开;延时继电器就是这样得名的。试说明这种继电器的工作原理。
【点拨解疑】当拉开开关S时使线圈A中电流变小并消失时,铁芯中的磁通量发生了变化(减小),从而在线圈B中激起感应电流,根据楞次定律,感应电流的磁场要阻碍原磁场的减小,这样,就使铁芯中磁场减弱得慢些,因此弹簧k不能立即将衔铁拉起
针对训练
1.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。为了简化,假设流量计是如图7所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a、b、c,流量计的两端与输送液体的管道相连接(图中虚线)。图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前后两面。当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测得的电流值。已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为
A. B.
C. D.
2.图8是电容式话筒的示意图,它是利用电容制作的传感器,话筒的振动膜前面镀有薄薄的金属层,膜后距膜几十微米处有一金属板,振动膜上的金属层和这个金属板构成电容器的两极,在两极间加一电压U ,人对着话筒说话时,振动膜前后振动,使电容发生变化,导致话筒所在的电路中的其它量发生变化,使声音信号被话筒转化为电信号,其中导致电容变化的原因可能是电容器两板间的( )
A.距离变化 B.正对面积变化
C.介质变化 D.电压变化
3.如图9所示是一种延时开关,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通。当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放。则
A.由于A线圈的电磁感应作用,才产生延时释放D的作用
B.由于B线圈的电磁感应作用,才产生延时释放D的作用
C.如果断开B线圈的电键S2,无延时作用
D.如果断开B线圈的电键S2,延时将变长
4.电视机显象管的偏转线圈示意图如图10所示,它由绕在磁环上的两个相同的线圈串联而成,线圈中通有方向如图所示的电流。则由里向外射出的电子流将向哪个方向偏转?
A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转
5.如图11所示为静电除尘器的原理示意图,它是由金属管A和悬在管中的金属丝B组成,A接高压电源的正极,B接负极,A、B间有很强的非匀强电场,距B越近处场强越大。燃烧不充分带有很多煤粉的烟气从下面入口C进入。经过静电除尘后从上面的出口D排除,下面关于静电除尘器工作原理的说法中正确的是
A.烟气上升时,煤粉接触负极B而带负电,带负电的煤粉吸附到正极A上,在重力作用下,最后从下边漏斗落下。
B.负极B附近空气分子被电离,电子向正极运动过程中,遇到煤粉使其带负电,带负电的煤粉吸附到正极A上,在重力作用下,最后从下边漏斗落下。
C.烟气上升时,煤粉在负极B附近被静电感应,使靠近正极的一端带负电,它受电场引力较大,被吸附到正极A上,在重力作用下,最后从下边漏斗落下。
D.以上三种说法都不正确。
6.如图12所示,有的计算机键盘的每一个键下面都连一小金属块,与该金属片隔有一定空气隙的是另一块小的固定金属片,这两块金属片组成一个小电容器。该电容器的电容C可用公式计算,式中常量F/m,S表示金属片的正对面积,d表示两金属片间的距离。当键被按下时,此小电容器的电容发生变化,与之相连的电子线路就能检测到是哪个键被按下了,从而给出相应的信号。设每个金属片的正对面积为50mm2 ,键未按下时两金属片的距离为0.6mm。如果电容变化了0.25pF,电子线路恰能检测出必要的信号,则键至少要被按下 mm。
7.(2003年上海卷)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下底面是面积A=0.04m2的金属板,间距L=0.05m,当连接到U=2500V的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图13所示,现把一定量均匀分布的烟尘颗粒密闭在容器内,每立方米有烟尘颗粒1013个,假设这些颗粒都处于静止状态,每个颗粒带电量为q=+1.0×10-17C,质量为m=2.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。求合上电键后:(1)经过多长时间烟尘颗粒可以被全部吸附?(2)除尘过程中电场对烟尘颗粒共做了多少功?(3)经过多长时间容器中烟尘颗粒的总动能达到最大?
8.(2002年全国理综卷)电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区域,如图14所示。磁场方向垂直于圆面。磁场区中心为O,半径为r。当不加磁场时,电子束将通过O点而打到屏幕的中心M点。为了让电子束射到屏幕边缘P点,需要加一匀强磁场,使电子束偏转一已知角度,此时磁场的磁感应强度B应为多少?
9.(2001年全国理综卷)图15(1)是一台发电机定子中的磁场分布图,其中N、S是永久磁铁的两个磁极,它们的表面呈半圆柱面形状。M是圆柱形铁芯,它与磁极的柱面共轴。磁极与铁芯之间的缝隙中形成方向沿圆柱半径、大小近似均匀的磁场,磁感应强度B=0.050T
图15(2)是该发电机转子的示意图(虚线表示定子的铁芯M)。矩形线框abcd可绕过ad、cb 边的中点并与图(1)中的铁芯M共轴的固定转轴oo′旋转,在旋转过程中,线框的ab、cd边始终处在图(1)所示的缝隙内的磁场中。已知ab边长 l1=25.0cm, ad边长 l2=10.0cm 线框共有N=8匝导线,线框的角速度。将发电机的输出端接入图中的装置K后,装置K能使交流电变成直流电,而不改变其电压的大小。直流电的另一个输出端与一可变电阻R相连,可变电阻的另一端P是直流电的正极,直流电的另一个输出端Q是它的负极。
图15(3)是可用于测量阿伏加德罗常数的装置示意图,其中A、B是两块纯铜片,插在CuSO4稀溶液中,铜片与引出导线相连,引出端分别为x 、 y。
现把直流电的正、负极与两铜片的引线端相连,调节R,使CuSO4溶液中产生I=0.21A的电流。假设发电机的内阻可忽略不计,两铜片间的电阻r是恒定的。
(1)求每匝线圈中的感应电动势的大小。
(2)求可变电阻R与A、B间电阻r之和。
10.如图16所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外、大小可调节的均匀磁场,质量为m,电量为+q的粒子在环中做半径为R的圆周运动。A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为+U,B板电势仍保持为零,粒子在两极间电场中加速,每当粒子离开B板时,A板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变。
⑴设t=0时,粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈。求粒子绕行n圈回到A板时获得的总动能En。
⑵为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增。求粒子绕行第n圈时的磁感应强度B。
⑶求粒子绕行n圈所需的总时间tn(设极板间距远小于R)。
⑷在粒子绕行的整个过程中,A板电势是否可始终保持为+U?为什么?
11.在原子反应堆中抽动液态金属或在医疗器械中抽动血液等导电液体时,常使用电磁泵。某种电磁泵的结构如图17所示,把装有液态钠的矩形截面导管(导管是环形的,图中只画出其中一部分)水平放置于匀强磁场中,磁场的磁感应强度为B,方向与导管垂直。让电流I按如图方向横穿过液态钠且电流方向与B垂直。设导管截面高为a,宽为b,导管有长为l的一部分置于磁场中。由于磁场对液态钠的作用力使液态钠获得驱动力而不断沿管子向前推进。整个系统是完全密封的。只有金属钠本身在其中流动,其余的部件都是固定不动的。
(1)在图上标出液态钠受磁场驱动力的方向。
(2)假定在液态钠不流动的条件下,求导管横截面上由磁场驱动力所形成的附加压强p与上述各量的关系式。
(3)设液态钠中每个自由电荷所带电量为q,单位体积内参与导电的自由电荷数为n,求在横穿液态钠的电流I的电流方向上参与导电的自由电荷定向移动的平均速率v0。
12.如图18所示是静电分选器的原理。将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域的中央处开始下落,经分选后的颗粒分别装入A、B桶中,混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带负电,所有颗粒所带的电量与质量之比均为10-5C/kg。若已知两板之间的距离为10cm,两板的竖直高度为50cm。设颗粒进入电场时的初速度为零,颗粒间相互作用不计。如果要求两种颗粒离开两极板间的电场区域时,有最大的偏转量且又恰好不接触到极板,
(1)两极板间所加的电压应多大?
(2)若带电平行板的下端距A、B桶底高度为H=1.0m,求颗粒落至桶底时速度的大小。
13.美国航天飞机“阿特兰蒂斯”号上进行过一项卫星悬绳发电实验。航天飞机在赤道上空圆形轨道上由西向东飞行,速度为7.5km/s。地磁场在航天飞机轨道处的磁感应强度B=0.50×10-4T,从航天飞机上发射出的一颗卫星,携带一根与航天飞机相连的场L=20km的金属悬绳,航天飞机和卫星间的这条悬绳方向沿地球径向并指向地心,悬绳电阻约r=800Ω,由绝缘层包裹。结果在绳上产生的电流强度约I=3A。
(1)估算航天飞机运行轨道的半径。取地球半径为6400km,第一宇宙速度为7.9km/h。
(2)这根金属绳能产生多大的感应电动势?计算时认为金属绳是刚性的,并比较绳的两端,即航天飞机端与卫星端电势哪端高?
(3)试分析绳上的电流是通过什么样的回路形成的?
(4)金属绳输出的电功率多大?
参考答案:
1.A
2.A 解析:电容式话筒中振动膜上的金属层和这个金属板构成电容器相当于一个平行板电容器。当人对着话筒说话时,振动膜前后振动,使两极板间的距离发生变化,从而导致电容器的电容发生变化.所以选(A).
3.BC 4.A 5.B 6.0.15
7.(1)当最靠近上表面的烟尘颗粒被吸附到下板时,烟尘就被全部吸附。烟尘颗粒受到的电场力 F=qU/L ①

∴ ③
(2)=2.5×10-4(J) ④
(3)设烟尘颗粒下落距离为x

当时 EK达最大, ⑥
8.电子在磁场中沿圆弧ab运动,圆心为C,半径为R。以v表示电子进入磁场时的速度,m、e分别表示电子的质量和电量,则 ① ②
又有 ③
由以上各式解得 ④
9.(1)设线框边的速度为,则
一匝线圈中的感应电动势为
代入数据解得 V
(2)N匝线圈中的总感应电动势为
由欧姆定律,得
代入数字解得
10.(1)设经n圈回到A板时被加速n次,由动能定理得,nqU=En-0,得En= nqU
(2)经n次加速后,速度为vn,由动能定理得,nqU=,
在绕行第n圈时,由
解得
(3)绕行第n圈时间
(4)不可能。
11.(1)F的方向沿导管水平向里,且与B、I垂直
(2) (3)
12.(1)U=10 000V(2)v=5.5m/s
13.(1)7.1×103km (2)7500V 航天飞机上电势高
(3)悬绳相当于电源,周围稀薄气体电离产生的离子导电构成回路(4)15.3 km
若不能解决
科学技术问题
提取信息
分析、判断
复合场问题
电场问题
磁场问题
构建物理模型
解决问题、检验
图8
图 15
图 16
PAGE
1基本实验方法
山东 贾玉兵
命题趋势
要求考生“能根据要求灵活运用已学过的自然科学理论、实验方法和仪器,设计简单的实验方案并处理相关的实验问题”。具体体现在:①在给定的条件下,进行实验设计;②给出测量数据,选择数据处理的方法;③给定原理和器材,设计实验方案;④给出实验过程和情景,判断过程和方法的合理性等。如2001年理综考试中的实验题,就是要求考生灵活运用“伏安法”测定电阻。
关于实验方法的考查,预计是两种形式:一是以学过的分组或演示实验为背景,考查对实验方法的领悟情况;二是考查灵活运用学过的实验方法设计新的实验。
由于目前设计型实验是高考实验题的热点,而掌握一些有普遍意义的实验方法又是设计实验的基础,所以在复习已学过的实验时,有意识的、积极的提取、积累一些有价值的方法是很有意义的。
知识概要
围绕实验的设计原理、误差控制、数据处理三个环节,都有它们自己的一些有普遍意义的方法,在中学阶段涉及的主要是以下一些方法:
1.设计实验原理
(1)控制变量法。如:在“验证牛顿第二定律的实验”中,加速度、力和质量的关系控制。在“研究单摆的周期”中,摆长、偏角和摆球质量的关系控制。
(2)近似替代法。用伏安法测电阻时,选择了合适的内外接方法,一般就忽略电表的非理想性。
(3)等效替代法。某些量不易测量,可以用较易测量的量替代,从而简化实验。在“验证碰撞中的动量守恒”的实验中,两球碰撞后的速度不易直接测量,在将整个平抛时间定为时间单位后,速度的测量就转化为对水平位移的测量了。
(4)模拟法。当实验情景不易或根本无法创设时,可以用物理模型或数学模型等效的情景代替,尽管两个情景的本质可能根本不同。“描绘电场中的等势线”的实验就是用电流场模拟静电场。
(5)微小量放大法。微小量不易测量,勉强测量误差也较大,实验时常采用各种方法加以放大。卡文迪许测定万有引力恒量,采用光路放大了金属丝的微小扭转;在观察玻璃瓶受力后的微小形变时,使液体沿细玻璃管上升来放大瓶内液面的上升。
2.控制实验误差
(1)多次测量法。多次测量法减小偶然误差,这是所有实验必须采取的办法,也是做实验应具有的基本思想。
(2)积累法。一些小量直接测量误差较大,可以累积起来测量,以减小误差。“用单摆测定重力加速度”的实验中,为了减小周期的测量误差,不是测量完成一次全振动的时间,而是测量完成30~50次全振动的时间。
3.数据处理
(1)逐差法。这就是用打点计时器打出的纸带计算加速度时用到的方法,这种方法充分利用了测量数据,具有较好的取平均的效果。
(2)图象法。能从图象清楚看出物理量间的关系,在“描绘小灯泡伏安特性曲线”的实验中,采用了这种方法得出电阻与温度有关的结论;可用图象法求物理量的值,在“测定电源电动势和内阻”的实验中用图象法来求E和不仅有取平均的效果,还可以剔除个别有错误的测量数据。
围绕某一领域实验的共同需要,形成一些方法。在中学阶段主要有:
1.记录运动
(1)用频闪照片记录运动。例如用小球自由下落的频闪照片研究自由落体运动的规律;用平抛小球的频闪照片研究平抛运动的规律;用弹簧振子的频闪照片研究简谐运动的规律。
(2)用打点计时器记录运动轨迹。例如研究匀变速直线运动、验证机械能守恒等。
2.提供电压
(1)限流法。如图1,选择合适的滑动变阻器串接在电路中,用它来改变电流,以控制负载电压。
图1 图2
(2)分压法。如图2,当滑动变阻器的电阻小于负载电阻时,可用此法调控电压。
点拨解疑
【例题1】 如图3,光滑水平轨道与光滑圆弧轨道相切,轻弹簧的一端固定在轨道的左端,OP是可绕O点转动的轻杆,且摆到某处就能停在该处;另有一小钢球。现在利用这些器材测定弹簧被压缩时的弹性势能。
图3
(1)还需要的器材是 、 。
(2)以上测量实际上是把对弹性势能的测量转化为对 能的测量,进而转化为对 和 的直接测量。
(3)为了研究弹簧的弹性势能与劲度系数和形变量的关系,除以上器材外,还准备了两个轻弹簧,所有弹簧的劲度系数均不相同。试设计记录数据的表格。
【点拨解疑】 因不知道弹性势能计算公式,应采用等效替代的方法,把要测量的弹性势能转化为便于测量的量。在这个装置中,若用小钢球压缩弹簧至需要的量,然后由静止释放小球,弹簧的弹性势能会转化为小球的动能,进而在小球沿圆弧轨道上升的过程中转化为小球的重力势能。可用对重力势能的测量来代替对弹性势能的测量,因此需用天平测量小球的质量,用刻度尺测量小球上升的高度。
要寻找弹性势能与弹簧的劲度系数和形变量两个物理量的关系,应采用控制变量法。先保持弹簧的劲度系数不变,研究弹性势能与形变量的关系;再保持形变量不变,研究弹性势能与劲度系数的关系。因此记录数据的表格可设计成如下两表:
小球的质量m= Kg,弹簧A
压缩量x(m)
上升高度h(m)
E=mgh(J)
压缩量x= cm,小球的质量m= Kg
弹簧 A B C
劲度系数k(N/m)
上升高度h(m)
E=mgh(J)
【答案】(1)天平、刻度尺(2)重力势、质量、上升高度(3)见上。
【例题2】 (2001年上海卷)利用打点计时器研究一个约1. 4高的商店卷帘窗的运动。将纸带粘在卷帘底部,纸带通过打点计时器随帘在竖直面内向上运动。打印后的纸带如图4所示,数据如表格所示。纸带中AB、BC、CD……每两点之间的时间间隔为0.10s,根据各间距的长度,可计算出卷帘窗在各间距内的平均速度。可以将近似地作为该间距中间时刻的瞬时速度v。
(1)请根据所提供的纸带和数据,绘出卷帘窗运动的v - t图线。
(2)AD段的加速度为 m/s2,AK段的平均速度为 m/s。
图4
【点拨解疑】 根据题目要求。把各段时间的平均速度当做这段时间中间时刻的瞬时速度,可算出一系列时刻的速度,见下表。根据表中数据在v-t图上描点画出图象,如图5所示。由图象可以看出,卷帘窗开始做匀加速直线运动,中间有一段作匀速运动,然后作加速度变化的运动。AD段的加速度可由v-t图对应段的斜率确定,为5m/s2。AK段的平均速度可根据表中数据由公式算出,为1.39m/s。
时刻(s) 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
速度(m/s) 0.50 1.0 1.5 2.0 2.0 2.0 2.0 1.7 0.80 0.40
点评:要研究物体的运动,利用打点计时器把运动记录下来是一种可供选择的方法。用图像处理数据可以把物体各阶段的运动性质清楚地反映出来。
【例题3】 如图6所示是测定电流表内阻的电路图。电流表的内阻约100Ω左右,满偏电流为500 A,用电池做电源。
(1)现备有以下可变电阻:
A.电阻箱,阻值范围为0~100Ω
B.电阻箱,阻值范围为0~999.9Ω
C.滑动变阻器,阻值范围为0~200Ω
D.滑动变阻器,阻值范围为0~20 KΩ
在上述可变电阻中,电路图中的R应选用 ,R′应选用 。
(2)某同学进行的实验步骤如下:
①先将R的阻值调到最大,合上S1,调节R的阻值,使电流表的指针转到满刻度。
②合上S2,调节R′和R的阻值,使电流表的指针转到满刻度的一半。
③记下R′的阻值
指出上述实验步骤中有什么错误。答:
【点拨解疑】 由题中给出的电路图可知,该题要求用半偏法测电流表的内阻。半偏法的原理是:先断开S2,闭合S1,让电流通过电流表并使其满偏,然后接上电阻箱,并调节它使电流表半偏,由于总电流几乎不变,因此电阻箱中应有另一半电流,电流表和R′上各有一半电流意味着它们电阻相等,此时读出电阻箱的电阻,即为电流表的内阻。
由以上原理可知,选电阻箱时,只要它能调出与电流表内阻相当的电阻即可;另外,当电阻箱接入时,维持总电流几乎不变是至关重要的,因为这时才可以说两条支路上各有一半电流。为此:①滑动变阻器的实际组织应远大与电流表的内阻,成为整个电路电阻的主要部分,使R′的接入仅使电阻发生微小变化。②在调节电阻箱时,电阻R不应变化。
【答案】(1)滑动变阻器应选电阻大的D;电阻箱应选B,(2)第②步中,合上S2后不应再调节R。
点评:半偏法实际上也是比较法,比较两支路的电流,只是比较特殊,两支路电流是相等的关系,因此电阻也是相等的关系。这样特殊的比较简化了运算。
【例题4】 有两只电压表V1和V2。量程已知,内阻未知。另有一干电池,它的内阻不能忽略,但大小未知。试用这两只电压表、开关、导线测定这只干电池的电动势(已知电动势不超过电压表的量程)。
(1)画出测量时所用的电路图。
(2)以测量的量为已知量,导出计算电动势的表达式。
【点拨解疑】 测电源的电动势和内电阻,一般采用多次测量(至少两次),列方程组的数学方法。测两次需要两个负载电阻,现在一个都没有。但两个实际的电压表内阻不是无穷大,因此它们可以作为负载。单独V1、单独V2、V1和V2。考虑到没有电流表,两次负载应有些联系,选1、3两种或2、3两种。
【答案】(1)测量时所用的电路图如图7中甲、乙所示。
(甲) (乙)
图7
(2)对第一次测量,测得U1,有 其中R1为表V1的内阻
对第二次测量,测得U1′和U2′,有
将作为一个未知数,由以上两方程可解得
针对训练
1.图8所示为测量电阻的电路。R x为待测电阻,R的阻值已知,R′为保护电阻,电源的电动势E未知,S1、S2均为单刀双掷开关,V为电压表,其内阻非常大。
图8 图9
(1)按图8所示的电路,在图9所示的实物电路上连线。
(2)测量R x 的步骤为:将S2向c闭合, S1向 闭合,记下电压表的读数U1;再将S2向d闭合,S1向 闭合,记下电压表的读数U2。计算R x的公式是R x=
2.给出下列器材:待测电压表(3V、3kΩ)、电阻箱(0~9999Ω)、滑动变阻器(0~20Ω)、电池(6V内阻不计)开关、导线若干。要求用半偏法测电压表的内电阻。
(1)试画出实验电路图
(2)写出实验步骤。
3.将几根相同的弦一端固定,在另一端系着质量不同的小物体,让其自然下垂,使弦绷紧,做成如图10所示的装置。拨动弦的中心,使其振动,进行实验,研究振动频率f随悬挂物体的质量m及弦的长度L变化的规律。方法是:只让m或只让L变化,测定振动频率f,得到如图11所示的两个图象。根据上面的两个实验,你认为表示频率的式子应如何写?从下面四个选项中,选出一个正确的答案。
图10 图11
A. B.
C. D.
参考答案
1.(1)见图12所示。(2)b a
图12
2.(1)见图13所示。
图13
(2)主要步骤为:
①按电路图连接电路
②把变阻器R的滑动触头滑至最右端,将电阻箱电阻调到零,闭合电键S,调节R,使电压表指针满偏;
③调节R0,使电压表指针半偏,记下此时电阻箱的阻值R′,则RV及等于R′
3.A
图5
图6
PAGE
1基本仪器的使用
山东 贾玉兵
命题趋势
从近几年对高考试题的统计和分析来看,物理实验的考查重点有些新的变化,但无论是实验设计,还是原理分析,往往都涉及基本仪器的使用。因此,仪器的使用是实验考核的基础内容。
一些基本仪器的原理、使用方法、注意事项和读数等,在近几年的高考试题中不断出现。长度和电路量的测量及相关仪器的使用是出题最频繁的知识点。如游标卡尺、螺旋测微器的读数在近十年的全国高考中就考了6次,往往是游标卡尺、螺旋测微器交替考查。电压表、电流表、欧姆表使用方法的考查几率则更高。另外,打点计时器、秒表的使用有时也出现。
高考中基本仪器的考察,用的比较多的题型是填空题和作图题,时而也有选择题。高考中常有连接电路实物图的题,这类题设置的目的就是考查电流表、电压表、滑动变阻器等器材的操作和使用方法。
知识概要
基本仪器是指通用性强,在各种实验中经常用到的仪器。中学阶段,要求掌握的基本仪器如下:
测量长度的仪器------刻度尺、游标卡尺、螺旋测微器
测量质量的仪器------天平
测量时间的仪器------打点计时器、秒表
测量力的仪器-----弹簧秤
测量温度的仪器------温度计
测量电学量仪器------电流表、电压表、多用电表
电学控制仪器------滑动变阻器、变阻箱、开关
对以上这些仪器,要理解结构原理、规格和主要参数,知道使用方法、注意事项、读数和精度等。
一、理解仪器的工作原理。这能使我们灵活的使用仪器和分析问题。例如,理解10分度的游标卡尺,也就能理解和使用20分度和50分度的游标卡尺。
二、熟悉仪器使用时的注意事项。这往往是高考实验题的考点。注意事项一般是这样几方面:①可能危及仪器安全的。如:螺旋测微器,在小砧快接触工件时,应改用微调旋钮,以免损坏精密螺杆。②可能增大误差的。如使用螺旋测微器,读数时要注意半毫米刻度;测量仪器使用前,要调整零位(如弹簧秤、各种电表)。③使用时容易忽略的。最容易忽略的是仪器使用前的调整和使用后的复位。如:使用欧姆表,要机械调零和电阻档调零,换档后要重新进行电阻档调零,使用完毕要复位。
三、正确选择量程。大的量用小量程,会损毁仪表;小的量用大量程,会增大误差。选择量程的原则是:在测量值不超过量程的前提下,选用尽量小的量程;在完全不清楚测量值的情况下,试用最大量程,再视情况逐渐减小量程。如电流表和电压表一般要求指针能偏转到刻度盘的以上;欧姆表指针应在范围内, 为刻度盘中心阻值。
四、掌握测量仪器的读数方法。主要是估读问题,大部分刻度仪器读数时都需要估读。如刻度尺和温度计,要估读到最小刻度的;螺旋测微器要估读到可动刻度的。
点拨解疑
【例题1】 用游标卡尺测一根金属管的内径和外径时,卡尺上的游标位置分别如图1(a)、(b)所示。这根金属管内径读数是 cm,外径读数是 cm,管壁的厚度是 cm。
图1
【点拨解疑】 游标卡尺的读数规则是:整毫米数由主尺读出,游标尺的第几刻度线与主尺上的某一刻度线重合,毫米以下的读数就是n分之几,n是游标卡尺上的分度数,该题中,游标卡尺是10分度的,那就是10分之几。
图(a)中,从主尺看,整毫米数是23,游标尺上第7条刻度线与主尺上的一条刻度线重合,所以毫米以下的读数就是0.7mm,得到内径的读数为23.7mm=2.37cm。
图(b)中主尺上整毫米数是30,游标尺上第3条刻度线与主尺上的一条刻度线重合,所以外径的读数为30.3mm=3.03cm。管壁的厚度为两者之差的一半0.33cm。
【例题2】 一学生用多用电表测电阻。他在实验中有违反使用规则之处。他的主要实验步骤如下:
1.选择开关扳到“×1k欧姆档上;
2.把表笔插入测试笔插孔中,先把两根表笔相接触,旋转调零旋钮,使指针指在电阻刻度的零位上;
3.把两跟表笔分别与某一待测电阻的两端相接,发现这时指针几乎满偏;
4.换用“×100”的欧姆挡,发现这时指针的偏转适中,随即记下欧姆数值;
5.把表笔从测试笔插孔中拔出后,就把多用表放回桌上原处,实验完毕。
这个学生在测量时已注意到:待测电阻与其他元件和电源断开,不用手碰表笔的金属杆。这个学生在实验中违反了那一或那一些重要的使用规则?
答:
【点拨解疑】 该题考查仪器使用时的注意事项。使用欧姆表要注意的地方比较多。使用前要经过调整(机械调零,选择量程后要电阻调零),使用后要复位(拔出表笔,选择开关应置于“OFF”档或交流高压档),使用过程中换档后要重新调零……。这些往往都是考查的重点。
该题中不符合操作规则的是:换到合适的量程后,要重新调整调零旋钮;使用后不能把选择开关置于欧姆档。
【例题3】 有一标有“6V,1.5W”的小灯泡,现用图2(a)所示电路测量其在不同电压下的实际功率,提供的器材除导线和开关外,还有:
A.直流电源 6V(内阻不计)
B.直流电流表0-3A(内阻0.1Ω以下)
C.直流电流表0-300mA(内阻约为5Ω)
D.直流电压表0-15V(内阻约为15kΩ)
E.滑动变阻器10Ω 2A
F.滑动变阻器1kΩ 0.5A
(1)实验中电流表应选用 (用序号表示),滑动变阻器应选用 。
(2)试按图(a)电路将图(b)所示器材连成电路
图2
【点拨解疑】 (1)选电流表实际上是选量程。先估算一下通过电流表的电流,由小灯泡的规格可知通过的电流最大不能超过0.25A。因此选C。在该题中滑动变阻器接成分压器,此时要求滑动变阻器的电阻比用电器的电阻小,至少应差不多;小灯泡的电阻在正常工作时约为24Ω,所以滑动变阻器不能选F,应选E,但不应忘记还要核对一下电流是否会超过其允许值,E的最大允许电流是2A,实验中的最大电流只有0.25A,选E也是安全的。
(2)连接实物图实际上是考查仪器的使用方法。这里要注意电表正负接线柱的接法、滑动变阻器做分压器时连接特点。具体连线时,可以先连主回路,把电源、开关、滑动变阻器连成一个回路;然后再连上支路,从滑动变阻器的滑动头和一个固定端接出,连上电流表、小灯泡,最后将电压表并联在小灯泡上。连接情况如图3所示。
图3
滑动变阻器常用来调控用电器上的电压,一般有限流和分压两种形式,为了有较大的调节范围,且操作方便,当滑动变阻器的电阻R比用电器电阻R0大得多时,应选用限流的方式;R比R0小或差不多时,应选用分压方式。
基础知识练习
1.(1997年全国高考卷)一游标卡尺的主尺的最小分度为1mm,游标上有10个小等分间隔,现用此卡尺来测量工件的直径,如图4所示。该工件的直径为 mm。
图4
2.用螺旋测微器测量一矩形小零件的长和宽时,螺旋测微器上的示数如图5所示。图(a)的读数是 mm,图(b)的读数是 mm。
图5
3.(1995年高考全国卷)某人用多用电表按正确步骤测量一电阻阻值。指针指示位置如图6所示。则这电阻阻值是 。如果要用这多用表测量一个约200Ω的电阻,为了测量比较准确,选择开关应选欧姆档的 。
4.(1992年高考全国卷)如图7所示,a、b、c、d是滑动变阻器的4个接线柱,现把此滑动变阻器接入电路中,并要求滑动变阻器滑片P向接线柱c滑动时,电路中的电流最小,则接入电路中的接线柱可能是
A.a和b B.a和c C.b和c D.b和d
5.若先后用两只都准确的电流表测通过某一电阻的电流,甲表的读数为0.52A,乙表读数为0.48A,排除读数误差, 表测得的读数误差较小,且可以判断出 表的内阻较小。若先后用两只都准确的电压表测同一电阻上的电压,甲表的读数为2.75V,乙表的读数为2.30V,则排除读数误差, 表测得的结果误差较小, 表的内阻较小。
参考答案:
1.2.23
2.8.474, 6.574
3.1.20×103Ω ×10
4.CD
5.甲 甲 甲 乙
基本仪器
图6
图7
PAGE
1难点11 静电平衡状态下导体特点与应用
以静电平衡状态下的导体为命题点的考题时现于高考卷面,充分表明当今高考已无热点,然而该类命题以其背景的抽象性、知识的综合性,始终是考生应考的难点。
●难点磁场
1.(★★★)一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电细杆MN,如图11-1所示,金属球上感应电荷产生的电场在球内直径上a,b,c三点的场强大小分别为Ea,Eb,Ec,三者相比
A.Ea最大 B.Eb最大
C.Ec最大 D.Ea=Eb=Ec
2.(★★★★)在正电荷附近有两个绝缘导体M、N,由于静电感应发生了如图11-2的电荷分布,当用导线将a b两点联接起来时,导线中是否有电流流过,如果有电流,电流的方向是怎样的?
3.(★★★)如图11-3所示,面积足够大的、板间距离为d的两平行金属板竖直放置,与直流电压为U的电源连接,板间放一半径为R(2R<d)的绝缘金属球壳,C、D是球壳水平直径上的两点,则以下说法正确的是
A.由于静电感应,球壳上C、D两点电势差为
B.由于静电感应,球壳中心O点场强为零
C.用手摸一下球壳,再拿去平行金属板,球壳带正电
D.用手摸一下球壳,再拿去平行金属板,球壳带负电
●案例探究
[例1](★★★★)如图11-4所示,水平放置的金属板正上方有一固定的正点电荷Q,一表面绝缘的带电的小球(可视为质点且不影响Q的电场),从左端以初速度v0滑上金属板,沿光滑的上表面向右运动到右端,在该运动过程中
A.小球做匀速直线运动 B.小球做先减速,后加速运动
C.小球的电势能保持不变 D.电场力对小球所做的功为零
命题意图:考查对静电平衡导体特点的理解与应用能力.B级要求.
错解分析:由于受思维定势的影响,误选B,没有充分考虑到导体的放入.由于静电感应而导致空间电场的变化因素,思维片面化.
解题方法与技巧:水平放置的金属板处于点电荷Q的电场中而达到静电平衡状态,是一个等势体,其表面处电场线处处与表面垂直,故带电小球(表面绝缘,电量不变)在导体表面滑动时,电场力不做功,故小球做匀速直线运动,所以A、C、D选项正确.
[例2](★★★★)如图11-5所示,绝缘导体A带正电,导体不带电,由于静电感应,使导体B的M端带上负电,而N端则带等量的正电荷.
(1)用导线连接M、N,导线中有无电流流过?
(2)若将M、N分别用导线与大地相连,导线中有无电流流过?方向如何?
命题意图:考查对静电平衡特点及电流产生条件的理解能力.B级要求.
错解分析:对电流形成的条件理解不深刻,误认为将M、N两点相连会进行电中和现象,有电流通过.
解题方法与技巧:A为带正电的场源电荷,由正电荷即形成的电场的电势分布可知:UA>UB>U地,其中,B是电场中处于静电平衡的导体.UM=UN=UB.当用导线在不同位置间连接时,电流定由高电势流向低电势,而在电势相等的两点间连接时,则导线中无电流通过.所以:
(1)因为UM=UN,故导线中无电流.
(2)因为UM=UN=UB>U地,所以无论用导线将M还是N与大地相连,电流均由导体B流向大地.
●锦囊妙计
高考对静电平衡内容的命题考查主要集中于对导体达到静电平衡的动态过程的分析以及对静电平衡导体特点的把握与运用.命题综合性强,背景抽象,常以填空与选择题型呈现于卷面,能考查学生的抽象思维能力及严密的逻辑推理能力,有较高的区分度.预计在"3+X"的理综测试中仍有可能再现.
一、静电平衡导体的特点
孤立的带电导体和处于感应电场中的感应导体,当达到静电平衡时,具有以下特点:
1.导体内部的场强处处为零,E内=0.没有电场线.
2.整个导体是等势体,导体表面是等势面,但导体表面的场强并不一定相同.
3. 导体外部电场线与导体表面垂直,表面场强不一定为零.
4.对孤立导体,净电荷分布在外表面上,并且电荷的分布与表面的曲率有关,曲率大的地方电荷分布密.
二、用导线连接不同静电平衡导体或同一导体不同部位时,判断电流方向的方法
1.判断有无电流要看导线两连接点有无电势差,判断电流流向要看两点电势高低(电流总是由高电势点流向低电势点).
2.一般思路:首先要明确哪个导体是场源电荷,哪个导体是电场中的导体.其次,判明两不同导体或同一导体不同部位的两点间电势的高低,最后确定有无电流产生及电流的流向.
●歼灭难点训练
1.(★★★)如图11-6中,实心金属球A半径为R,带电量为Q,点电荷B带电量为q.B与A球间的距离为r. 当B不存在而只有A存在且达到静电平衡状态时,电荷Q在球心O处的电场强度等于________.当点电荷B也同时存在并达到静电平衡时,球心O处的电场强度等于________,金属球上的电荷在球心O处产生的场强的大小等于________.
2.(★★★★)如图11-7所示,A、B为两个大小不等的导体球壳(RA>RB),分别有正电荷q与2q.
(1)球壳B与A接触一下后,将B放进A球壳内与内表面接触,则A的带电情况是________,B的带电情况是________.
(2)球壳B与A接触一下后,将B球壳放进A球壳内,使A瞬间接地,再将B与A的内表面接触,则A的带电情况是________;B球带电情况是________.
3.(★★★★)如图11-8所示,将一不带电的空腔导体A的内壁与一外壳接地的静电计相连,又将另一个带正电的导体B向A移动,最后B与A接触,此过程中静电计指针将会
A.B与A未接触时指针不张开,接触时变大
B.指针一直不张开
C.B与A未接触时指针不张开,接触时变小
D.B与A靠近时指针张开,接触时张角最大
4.(★★★★)如图11-9所示,两个相同的空心金属球M和N,M带-Q电荷,N不带电,旁边各放一个不带电的金属球P和R(M、N相距很远,互不影响),当将带正电Q的小球分别放入M和N的空腔时
A.P、R上均出现感应电荷
B.P、R上均没有感应电荷
C.P上有感应电荷,而R上没有感应电荷
D.P上没有感应电荷,而R上有感应电荷
5.(★★★★★)如图11-10所示,一个带正电的绝缘金属球壳A,顶部开一小孔,有两只带正电的金属球B、C,用金属导线连接,让B球置于球壳A内的空腔中,与内表面接触后又提起,C球放置在A球壳外,待静电平衡后正确的判断是
A.B、C两球都不带电
B.B球不带电,C球带电
C.让C球接地后,B球不带电
D.让C球接地后,A球壳空腔内的场强为零
6.(★★★★★)如图11-11所示,一导体球A带有正电荷,当只有它存在时,它在空间P点产生的电场强度的大小为EA,在A球球心与P点连线上有一带负电的点电荷B,当只有它存在时,它在空间P点产生的电场强度的大小为EB,当A、B同时存在时,根据场强叠加原理,P点的场强大小应为
A.EB B.EA+EB C.|EA-EB| D.以上说法都不对
参考答案:
[难点磁场]
1.C 2.有电流通过,方向是a→d 3.BD
[歼灭难点训练]
1.0;0;k
2.(1)外表面带电3q;不带电(2)不带电;不带电
3.D 4.D 5.B 6.D
图11-1
图11—2
图11-3
图11-4
图11-5
图11-7
图11-6
图11-8
图11-9
图11-10
图11-11
同课章节目录