高中物理科普(42份)[下学期]

文档属性

名称 高中物理科普(42份)[下学期]
格式 rar
文件大小 656.9KB
资源类型 教案
版本资源 通用版
科目 物理
更新时间 2007-03-26 08:59:00

文档简介

[科目] 物理
[关键词] 物理科普/粒子加速器
[文件] wlkp19.doc
[标题] 最大的粒子加速器
[内容]
最大的粒子加速器
加速器是一种能人工把带电粒子的束流加速到高能量的装置。它是研究原子核和基本粒子的重要设备,近年来,在工农业和医疗卫生事业中的应用也日益广泛。按粒子运动的轨道形状,可分为直线型和圆型加速器两大类,前者有高压倍加器、静电加速器和直线加速器,后者有电子感应加速器、回旋回速器、质子同步加速器等。
  目前世界上最大的粒子加速器是美国费密国立加速器实验室的一台质子同步加速器,它可以把质子加速到500GeV(1GeV代表10亿电子状),束流强度已达2×10 13质子/脉冲。实际上这台大加速器是由4台加速器组成:750keV的预注入器,200MeV的直线加速器,8GeV的快速增强器和500GeV的主加速器。预注入器也叫高压倍加器,是用来产生质子束流的低能强流加速器。质子从这里开始加速,把从离子源中引出的负氢离子加速到750keV;直线加速器,它由9节组成,总长约150米,安装在地下隧道之中,它的作用是把预注入器中产生的束流加速到200MeV;束流从直线加速器出来,经中能输运段,就来到快速增强器。这也是一个同步加速器,每秒钟可加速15次。负荷子注入时穿过一层薄膜,就剥去外层电子而成为质子。经多次加速后能量可达8GeV。然后引出束流向主加速器注入。主加速器直径2千米,是截面为马蹄形的混凝土隧道,铺设在深约7米的地下。它的作用是把质子加速到高能量,完成最后的加速。正常运动能量为400GeV,最高能量达500GeV。计划在主加速器上再造一个超导主加速器环,预计能量可提高到1000GeV。[科目] 物理
[关键词] 物理科普/裂变
[文件] wlkp65.doc
[标题] 裂变
[内容]
裂 变
重核分裂为两个中等质量核的过程,同时还可能放出中子(也有分裂成更多裂块的情形,但几率很小)。裂变有自发和感生两种,前者裂变的半衰期很长。如铀-238的半衰期为1016年。后者指原子核在受到其他粒子轰击时立即发生的裂变,如铀-235受到热中子(非常慢的中子)轰击时就能分裂。铀核裂变时的产物多种多样,有时裂变成氙和锶,有时裂变为钡和氪,有时裂变成锑和铌等等;同时还放出2~3个中子。原子核裂变时释放出巨大能量(包括裂块和中子的动能及γ辐射的能量等)。在原子核反应堆中已经能控制和利用这种能量。例如,92U235裂变时,能放出巨大的能量,根据计算和实验测得:每一个核分裂时约放出200MeV(兆电子伏特)的能量,主要是裂变碎片的动能,辐射能约占总能量的10%。能量分配为:(1)裂变碎片的动能168MeV;(2)中子的动能5MeV;(3)裂变碎片衰变时放出的能量13MeV;(4)裂变时放出的γ射线的能量5MeV;(5)中微子的能量11Mev。这些能量最后绝大部分转变为热能。以一个铀核裂变产生200MeV的能量来计算。1千克铀全部裂变时放出的能量相当于2500吨优质煤完全燃烧时放出的化学能。此两种燃料的质量比为2.5×106,由此可见核内所蕴藏的能量比化学能巨大得多。[科目] 物理
[关键词] 物理科普/永磁体
[文件] wlkp79.doc
[标题] 永磁体
[内容]
永磁体
永磁体有天然磁体和人造磁体两种。天然磁体是直接从自然界得到的磁性矿石。人造磁体通常是用钢或某些合金,通过磁化、充磁制成的。永磁体是能够长期保持磁性的磁体。永磁体可以制成各种形状,常见的有条形磁铁、针形磁铁和马蹄形磁铁。永磁铁用处很多,如在各种电表,扬声器、耳机、录音机、永磁发电机等设备中都需要永磁体。[科目] 物理
[关键词] 物理科普/核子
[文件] wlkp52.doc
[标题] 核子
[内容]
核 子
组成原子核的基本粒子。质子和中子的统称。[科目] 物理
[关键词] 物理科普/战斗轰炸机
[文件] wlkp14.doc
[标题] 中国“飞豹”战斗轰炸机
[内容]
( http: / / / zhongxuewuli / _vti_bin / shtml.exe / kjsh / bq / bq4.htm / map )中国“飞豹”战斗轰炸机
战斗轰炸机是集高空歼击、地面攻击支援为一体的多用途军用飞机,其具有高空高速及低空稳定性好和转弯半径小等特点。另外机翼及机腹有多种武器外挂点,适合挂载空战格斗导弹、对舰攻击导弹及普通对地航弹。
 同学们知道飞机为什么会飞吗?你们可以看看中学物理的有关阅读材料。飞机的机翼上下弧度并不是对称的,上翼面的弧度要大于下翼面,这样当空气流过时就产生了压强差,当压强差体现在翼面上的总压力差大于飞机重量时,飞机就可以飞上天空了。那么怎样使空气高速流过机翼呢?这就需要飞机有一个较大的相对于空气的速度,于是人就发明了螺旋桨和后来的喷气发动机,它们都能使飞机产生向前的运动,于是空气与飞机就有了相对运动,相对速度产生了。因此,过去航空母舰上的飞机为了在较短的跑道上起飞,通常是调整航空母舰的航向,使飞机迎风起飞,这样可以获得较大的机翼空气流速,使起飞距离缩短。当然,现代的航空母舰上加装了起飞“弹射器”,其作用也是为了获得较大的机翼空气流速。
 喷气发动机的原理又是中学物理中讲到过的“动量定理”的运用。想一想,看看能否举一反三?[科目] 物理
[关键词] 物理科普/聚变
[文件] wlkp33.doc
[标题] 聚变
[内容]
聚 变
由于轻核中的核子的平均结合能更小,当轻核相遇聚合成
因为所有的核都带有正电,相互间存在着库仑排斥力,因此在一般条件下不可能发生核的聚变。自然界中只有在太阳等恒星内部,因温度极高,轻核才有足够的动能克服库仑斥力,而能自发地进行持续的聚变。人工聚变目前只能在氢弹爆炸或由加速器产生的高能粒子碰撞中实现,然而大规模的聚变控制,目前尚未能办到,正在通过控制热核反应进行探索研究。可聚变的元素有氢、重氢、锂等氢原子核。聚变反应因为需要在高达百万度或千万度以上的温度才能进行,故又称“热核反应”。在摄氏百万度以上的高温,所有原子均完全游离,原子中所有电子全部逸出,仅余下原子核。在高温下这些原子核因热运动而获得高速,在它们相互碰撞时因直接接触而能产生聚变反应,同时放出很大能量。
较重的原子核并放出巨大能量的过程称为“聚变”。例如氘核(1D)同
氚核(T)相遇时,就可能发生聚变而生成氦核(He),并放出一个
中子(bn);生成物的总动能要比反应物的总动能大1758百万电子伏
特;其反应式可写成
d+,t- He+n+17.58Mew[科目] 物理
[关键词] 物理科普/摄像管
[文件] wlkp72.doc
[标题] 摄像管
[内容]
摄像管
电视广播中,借光感作用的拾像管。摄像管有许多种,但主要工作原理相同。其中一种叫光电摄像管。它包含三个基本部分,即一个镶嵌板、一个集电环和一支电子枪。镶嵌板是用一块涂了一层绝缘物质的金属板制成的。在绝缘物质的表面上,嵌着成千上万个银制的小球(即一些小银圆点),每个小银球上镀着一层特别的物质,例如铯(光电管材料),所以每一个银点的作用就像一个小光电管一样。镶嵌板是由数以千万计的这样的小光电管做成的。当光线照在这样一个光电管上,电子便被打出而离开它。光线越强,失去的电子越多。由于电子带负电荷,光电管失去电子后,就使它自己带正电荷了。所以任何投影在镶嵌板上的图像,将变成一幅正电荷的分布图。我们可以说,这图像已被分裂成大小不同的电荷点子。小光电管所放出的电子,由集电环收集,移出光电发像管。电子枪电灯丝及带小孔的金属片组成。灯丝用于发射电子,从灯丝发出的电子有一部分穿过小孔。成为一条细如头发的电子束,这束电子又被互相垂直的两套金属板扫描。在第一对金属板上加上适当的交变电压,使电子束沿上下方向扫描。同理,在与第一对金属片垂直的第二套金属片上,加上适当的交变电压使电子左右扫描。电子流就这样从镶嵌板上的左上角开始扫起。像我们看书一样,从左到右,自上而下地把整个镶嵌板全部扫过。这样扫描的目的,是当光线照射时按次序给每个光电管补充电子。假设有一个光电管失去了1000个电子,它要向构成镶嵌板支架的金属板吸引1000个电子。但因为金属板上的绝缘物质,这1000个电子并不能进入光电管。而当由电子枪来的电子流补充了光电管,金属板上那1000个电子又被驱散。由金属板上被驱走的电子形成一电脉冲,这电脉冲与照射到光电管的光线数量成正比。光线强,电脉冲也强。当电子流逐个对每个光电管扫射,电脉冲便快速地一个接着一个。这些电脉冲被增强用以调制电视载波,就像由无线电微音器来的电脉冲用以调制无线电载波一样。合成的电波在电视接收机中引起电子运动,即引起电脉冲。显象管中的扫描电子束的强弱变化,因此扫描电子束也携带了电视讯号,当它打到电视显像管机的屏幕上时,就使荧光屏再现出电视图像。[科目] 物理
[关键词] 物理科普/基本粒子
[文件] wlkp54.doc
[标题] 基本粒子
[内容]
基本粒子
泛指比原子核还要小的物质单元。包括电子、中子、质子、光子以及在宇宙射线和高能原子核实验中发现的一系列粒子。现今已发现的基本粒子有30余种,连同它们的共振态共有300余种。每一个基本粒子都有确定的质量、电荷、自旋、平均寿命等;它们中的多数是不稳定的,在经历一定的平均寿命后转化为别种基本粒子。基本粒子有的是中性,有的带正电或负电,电量大小与电子相同。它们的质量大小有很大差别。按照基本粒子之间的相互作用,可以把它们分为三类:(1)强子。质子和中子之间的作用力,是一种比电磁作用大很多的相互作用,叫做强相互作用。凡是参与强相互作用的粒子,都叫做强子。强子包括重子和介子两类。(2)轻子。轻子都不参与强相互作用。μ介子、电子、μ中微子和θ中微子都属于轻子。(3)光子。光子只有一种光子。即人们常说的光量子。许多基本粒子都有对应的反粒子。一对正反粒子相遇时,会同时消失而转化为别种粒子,这种现象叫做湮灭(湮没)。[科目] 物理
[关键词] 物理科普/调幅
[文件] wlkp46.doc
[标题] 调幅
[内容]
调 幅
调幅是借声频信号或视频信号的强度(大小)变化迫使射频载波的振幅随之变化。由单一声频电波所形成的振幅调制,如图3-86所示。假设图3-86a为1兆赫的载波,图3-86b为1千赫的单音。如果将载波及单音的声频电波同时加在一个电阻上,其合成的波形则如图3-86c所示,此时载波的振幅完全没有改变,只是其每周电波之瞬间极性有连续的改变而已,显然,这不是振幅调制,一无线电收音机无法判定这种信号的瞬时极性,所以也无法播出声音信号来。图3-86a是所要调幅的信号的载波,此种已调幅的载波是将载波与声频电波同时加在一电路上,但电路的电流与所加的电压不是正比关系,也就是此电路是非线性的,不能用欧姆定律来解释。为了达到调幅的目的必须利用非直线型电路。当电子管作用于特性电线的非直线部分时,电子管可说是一个理想的调制器。功率放大器的失真,是由非直线的电子管特性曲线所引起的。在某种意义上看,也可将振幅调制当作振幅失真来看,所以造成失真或调制,必须要一个非直线型电路。当电子管作用于特性曲线的非直线部分时,电子管可说是一个理想的调幅器。图3-86d是仅由两个额外频率的电波所形成的调幅载波,一个是1001千赫,也就是等于载波频率1000千赫与声频电波频率1千赫的和;另一个是999千赫,也就是载波频率1000千赫与声频电波频率1千赫的差,1001千赫的频率,称为高旁频率,999千赫的频率被称为低旁频率。在无线电波广播方面,调制载波的声频电波频率范围可达10000赫(10千赫),每一声频电波频率都能产生一个高旁频率及一个低旁频率,因此各声频频率所产生的总高旁频率与总低旁频率,就形成两个频带,一为高旁频带的最高频达1010千赫(对10千赫声频电波而言,低旁频带的最低频率达990千赫。因此借1000千赫载波以传送声频频率达10千赫范围内的电波时,发射频道之频带宽度必须有20千赫(从990~1010千赫),这不只对声频电波而言,就是对视频电波的传送,也是如此。就一般频道的总频带宽度言,也都是所需传送信息电波频率宽度的二倍。由此可知发射机及接收机的调谐放大器,不只通过射频载波一个频率,必须能通过整个频带宽度方可。为了能从已调幅的载波获得信息,所有的发射机及接收机电路,必须能通过具有高旁频带及低旁频带的全部频带。调谐电路必须具有选择能力,使所需的频带通过,并排斥不需要的频带。只讨论一些对载波振幅变化的原理还是不够。调制的程度是一个非常重要的因素,因为正是调制程度决定被传送的信号的强度及特性。图3-87是各种不同程度的调幅载波。图3-87a是声频调制信号电波。图b是未被调幅的载波。调制深度很低的已调载波则示于图3-87c,已调载波的振幅大小变化,完全随声频调制信号的变化而改变。但其振幅变化的程度较小。接收机的检波器之输出,只对载波的振幅变化有相应变化,而对载波的绝对大小无关。已调制载波的调幅程度很小时,声频信号将不会太大,并且此信号可能会被较强的杂波所湮没。如果调制深度大,声频信号一定非常强而又清晰。图3-87d的射频载波,已经被调制到最大的可能强度,振幅的最大值,是原来未经调制前载波振幅值的二倍,称为百分之百的调幅。如果调幅信号(即声频信号)电波的振幅再增大的话,所接收的信号电波,将产生失真的现象。[科目] 物理
[关键词] 物理科普/鱼雷
[文件] wlkp12.doc
[标题] 常规潜艇吊装鱼雷
[内容]
常规潜艇吊装鱼雷
 鱼雷是一种海军常规水下攻击性武器,一般装备在鱼雷快艇、驱逐舰、潜艇中,另外飞机也可以空投鱼雷对舰船实施攻击。其主要作用是打击舰艇的水线以下部分,造成敌方舰船大量漏水使之迅速沉没。过去的鱼雷大多采用蒸汽驱动两付转动方向相反的螺旋桨为动力,因此在发射之后可以看到明显的蒸汽航迹,敌方舰船有可能发现后采取转变航向进行躲避。现代鱼雷多数采用电动机驱动两付螺旋桨,所以其行径不易被肉眼发现,但是现代舰船上的声纳系统还是可以判断它的运动轨迹。现代战舰多数采用导弹作为主要武器,其原因是鱼雷的速度比较慢,水下制导的难度比较大。尽管出现了自动跟踪的制导鱼雷,但也大多数装备潜艇使用。
 同学们想一想,为什么鱼雷的两付螺旋桨的转动方向是相反的呢?我们知道,当物体转动时,存在着转动扭矩。所以一付螺旋桨在转动时,鱼雷的雷体将向螺旋桨转动方向相反的方向转动,这样鱼雷就产生了侧滚运动,航迹也就不是直线的了,这就给瞄准装置的设计带来了难以克服的问题。因此人们采取了再加一付转向相反的推力螺旋桨来抵消第一付螺旋桨的转动扭矩,使鱼雷保持直线运动。同样,潜艇也是采用两付转向相反的螺旋桨。那么水面舰船如果也是两付螺旋桨,可不可以转向相同呢?会产生什么样的现象呢?思考一下。
 同学们再想一想,这两付螺旋桨是完全一模一样的吗?到军事博物馆看一下。我们发现这两付螺旋桨就象我们的左右手,非常相象,但就是不一样耶。为什么?如果完全一样,转向相反,鱼雷还会前进吗?![科目] 物理
[关键词] 物理科普/示波管
[文件] wlkp73.doc
[标题] 示波管
[内容]
示波管
它是阴极射线管的一种。在一个抽成真空的管状玻璃泡中装有一系列金属制的电极。管的一端是阴极。它的外形是一个圆筒,中间有加热用的灯丝。阴极顶部涂有发射电子效率高的金属氧化物,通常是氧化钡(BaO)、氧化锶(SrO)、氧化钙(CaO)的混合物。阴极外面套有中间开小孔的圆筒状电极,称为栅极。阴极受热后发射的电子就从栅极小孔中出来。相对于阴极来说,栅极上加的是负电压。改变栅极和阴极间的负电压可以调节通过栅极小孔的电子数,所以通常又称它为“调制栅”。调制栅后面是加速极,它是一个和栅极形状相似的圆筒。加速极后面是半径略大的圆柱面状的电极,称为第一阳极。第一阳极后面还有一个半径略小的圆筒状电极,称为第二阳极。相对于阴极来说,加速极、第一阳极和第二阳极上加的都是正电压。调节这些极上的电压就可使从栅极小孔出来的电子加速,并会聚到管轴附近形成很细的一束电子流,打到管子的荧光屏上。这一段过程称为电子束的加速和聚焦。阴极、栅极、加速极、第一阳极、第二阳极这五个部分通常用镍或无磁性不锈钢制成,并由四根玻璃棒同轴地固定在一起构成一个“电子枪”,它专门发射射向荧光屏的电子束。荧光屏是一块涂有荧光物质的玻璃屏,当电子打上去时,就会发光。采用不同的荧光物质可以发出不同颜色的光,例如用钨酸钙(CaWO4)可发蓝光,用锰激活的硅酸锌(Zn2SiO4:Mn)可发绿光等。经过聚焦的电子束射到荧光屏上时,就在屏上打出一个很小的亮点。在电子枪和荧光屏之间有两组平板,相互垂直地安置着,分别称为水平和垂直偏转板。从电子枪出来的电子束在到达荧光屏之前要穿过这两组偏转板。改变加在偏转板上的电压可以使电子的运动方向发生相应的变化,从而改变荧光屏上亮点的位置。从屏上亮点的轨迹可以看出加在偏转板上电压的变化情况。从屏上反回来的电子,则通过管壁上的石墨层汇集到第二阳极而流出管外,和示波管外边的供电电路构成闭合回路,示波管中的电子流就成为整个回路电流的一个组成部分。[科目] 物理
[关键词] 物理科普/望远镜
[文件] wlkp18.doc
[标题] 最大的望远镜
[内容]
最大的望远镜
望远镜的大小,主要是用望远镜的口径来衡量的。为了对天体作更仔细的研究和观测,为了发现更暗弱的天体,多年来人们一直在增大望远镜的口径上下功夫。但是,对不同的望远镜在口径上有不同的要求。现在世界上最大的反谢望远镜,是1975年苏联建成的一台6米望远镜。它超过了30年来一直称为“世界之最”的美国帕洛马山天文台的5米反射望远镜。它的转动部分总重达800吨,也比美国的重200吨。
  现在世界上最大的折射望远镜,是在德国陶登堡天文台安装的施密特望远镜,改正口径1.35米,主镜口径2米。德国这台折射镜也超过了美国最大的施米特望远镜。美国在望远镜上的两个“世界之最”被人相断夺走了。1973年,美国一台组合后口径相当于4?5米的多镜面望远镜试运转。这台望远镜由6个相同的、口径各为1?8米的卡塞格林望远镜组成。6个望远镜绕中心轴排成六角形,六束会聚兴各经一块平面镜射向一个六面光束合成器,再把六束光聚在一个共同焦点上,多镜面望远镜的优点是:口径大,镜简短,占地小,造价低。[科目] 物理
[关键词] 物理科普/涡流
[文件] wlkp26.doc
[标题] 涡流
[内容]
涡 流
“涡电流”的简称,也称为“傅科电流”。迅速变化的磁场在导体(包括半导体内引起的感应电流,其流动的路线呈涡旋形,故称“涡流”。磁场变化越快,感应电动势越大,因而涡流也就越强。涡流能使导体发热。在磁场发生变化的装置中,往往把导体分成一组相互绝缘的薄片(如变压器的铁心)或一束细条(如感应圈的铁心),以减低涡流强度,从而减少能量损耗。但在需要产生高温时,又可利用涡流来取得热量,如高频电炉就是根据这一原理设计的。这种金属内部出现的涡流,是由于电磁感应情况下的洛仑兹力或感生电场力在整块金属内部引起的感应电
此不大的感应电动势往往可以在整块金属内部激起强大的涡流。当一个铁心线圈通过交变电流时在铁心内部激起涡流。它和普通电流一样要放出焦耳热。利用涡流的热效应进行加热的方法叫做感应加热。冶炼金属用的高频感应炉就是感应加热的一个重要例子。当线圈通入高频交变电流时,在线圈中的坩埚里的被冶炼金属内出现强大的涡流,它所产生的热量可使金属很快熔化。这种冶炼方法的最大优点之一,就是冶炼所需的热量直接来自被冶炼金属本身,因此可达极高的温度并有快速和高效的特点。此外,这种冶炼方法易于控制温度,并能避免有害杂质混入被冶炼的金属中,因此适于冶炼特种合金和特种钢等。涡流的热效应对变压器和电机的运行极为不利。首先,它会导致铁心温度升高,从而危及线圈绝缘材料的寿命,严重时可使绝缘材料当即烧毁。其次,涡流发热要损耗额外的能量(叫做“涡流损耗”),使变压器和电机的效率降低。为了减小涡流,变压器和电机的铁心都不用整块钢铁而用很薄的硅钢片迭压而成。[科目] 物理
[关键词] 物理科普/激光器
[文件] wlkp56.doc
[标题] 激光器
[内容]
激光器
也称为“光激射器”或“莱塞”。利用受激辐射原理使光在某些受激发的工作物质中放大或发射的器件。用电学、光学及其他方法对工作物质进行激励,使其中一部分粒子激发到能量较高的状态中去,当这种状态的粒子数大于能量较低状态的粒子数时,由于受激辐射作用,该工作物质就能对某一定波长的光辐射产生放大作用,也就是当这种波长的光辐射通过工作物质时,就会射出强度被放大而又与入射光波位相一致、频率一致、方向一致的光辐射,这种情况便称为光放大。激光器一般由三个部分组成:(1)能实现粒子数反转的工作物质。例如氦氖激光器中,通过氦原子的协助,使氖原子的两个能级实现粒子数反转;(2)光泵:通过强光照射工作物质而实现粒子数反转的方法称为光泵法。例如红宝石激光器,是利用大功率的闪光灯照射红宝石(工作物质)而实现粒子数反转。造成了产生激光的条件;(3)光学共振腔:最简单的光学共振腔是由放置在氦氖激光器两端的两个相互平行的反射镜组成。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,很快地就产生出相当强的激光。这两个互相平行的反射镜,一个反射率接近100%,即完全反射。另一个反射率约为98%,激光就是从后一个反射镜射出的。激光器的种类很多,如氦氖激光器、二氧化碳激光器,红宝石激光器、钇铝石榴石激光器,砷化镓激光器,染料激光器,氟化氢激光器和氩离子激光器等等。[科目] 物理
[关键词] 物理科普/射电望远镜
[文件] wlkp71.doc
[标题] 射电望远镜
[内容]
射电望远镜
又名“无线电望远镜”。专门用来接收由天体发来的无线电波的仪器。主要由天线和接收机两部分构成。天线用来接收天体发射的无线电波,相当于光学望远镜的物镜。天线类型很多。由许多作为半波振子的金属棒构成的,称为“振子天线”,专用于米波波段无线电波的接收。有的天线则成抛物面形状,称为“抛物面天线”,无线电波的探测器就装在抛物面的焦点上。它主要用于分米、厘米和毫米波波段无线电波的接收。天线和接收机用传输线联接起来。接收机先把由天线传来的高频信号放大,然后加以检波,再把高频电信号变成可用仪表测量和记录的低频电信号,或变成直接进行照相的图形。因为无线电波可以穿过云雾和尘埃,因此用射电望远镜能不分晴雨昼夜连续进行观测;对于那些难以用光学望远镜观测的天体和宇宙空间,利用射电望远镜便可进行探测研究。[科目] 物理
[关键词] 物理科普/伦琴射线
[文件] wlkp66.doc
[标题] 伦琴射线
[内容]
伦琴射线
又称“X射线”,它是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。放出的X射线分为两类:(1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射;(2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射。连续光谱的性质和靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱这就是为什么称之为“特征”的原因。X射线的特征是波长非常短,频率很高。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流。1906年,实验证明X射线是波长很短的一种电磁波,因此能产生干涉、衍射现象。X射线用来帮助人们进行医学诊断和治疗;用于工业上的非破坏性材料的检查;在基础科学和应用科学领域内,被广泛用于晶体结构分析,及通过X射线光谱和X射线吸收进行化学分析和原子结构的研究。[科目] 物理
[关键词] 物理科普/量子
[文件] wlkp63.doc
[标题] 量子
[内容]
量 子
在微观世界中的某些物理量不能连续变化,而只能以某一最小单位的整数倍发生变化。这一物理量的最小单位称为该物理量的量子,普朗克在研究黑体辐射时,首先发现自然现象中的这一不连续的量子性质。他发现物质吸收或发射的辐射能量量子,其大小为hv(其中h为普朗克常数,v为辐射的频率)。能量分化为量子的现象,只是普遍自然规律中的一个例子,其他物理量如动量矩等也是量子化的。有时也将同某种场联系在一起的基本粒子称为这个场的量子。例如电磁场的量子就是光子。每种物理量的量子数值都很小,所以在较大物体的运动中,量子化不发生显著地影响,各量犹如能连续变化一样。但对微观粒子(如电子、原子)来说,这种量子化效应就不能忽视,对于它们,牛顿力学已不适用,必须用量子力学来研究。[科目] 物理
[关键词] 物理科普/量子论
[文件] wlkp64.doc
[标题] 量子论
[内容]
量子论
探索微观粒子运动所遵从的量子规律的初步理论,是量子力学的先驱。是从普朗克在物理学中引入量子概念(1900年)开始,特别是在玻尔提出他的氢原子理论(1913年)以后发展起来的。量子论仍然以经典物理规律为基础,但加上了一些反映微观运动具有量子特性的附加条件(量子条件)。它指出,在物体大、运动范围广(相当于量子数很大)的极限情形下,微观运动规律应该趋近于宏观运动规律,并且两种运动规律应该具有相互对应的关系(对应原理)。量子论能够解释一些简单的原子、分子所发射的光谱和黑体辐射等现象,但由于它的半经典性质,其结果在数量方面往往不能与实验符合。量子论本身还包含着很大矛盾,在解释许多实验事实时都遇到严重困难。它的进一步发展导致量子力学的建立(1924~1926年),现在这一理论已被量子力学所代替,故有时称之为旧量子论,但由于它的直观性强,在解释某些现象(如复杂的光谱)时,还常被采用。人们有时也把研究微观运动的整个学科统称为量子论或量子物理学。[科目] 物理
[关键词] 物理科普/热核反应
[文件] wlkp69.doc
[标题] 热核反应
[内容]
热核反应
热核反应是在极高的温度下将轻核聚变为较重的原子核,因而放出大量能量的反应。当温度足够高时,聚变能自动持续进行。象太阳等恒星的主要能量来源就是其内部的热核反应。根据理论上的估算,使氘核和氚核实现自持热核反应,需要五千万度以上的高温,而氘核同氘核则需要几亿度的高温。目前已实现的人工热核反应是氢弹的爆炸,它利用铀(235U)或钚(239Pu)在裂变时发生爆炸而产生的高温,从而使内部的轻原子核发生剧烈而不可控制的聚变反应。由此可见,氢弹的爆炸,必须田原子弹来引爆。至今,人们不能自如地控制热核反应,其关键在于如何使等离子体达到所需的极高温度,并使之稳定足够长的时间。这是目前自然科学研究的重点问题之一。一旦研究成功,人类将从水中的重氢(氘)获得取之不尽的能量。[科目] 物理
[关键词] 物理科普/晶体三极管
[文件] wlkp60.doc
[标题] 晶体三极管
[内容]
晶体三极管
亦称为“半导体三极管”或简称“晶体管”。它是一种具有三个电极,能起放大、振荡或开关等作用的半导体器件。按工作原理不同,可分为结型晶体管和场效应晶体管。结型晶体管是在半导体单晶上制备两个p-n结,组成一个p-n-p(或n-p-n)的结构,中间的n型(或p型)区叫基区,边上两个区域分别叫发射区和集电区,这三部分都有电极与外电路联接,分别称为“发射极”以字母e表示、“基极”以字母b表示和“集电极”以字母c表示。在电子线路中,用符号代表p-n-p型和n-p-n型晶体管如图3—17所示。晶体管用作放大■器时,在发射极和基极之间输入电信号,以其电流控制集电极和基极(或集电极和发射极)之间的电流,从而在负载上获得放大的电信号。同电子管相比晶体管具有体积小、重量轻、耐震动、寿命长,耗电小的优点,但受温度影响较大。目前常用的晶体管主要是用锗或硅晶体制成。场效应晶体管是利用输入电压的电场作用控制输出电流的一种半导体器件。场效应晶体管又分为结型场效应晶体管和金属一氧化物一半导体场效应晶体管两大类。金属一氧化物一半导体场效应晶体管简称为MOS晶体管,它的结构如图3-18所示,共中1为栅极;2为绝缘层;3为沟道;4为源,5为漏。制作过程为在n型(或p型)晶片上扩散生成两个p型(或n型)区,分别称为源和漏,从上面引出源极(接电压正端)和漏极(接负端),源和漏之间有一个沟道区,在它上面隔一层■图3—18金属一氧化物一半导体场效应晶体管的示意图氧化层(或其它绝缘层)制作一层金属电极称为“栅极”。在场效应晶体管工作时,栅极电压的变化会引起沟道导电性能的变化,也就是说栅极电压变化控制了源漏之间的电流变化。场效应晶体管的特点是输入阻抗高和抗辐射能力强。[科目] 物理
[关键词] 物理科普/集成电路
[文件] wlkp57.doc
[标题] 集成电路
[内容]
集成电路
它是一种微型电子器件或部件。是采用一定的工艺,把一个电路中所需要的晶体管、电阻、电容和电感等,制作在一小块或几小块晶片或陶瓷基片上,再用适当的方法进行互连而封装在一个管壳内,成为具有所需功能的微型电路结构。集成电路已打破了传统的电路设计概念,因为集成电路中的晶体管、二极管、电阻、电容、电感等各元件在结构上已组成一个整体,这样整个电路的体积大大缩小,且引出线和焊接点的数目也大大减少,从而使电子元件向着微小型化,低功耗和高可靠性方面迈进了一大步。用集成电路来装配电子设备,其装配密度比用分立式晶体管等元器件组装的电子设备提高几十倍到上百倍,设备的稳定工作时间也可大大提高。因此集成电路在电子计算机、通讯设备、导弹、雷达、人造卫星和各种遥控、遥测设备中占据了非常重要的地位。根据制造工艺的不同,目前集成电路主要有半导体集成电路、薄膜集成电路、厚膜集成电路和混合集成电路等几类。根据性能和用途的不同,又可分为数字集成电路、线性集成电路和微波集成电路等。近年来集成电路的发展极为迅速。早期半导体集成电路的集成度是每个晶片上只有几十个元件,目前集成度已高达每片包含几千个甚至上万个元件。习惯把由一百个以上的门电路或一千个以上的晶体管集成在一块晶片上,并互连成具有一个系统或一个分系统功能的电路称为“大规模集成电路”。[科目] 物理
[关键词] 物理科普/高能物理
[文件] wlkp49.doc
[标题] 高能物理
[内容]
高能物理
即“高能粒子物理”。研究具有很高能量(一般在1GeV以上,1GeV=109eV)的基本粒子的性质,以及它们之间的相互作用和转化规律,这对物质结构的认识具有重要意义。高能加速器是高能物理研究的基本设备之一,目前最大的加速器能把质子加速到具有几百GeV(千兆电子伏)的能量。另外宇宙射线中也含有高能粒子,这一部分的研究也属于高能物理范畴。[科目] 物理
[关键词] 物理科普/超声波
[文件] wlkp36.doc
[标题] 超声波及其应用
[内容]
超声波及其应用
  人耳最高只能感觉到大约 20 000 Hz 的声波,频率更高的声波就是超声波了.超声波广泛地应用在多种技术中.
 超声波有两个特点,一个是能量大,一个是沿直线传播.它的应用就是按照这两个特点展开的.
 理论研究表明,在振幅相同的情况下,一个物体振动的能量跟振动频率的二次方成正比.超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气的湿度.这就是超声波加湿器的原理.对于咽喉炎、气管炎等疾病,药力很难达到患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够增进疗效.利用超声波的巨大能量还可以把人体内的结石击碎.
 金属零件、玻璃和陶瓷制品的除垢是件麻烦事.如果在放有这些物品的清洗液中通入超声波,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净.
 俗话说“隔墙有耳”(图1),这说明声波能够绕过障碍物.但是,波长越短,这种绕射现象越不明显,因此,超声波基本上是沿直线传播的,可以定向发射.如果渔船载有水下超声波发生器,它旋转着向各个方向发射超声波,超声波遇到鱼群会反射回来,渔船探测到反射波就知道鱼群的位置了.这种仪器叫做声纳.声纳也可以用来探测水中的暗礁、敌人的潜艇,测量海水的深度.
根据同样的道理也可以用超声波探测金属、陶瓷混凝土制品,甚至水库大坝,检查内部是否有气泡、空洞和裂纹.
人体各个内脏的表面对超声波的反射能力是不同的,健康内脏和病变内脏的反射能力也不一样.平常说的“B超”就是根据内脏反射的超声波进行造影,帮助医生分析体内的病变.
有趣的是,很多动物都有完善的发射和接收超声波的器官.以昆虫为食的编幅,视觉很差,飞行中不断发出超声波的脉冲,依靠昆虫身体的反射波来发现食物.海豚也有完善的“声纳”系统,使它能在混浊的水中准确地确定远处小鱼的位置.现代的无线电定位器——雷达,质量有几十、几百、几千千克,蝙蝠的超声定位系统只有几分之一克,而在一些重要性能上,如确定目标方位的精确度、抗干扰的能力等都远优于现代的无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备和创制新的设备,这是近几十年来发展起来的一门新学科,叫做仿生学.[科目] 物理
[关键词] 物理科普/核能
[文件] wlkp25.doc
[标题] 核能
[内容]
核 能
如果一个原子核裂变,会释放出巨大的能量,这种能量叫做核能。当原子核裂变时,它们也发出射线,这叫辐射。能发出放射线的物体具有放射性。 太阳里有巨大的能量,在那里原子核不是裂变而是聚变,这是产生核能的另一种方式。在核电站内,核反应堆使原子核裂变,以热能形式释放能量,热能被用于产生电能。一颗原子弹产生了巨大的爆炸,成百上千亿个原子核同时发生裂变并释放出巨大的能量。爆炸以后,危险的核辐射要遗留许多年。右图中的标记意思是:“危险!放射性!”它被用在有放射性物质存在的地方。放射性物质是非常危险的,因为它们能引起燃烧,还能使人和动物生病。[科目] 物理
[关键词] 物理科普/回旋加速器
[文件] wlkp6.doc
[标题] 回旋加速器
[内容]
回旋加速器
回旋加速器是自己加速质子、氘核、α粒(氦的原子核)等使之获得高能量的装置。它是核物理研究的重要工具。图3-33为回旋加速器的示意图。D1、D2为装于同一水平面上的半圆形中空铜盒(又称D形盒)。两盒间留有一定宽度的间隙,置于真空中。由大型电磁
D形盒间,这个电压将在两盒空隙间产生电场以加速带电粒子,而盒内由于电屏蔽效应其电场强度趋近于零。在加速器中心有离子源。产生的离子通过离子源的引出孔而进入回旋加速器中。假设此时D2正好处于高电位,则离子将被两D形盒间的电场加速而进入D1盒中。D1盒中不存在电场,但却存在由电磁铁产生的匀强磁场。因而离子以不变的速率在D1盒中作匀速
目“电荷的圆周运动”)是确定值,它与速度v和半径r的数值无关。因
T0=T,这时两D形盒的电位差的方向与前者相反,D1处于高电位状态。离
从D2穿出,继续被加速而进入D1盒中,如此不断,直至被加速到所需的能
而增大。最后当被加速离子趋于D形盒的边缘时,借助于一个有静电电势的偏转板可以控制粒子的运动,使粒子打在内靶或外靶上。假如D形盒的半径为RD,则RD是离子作圆周运动的最大半径,此时离子速率值最大。
这就是回旋加速器径加速后离子所获得的最大动能。回旋加速器的优点在于以不很高的振荡电压对离子不断加速而得到高能离子流。若采用一次加
=1.8×107(伏特)
即RD=0.48(米),B=1.8(特斯拉)的回旋加速器所获得的氘核能量,等效于直线加速器具有一千八百万伏特加速电压所得到的结果。由于
当m随v增大而增大时,f(粒子旋转频率)必然随之减小。若f0恒定,则破坏了f0=f的条件,甚至可能起到减速粒子的作用。若使电子和氘核具有相同能量,由于电子质量远小于氘核,其速度就应远大于氘核,它将很快受到上述相对论效应的限制。因而回旋加速器一般用来加速较大质量的粒子,而不用以加速电子。加速电子可利用“电子感应加速器”。[科目] 物理
[关键词] 物理科普/质谱仪
[文件] wlkp35.doc
[标题] 质谱仪
[内容]
质谱仪
是一种分析各种同位素并测量其质量及含量百分比的仪器。当一束带电的原子核通过质谱仪中的电场和磁场时,凡其荷质比不相等的,便被分开。S1和S2为两个狭缝,从离子源引出的离子受到施于S1及S2间的电位差,在通过S1
的匀强磁场区。进入磁场时的速度由下式
决定。正离子在这一磁场中运动时其轨道如图中所示半径为r的圆。当离子走过一半圆而抵达照相底片P时会在它上面留下痕迹。由轨道半径r=mv/qB(见洛仑兹力),得
合并(1)、(2)式,消去v,即得
因为V、B及r可直接测量得到,所以如果我们能够用其他方法决定离子所带的电荷q,则由上式便可求出离子的质量。■
我们可以用质谱仪将电荷相同而质量不同的离子分开。科学家应用这种仪器在1920年左右发现了同种化学元素的原子其质量可以不相同;这些质量不同的同一种元素的原子被称为同位素。汤姆逊首先利用电磁场测定电子的荷质比的原理,同样可运用到带正电的离子,从荷质比很容易算出该离子的质量。正离子通常带电量等于一个电子(称为单电荷离子)。但有时也带有两个、三个甚至四个电子电量(称为多电荷离子)。目前应用的质谱仪是非常精确的仪器,它不但可以测量出每种同位素之准确质量,并可测定每种同位素在元素中所占的百分比。如将这种仪器略加修改,也可应用到同位素分离。质谱仪的形式很多,但所应用的主要原理及结构却大同小异。图3-32所示是一台现代用质谱仪的主要装置部分。这装置是在真空中,正离子流自离子源引出经过窄隙S进入一曲圆形之电场C1C2,调节C1C2之间的电压,可选择一定能量之正离子,这些正离子随着电场之形状弯曲90°而进入一个半圆形的匀强磁场中,磁场的方向与图面垂直且指向纸内,进入磁场之正离子受磁力作用而沿半圆形轨道进行。因正离子e/m之大小不同,轨道形成大小不等的半圆。分别落在底片上的不同位置也就是说元素将按其质量大小的顺序而排列,故称之为“质谱”。如果我们分别测出每种粒子的电流。就能从这些电流大小的比例中,得出该种在离子源中被电离的物质的各种同位素的成分比例。它也可以把化合物中的不同物质的离子分开和成分分析。[科目] 物理
[关键词] 物理科普/调制
[文件] wlkp34.doc
[标题] 调制
[内容]
调  制
把一种波动变化特征加载到另一个波上,此种过程或所产生的结果称为调制。受调制的波称为载波,调制之波称为调制波。一般地说,就是高频振荡的某种性质随着某一低频信号的变化而变。这些变化的最简单情况,是高频振荡的幅度不为定值,而随作用于它的低频振荡而变化,这种情况叫做“调幅”,以区别于使频率发生变化的调制,即所谓“调频”或使相位发生变化的调制称之为“调相”。调制的用途,是借助于高频振荡以将某种信号发送出去。低频调制振荡相当于某种信号(如电报信号或某些声音),所以已调制的振荡便携带着这些信号传播出去。利用复原过程(检波),这些信号就可以从高频已调振荡中分离出来。调制由专门的调制装置或调制器来实现,在无线电广播中,一般是应用调幅制,但在我国的许多地区也建立了调频制的广播。电视广播则是利用调频。振荡的幅度变化越大,则调制度越大。调制度m通常用百分率
来度量,且式中的I1和I2分别表示振荡的最大幅度和最小幅度。[科目] 物理
[关键词] 物理科普/最强的磁场
[文件] wlkp22.doc
[标题] 最强的磁场
[内容]
最强的磁场
磁性是物质的一个基本属性,磁场是物质存在的一种形式。宇宙万物,小到基本粒子,大到庞大的星系,都有磁性,就是在广漠的星系际空间,也到处弥漫着磁场,差别只是磁场强弱不同罢了。
  常用仪表中的永久磁铁,其空隙中的磁场程度从几百到几千(10e2~10e3)高斯;大型电磁波可产生一二万(10e4)高斯的磁场;在极低的温度下,超导磁体的磁场高达几万到十几万(10e4~10e5)高斯;人们竭尽全力想获得更强的磁场,可是在实验室条件下,如进行激光引瀑,把化学能转变为瞬时磁场能,最大只能达到10e6高斯。
  自然界磁场强弱之悬殊可就令人瞠目结舌了。我们居住的地球,其表面磁场最大为0.68高斯;离我们最近的天体月亮,磁场相当弱,个别地区才大到300伽玛(3×10e-3高斯);在银河系的星际空间,磁场弱到10e-6高斯;至于星系间空间,估计其磁场强度只有10e-9高斯。
  宇宙中比地球磁场强的天体有的是。太阳的普遍磁场约1~2高斯;许多磁星的磁场在10e2高斯以上,最强的达10e4高斯;一种晚期恒星白矮星,它个子虽小,磁场却高达10e7高斯,可是与致密天体中子星相比,简直是小巫见大巫了,中子星的磁场高达10e12~10e14高斯。[科目] 物理
[关键词] 物理科普/相对论
[文件] wlkp77.doc
[标题] 相对论
[内容]
相对论
相对论是关于物质运动与时间空间关系的理论。它是现代物理学的理论基础之一。相对论是本世纪初由爱因斯坦等在总结实验事实(如迈克耳孙—莫雷实验)的基础上所建立和发展。在这以前,人们根据经典时空观(集中表现为伽利略变换)解释光的传播等问题时,导致一系列尖锐的矛盾。相对论针对这些问题,建立了物理学中新的时空现和高速物体的运动规律,对以后物理学的发展有重大作用。相对论分为狭义相对论和广义相对论两大部分。1905年建立的狭义相对论的基本原理:(1)在任何惯性参考系中,自然规律都相同,称为相对性原理。(2)在任何惯性系中,真空光速c都相同,即光速不变原理。由此得出时间和空间各量从一个惯性系变换到另一惯性系时,应该满足洛伦兹变换,而不是满足伽利略变换。并由此推出许多重要结论,例如:①两事件发生的先后或是否“同时”,在不同参照系看来是不同的(但因果律仍然成立)。②量度物体的长度时,将测到运动物体在其运动方向上的长度要比静止时缩短。与此相似,量度时间进程时,将看到运动的时钟要比静止的时钟进行得慢。③物体质量m随速度v的增加而增大,其关系为m0为静止时的质量,称为静止质量。④任何物体的速度不能超过光速c。⑤物体的质量m与能量E之间满足质能关系式E=mc2。以上结论与目前的实验事实符合,但只有在高速运动时,效应才显著。在通常的情况下,相对论效应极其微小,因此经典力学可认为是相对论力学在低速情况下的近似。在1916年又建立了广义相对论,其基本原理:(1)广义相对论原理,即自然定律在任何参考系中都可以表示为相同数学形式。(2)等价原理,即在一个小体积范围内的万有引力和某一加速系统中的惯性力相互等效。按照上述的原理,万有引力的产生是由于物质的存在和一定的分布状况使时间空间性质变得不均匀(所谓时空弯曲);并由此建立了引力场理论;而狭义相对论则是广义相对论在引力场很弱时的特殊情况。从广义相对论可以导出一些重要结论,如水星近日点的进动规律;光线在引力场中发生弯曲;较强的引力场中时钟较慢(或引力场中的光谱线向红端移动)等。这些结论和后来的观测结果基本上相符合。近年来,通过测量雷达波在太阳引力场中往返传播在时间上的延迟,以更高的精密度证实了广义相对论的结论。相对论,具有重要的历史意义,但许多问题仍有待研究。[科目] 物理
[关键词] 物理科普/电晕放电
[文件] wlkp43.doc
[标题] 电晕放电
[内容]
电晕放电
带电体表面在气体或液体介质中局部放电的现象,常发生在不均匀电场中电场强度很高的区域内(例如高压导线的周围,带电体的尖端附近)。其特点为:出现与日晕相似的光层,发出嗤嗤的声音,产生臭氧、氧化氮等。电晕引起电能的损耗,并对通讯和广播发生干扰。例如,雷雨时尖端电晕发电,避雷针即用此法中和带电的云层而防止雷击。我们知道,电晕多发生在导体壳的曲率半径小的地方,因为这些地方,特别是尖端,其电荷密度很大。而在紧邻带电表面处,电场E与电荷密度σ成正比,故在导体的尖端处场强很强(即σ和E都极大)。所以在空气周围的导体电势升高时,这些尖端之处能产生电晕放电。通常均将空气视为非导体,但空气中含有少数由宇宙线照射而产生的离子,带正电的导体会吸引周围空气中的负离子而自行徐徐中和。若带电导体有尖端,该处附近空气中的电场强度E可变得很高。当离子被吸向导体时将获得很大的加速度,这些离子与空气碰撞时,将会产生大量的离子,使空气变成极易导电,同时借电晕放电而加速导体放电。因空气分子在碰撞时会发光,故电晕时在导体尖端处可见亮光。[科目] 物理
[关键词] 物理科普/全息照相
[文件] wlkp68.doc
[标题] 全息照相
[内容]
全息照相
一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的新型照相技术。普通的照相利用透镜成像原理,在感光胶片上记录反映被摄物体表面光强变化的平面像。全息照相不单是记录了被摄物体的反射光波强度(振幅),而且还记录了反射光波的位相。通过一束参考光束和一束被摄物体上的反射光束在感光胶片上迭加而产生干涉现象,可以实现上述的目的。参考光束与反射光束都是从一束相干性极好的激光束分离出来的。感光胶片上记录的干涉图样极为错综复杂,这样的图样称为全息图。由全息图看不出原来被摄物体的表观图像,但是当再用一束激光(或单色光)照射这全息图时,可以透过全息图而看到原物体的具有立体感的形像。这是因为光束经过全息图后又模拟出与原来物体相同的反射光波,这种重构光波状态的效应称为波前重建。全息照相在讯息记录、形变计量等方面有较多的应用。[科目] 物理
[关键词] 物理科普/阴极射线
[文件] wlkp40.doc
[标题] 阴极射线
[内容]
阴极射线
在抽成1.33帕(10-2乇)以下真空的气体放电管或电子管中,由阴极发射出的电子在电场加速下所形成的电子流通称为“阴极射线”。在放电管中,阴极由于受到管内剩余气体中正离子的撞击而发射电子。在电子管中则由于受到电流的加热而发射电子。阴极射线应用很广,它能使被照射的某些物质(如硫化锌)发出荧光,而且在外加电磁场中又能迅速随着场的变化而发生偏析,电子示波器中的示波管和电视机中的显像管,均依此原理制成;在适当的电磁场中可以发散,也能够聚焦,所以也应用于电子显微镜中;高速的阴极射线照射金属板时,能产生X射线;利用电子的波动性阴极射线还可用以研究物质的结晶构造。[科目] 物理
[关键词] 物理科普/超导
[文件] wlkp38.doc
[标题] 超导
[内容]
超  导
氦的液化和超导电性的发现,十九世纪后半叶,在研究气体的性质随压强和温度变化的关系上,荷兰物理学家作出了重要贡献。
1873年,范德瓦尔斯(Wzdcr Waals)在他的博士论文《态和液态的连续注》中,提出了包括气态和液态的“物态方程”,即范德瓦尔斯方程。
1880年,范德瓦尔斯又提出了“对应态定律”,进一步得到物态方程的普遍形式。在他的理论指导下,英国人杜瓦(Dewar)于1898年实现了氢的液化。他所在的荷兰莱顿大学发展了低温实验技术,建立了低温研究所。这个研究所的创始人就是著名低温物理学家昂纳斯(Onnes,1853一1926)。
1882年昂纳斯应聘担任菜顿大学实验物理学教授,发表题为《定己测量在物理学中的重要性》的就职演说,他化了极大气力,以前所未有的规模装备低温研究所的实验室,举办训练技师和玻璃的技术学校,创办《莱顿大学物理实验室通讯》杂志,为低温实验技术和低温物理学的发展作出了贡献。
氦的液化
自从1813年法拉第第一次观察到疲化氯以来,各种气体的液化和更低温度的实现一直是实验物理学的重要课题。但实验的规模始终不能满足需要。1894年,盖勒德队(Cailleiiei)和毕克特(Piciet)分别在法国和瑞士同时实现了氯的液化。
1895年德国人林德(LLind)和英国人汉普逊(HamPson)利用焦耳一汤姆生效应(即多孔塞效应)开始大规模地生产液氧和液氮。著名的林德机成了低温技术的基本设备。
几年后,英国皇家学院的杜瓦实现了氢的农化和固化.本来以为达到了低温的极限,但接着发现调还存留庄残余气体中。他想了许多办法,经过多年努力,终未能实现氦的衣化。
昂纳斯决心攻克这一低温堡垒。荷兰莱顿大学比起英国皇家学院,条件当然要差得多,经验也可能不足,但是昂纳斯有足够的氦气,有配合默契的技术班子,特别是低温设备规模之大,使他有可能实现氦的液化。
1908年7月10日是一个具有历史意义的日子。这一天,昂纳斯和他的同事在精心准备之后,集体攻关,终于使氦液化。这一天值得大书特书,因为氦的液化不仅是昂纳斯和莱顿实验室的重大胜利,也是二十世纪物理学发展中的一件大事。因为它标志着二十世纪“大科学”首次登台,初战告捷。
昂纳斯的准备工作极其细致,他事先对氦的液化温度作了理论估算,预计在5-6℃,氦气大量储备,有充足的供应。液氢是目制的。在实验前一天,制备了75升液态空气备用。7月10日凌晨5时许,20升液态氢已准备好,逐渐灌入氦液化器中。用液氢预冷要极端小心,如果行很微囊的空气混人事统就会前功尽弃。下午一时半,全部灌进氦液化器,开始令氦气循环。液化器中心的恒温器开始进入从未达到过的低温,这个温度只有靠氦气温度计指示。然而很长时间看不到指示器有任何变化。人们调节压力、改变膨胀活塞,用各种可能采取的措施促进液化不断的工作,温度计都似动不动,很难作出判断。这时液氢已近告窑,仍然没有观下到入氦点半,眼看实验要以失败告终,有一位远讯前来观看的教授向昂纳斯建议说:会不会氦温度计本身的氦气也液化了,是不是可以从下面照亮容器。看看究竟如何?昂纳斯顿开茅塞,立即照办。结果使他喜出望外,原来中心液化器中几乎充满了液体,光的反射使人们看到了液面。这次昂纳斩共获得了60cL的液氦。达到了4.3K的低温。他们又经过多次实验,第二年达到38.1。
尽管一直没有实现氦的固化,却为超导电性的发现作好了必要的准备。
超导电性的发现,昂纳斯的目标不仅在于获得更低的温度,实现气体的液化和固化,他更注意探讨在极低温条件下物质的各种特性。金属的电阻是他的研究对象之一。当时对金属电阻在接近绝对零点时的变化,众说纷纸,片测不一。根据经典理论,纯金属的电阻应随湿窒的降低而逐渐降低,在绝对零窒时达到零。不少人认为,理论不一定适用于极低温,当温室降低时,金属电阻可能先达一极小值,再重新增加,因为自由电子也许会凝聚在原子上。
按照这种看法,绝对零匿下的金属电阻 有可能无限增加。两种看法的预言截然相反,孰是孰非,唯有实验才 能作出判断。 昂纳忻先是用铂丝作测试样品,测k电阻靠惠斯顿电桥。测出的拍电阻先是随温度下降,但是到液氦 温室(七3K)以下时,电阻的变化却出现了平缓。于是昂纳斯和他的学生克莱(Clay)在1908年发表论 文讨论了这一现象。他们认为是杂质对铂电阻产生了影响,致使铂电阻与温度尤关湖果金属纯净到没有杂质,它的电阻应该绍慢地向零趋近。 为了检验自己的判断是否正确,昂纳斯寄希望于 比铂和金更纯的水银。水嚷是当时能够达到最高纯度的金寓,因为采用连续蒸馏法可以做到这一点,。 昂纳斯的水银管如图1.这是一沮U形毛细营,内径只有V20毫米,反复提纯过的水银在真空伏态下 注入管中,水银降温后即凝固形成金属线。最难处理的问题是如何防上玻璃管在温度变化时破裂,于是就 精Jc‘设计了贮存水银样品的U形音。从图、可见,在 U形管上端没有贮液器, 以适应水银体帜的变化。 在电阻两头设有四个端 点,分别为电流接头和电位接头,电位接头又由铂 丝引出。 1911年斗月的一天, 昂纳斯让他的助手霍尔斯特(c。 Holsi)进行这项 实验。水银样品浸于氦恒 温槽中。恒定电流流经样 品。测量电位接头引出的电位差。出乎他们的预 料,当温度降至氦的沸点 (4.2【】以下时,电位差突然降到了零。会不会是线路中出现了短路?在查找短 路原因的过程中,霍尔斯特发现当温度回升到今K以上时,短路立即消失。再度降温,仍出现短路现象。即使 重接线路也无济干事。于是他立即向昂纳斯报告。昂纳斯起先也不相信,自己又多次重复这个实验:终于认 识到这正是电阻消失的真正效应。品纳斯在1911年斗月28日宣布了这一发现。此 时他还没有看出这一现象的普遍意义,仅仅当成是有关水银的特殊现象。!、月25日他作了《水银电阻消 失速度的突变》的报告,明确地给出了水银电阻(与帘图2水银宅阻尖降为零 报告中说: 。 “测量表明,从氢的融点直到氦的沸点附近,曲线呈现出电阻下降速度通常表现的那种逐渐降低的现 象, ……在略高于与略低于沸点处,即从七29K到今.21K之间也可清楚看出电阻育同样的逐渐变化的趋 势。但是在年.21K与4.19K之间,电阻却咸小得极快,并在乎.19K处完全消失。” 在赐K,1913年间,民纳斯又发现了锡(h)在 3.8K电阻突降为零的现象,随后发现铅也有类似效 应,转变差匣估计为6K(后来证实为人20.N!二年、帛纳斯宣称,这些材料在低温下“进入了一种新的 状态,这种伏态具有特殊的电学性质。”趄导一词就是昂纳斯命名的。 昂纳斩进而研究杂质对超导的影响,出乎他的意 料,在水银中加杂质并不影响迢导现象的出现\看来,昂纳所为了试验最纯的金属,选用了水银)却偶然地发 现了并不只是属于纯水银的一种普遍现象——超导电性。 。 然而,对于昂纳斯来说,这一发现并非完全偶然, 因为第一,他首先实现了氦的液化,而且亘到二十年代,全世界只有他独家生产液氦;第二,他所在的低温 研究所有大规模的液氢生产设备,可以保证维持氦恒温器的低温状态;第三,他明确地认定要探索低温下物 质的各种特性,特别是电阻的变化。所以超导电性的发现对于昂纳斯来说,又是必然的。 昂纳斯因对低温下物质性质的研究,特别是液虱的制备祆1913年诺贝尔物理奖。他是继洛仑兹、塞曼 和范德瓦尔斯之后荣获这一最高科学荣誉的第四位荷耸物理学家。[科目] 物理
[关键词] 物理科普/放射性同位素
[文件] wlkp9.doc
[标题] 如何确定古木的年代
[内容]
如何确定古木的年代
  考古学家确定古木年代的一种方法是用放射性同位素作为“时钟”,来测量漫长的时间,这叫作放射性同位素鉴年法.
  自然界中的碳主要是12C,也有少量14C,它是高层大气中的原子核在太阳射来的高能粒子流的作用下产生的.14C是具有放射性的碳同位素,能够自发地进行β衰变,变成氮,半衰期为5730年.14C原子不断产生又不断衰变,达到动态平衡,它在大气中的含量是稳定的,大约在1012个碳原子中有一个14C.活的植物通过光合作用和呼吸作用与环境交换碳元素,体内14C的比例与大气中的相同.植物枯死后,遗体内的14C仍在进行衰变,不断减少,但是不再得到补充.因此,根据放射性强度减小的情况就可以算出植物死亡的时间.
  例如,要推断一块古木的年代,可以先把古木加温,制取1g碳的样品,再用粒子计数器进行测量.如果测得样品每分钟衰变的次数正好是现代植物所制样品的一半,表明这块古木经过了14C的一个半衰期,即5730年.如果测得每分钟衰变的次数是其他值,也可以根据半衰期计算出古木的年代.
  我国考古工作者用放射性同位素鉴年法对马王堆一号汉墓外椁盖板杉木进行测量,结果表明该墓距今2130±95年.通过历史文献考证,该古墓的年代为西汉早期,约在2100年前,两者符合得很好.[科目] 物理
[关键词] 物理科普/恒星
[文件] wlkp13.doc
[标题] 恒星的生命历程
[内容]
恒星的生命历程
像地球上的万物一样,恒星也有一个产生、发展、灭亡的过程。
一、恒星的诞生
在恒星起源问题上,现在主要有两种观点:一种观点认为恒星是由弥漫物质凝聚形成的,称“弥漫说”;另一种观点认为,恒星是由超密物质爆发形成的.不过,越来越多的观测证据支持“弥漫说”,并逐渐得到大多数天文学家的公认.下面介绍这一观点。
设想在银河系里,远离我们几千光年的某个地方,一团巨大的星际气体和尘埃云寂静地穿越近于完全真空的空间.这团星际云的稀疏边缘向四周黑暗延伸几兆英里之遥.星际云占有如此广漠的空间,因此尽管它具有巨大的质量,但原子在星际云的庞大体积里的分布是很稀疏的。
某个特定的时候,在来自宇宙空间冲击波的作用下,相距很远的原子突然紧紧地拥挤在一起,星际云本来是透明的,但由于原子靠近在一起,微弱的星光不再能穿透通过,这时星际云变成了暗星云.冲击波的另一个作用效果是使有些地方含有比平均数稍多的原子数,有些地方含有比平均数略少的原子数,含原子数多的地方引力大,会把附近的原子吸引过来。以这种方式,星际云开始瓦解成团块或球状体。
球状体是不稳定的,在引力作用了球状体开始收缩,变得越来越小,其核心的压力越来越大,温度也随之不断上升.当温度上升到一定程度后,它内部深处的气体开始发光,这时球状体不再是暗黑的了,它已转变为一颗原恒星。原恒星继续收缩,当原恒星中心的温度达到一千万度时,氢燃烧了,4个氢原子核结合在一起生成了氦核,这就是我们常说的热核反应(氢核聚变).在这个过程中,减少的质量转换为纯粹的能量.由于氢燃烧释放出巨大的能量,原恒星最终能支撑住它的外层质量,于是收缩停止了,一颗恒星由此诞生了.
二、恒星的演化
以太阳为例来说明恒星的演化.大家都知道,太阳能够发光的原因是因为它在不断地进行热核反应释放出巨大的能量,我们看到的光就是太阳热核反应放出的能量.每一秒钟,在太阳的中心有6亿吨氢转换成氦,释放出的巨大能量一方面向外界释放,另一方面用来支撑自己外层的巨大质量.随着时间的推移,太阳中心氦的数量越来越多,而氢的供应越来越少,直到某一天氢用完了,燃烧便中断了.由于不再有能量向外流出,太阳的核心部分在引力作用下变得不稳定,无力支撑住自己的质量,所以含有丰富氦的太阳核心开始收缩,太阳中心的压力和温度迅速增加,使核心以外的各层被加热.由于太阳核心与表面之间的各壳层仍然包含充裕的氢,在经过比较短的时间以后,收缩的核心上面的温度达到400万开左右,这个温度高到可使围绕太阳核心的一个壳层内的氢燃烧,同时,核心的这种收缩把大量的引力能转换成热能,把太阳大气向外推出.
随着壳层氢燃烧的开始,太阳突然有了新的热核反应能源.太阳无活力核心的不断收缩和这种新的向外大量供应能量,造成太阳发生巨大的膨胀.由于太阳的结构要保持与这种新能源的平衡,所以太阳的外层越来越向外扩展.大气膨胀就会引起自身湿度降低,最终太阳的表面温度降低到4000开.温度为4000开的物体发出的主要是红色的光,此时的太阳就变成了一颗红巨星.变成红巨星的太阳将变得很大,它将吞没地球,地球将化为蒸汽.
在太阳外层膨胀和冷却的同时,无活力的核心压缩也在进行,太阳内部深处的温度升到新的高度.最后,太阳中心的氦原子核在1亿度的高温下,以高速相互碰撞的形式而熔合成碳和氧,于是出现氦燃烧的新的热核反应.氦燃烧所产生的新的能量输出,阻止了恒星核心的进一步收缩.当氦耗尽时,便到了类似太阳这样的恒星的生命发展的最后阶段.由于没有能力点燃任何新的热核反应,所以恒星会一直收缩,直到体积与地球大小差不多,这时,太阳就变成了一颗白矮星.
三、恒星的死亡
从现在起再过50亿年,太阳就会变成一颗白矮星而终结自己的恒星历程.白矮星的体积不会再继续缩小.印度天体物理学家钱德拉塞卡发现,是“电子简并压力”支撑住了死亡的恒星,使白矮星不再继续收缩.这种简并压力并不是无限强大的,电子简并压力所支撑的物质总量有一个上限,这个很重要的上限是1.4个太阳质量,换句话说,只有那些残骸质量小于1.4个太阳质量的恒星才能变成白矮星,白矮星的密度值一般是每立方厘米60吨.
如果恒星遗骸的质量大于1.4个太阳质量的话,由于电子简并压力无法支撑住这个质量的压力.不得不继续收缩,这时出现了“中子简并压力”.这种强大的压力随即有力地抗拒任何进一步的挤压,这时,恒星的遗骸就被压成了一颗中子星.同样,中子简并压力不可能支撑住大于3个太阳质量的燃余恒星物质,因而所有中子星包含的物质必定小于3个太阳的质量.中子星的密度值一般是每立方厘米6亿吨.
自然界里,有许多恒星有巨大的质量,有些星系甚至包含40或50个太阳质量的物质.这类恒星的遗骸很有可能大于3个太阳质量,这类恒星的遗骸是电子、中子简并压力所无法支撑的.自然界中没有任何力量能支撑住它们,因此,在严酷无情的引力作用了它们只能不停地收缩.成万亿吨的燃余恒星物质的无比巨大质量从四面八方向里挤压,使这颗星变得越来越小,这颗恒星就这样从宇宙中消失了,遗留下来的东西被称为黑洞.它由一个奇点(单一的点)和视界组成.
黑洞以贪婪的、永无满足的方式吞噬东西,物体一旦掉进黑洞就永远从我们的宇宙中移去了.因为这种物体不再是我们宇宙的一部分,所以它的许多特性便再也检测不到.加到黑洞上去的不管是l公斤白金,1公斤氢,或者1公斤有生命的组织,我们只把它看作是加上去三公斤质量,并不考虑在此之前它是什么东西.
参考文以
1 黑洞与弯曲时空.W.J卡夫曼著,何妙福 车饱印译.北京:科学出版社,1987,9
2 恒星和星云. W.J卡夫曼著,马星恒 杨 建 译.北京:科学出版社, 1988, 4[科目] 物理
[关键词] 物理科普/趋肤效应
[文件] wlkp67.doc
[标题] 趋肤效应
[内容]
趋肤效应
亦称为“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种现象称“趋肤效应”。趋肤效应使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。[科目] 物理
[关键词] 物理科普/晶体二极管
[文件] wlkp16.doc
[标题] 晶体二极管
[内容]
晶体二极管
亦称为“半导体二极管”。一种由半导体材料制成的,具有单向导电特性的两极器件。早期的半导体二极管是用金属丝尖端触在半导体晶片上制成的,称为点接触二极管,通常在较高的频率范围内作检波、混频器用。目前大多数的晶体二极管都是面结型的,它是由半导体晶片上形成的p-n结组成,或由金属同半导体接触组成,可用于整流,检波、混频、开关和稳压等。除一般用途的二极管外,还有一些用于特殊用途,利用特殊原理制成的二极管。例如:(1)肖特基二极管(又称为金属-半导体二极管):用某些金属和半导体相接触。在它们的交界面处便会形成一个势垒区(通常称为“表面势垒”或“肖特基势垒”),产生整流,检波作用。在这种二极管中,起导电作用的是热运动能量比较大的那些载流子,所以又叫“热载流子二极管”。这种二极管比p-n结二极管有更高的使用频率和开关速度,噪声也比较低,但工作电流较小,反向耐压较低。目前它主要用作微波检波器和混频器,已在雷达接收机中代替了点接触二极管;(2)隧道二极管:它是一种具有负阻特性的半导体二极管。目前主要用掺杂浓度较高的锗或砷化镓制成。其电流和电压间的变化关系与一般半导体二极管不同。当某一个极上加正电压时,通过管的电流先将随电压的增加而很快变大,但在电压达到某一值后,忽而变小,小到一定值后又急剧变大;如果所加的电压与前相反,电流则随电压的增加而急剧变大。因为这种变化关系,只能用量子力学中的“隧道效应”加以说明,故称隧道二极管。它具有开关、振荡、放大等作用,应用在电子计算机和微波技术中;(3)变容二极管:它是利用p-n结的电容特性来实现放大、倍频、调谐等作用的一种二极管。由于它的结电容随外加电压而显著变化,所以称为“变容二极管”。制造变容二极管所用的半导体材料主要用硅和砷化镓。在作微波放大时,它的优点是具有很低的噪声;(4)雪崩二极管:亦称为“碰撞雪崩渡越时间二极管”。是一种在外加电压作用下可以产生超高频振荡的半导体二极管。它的工作原理是:利用p-n结的雪崩击穿在半导体中注入载流子,这些载流子渡越过晶片流向外电路。由于这一渡越需要一定的时间,因而使电流相对于电压出现一个时间延迟,适当控制渡越时间,在电流和电压的关系上会出现负阻效应,因而能够产生振荡。雪崩二极管主要用在微波领域作为振荡源;(5)发光二极管:一种在外加正向电压作用下可以发光的二极管。它的发光原理是:在正向电压作用下,p-n结中注入很多非平衡载流子,这些载流子复合时,多余的能量转化为光的形式发射出来。发光二极管经常用作电子设备中的指示灯、数码管等显示元件,也可用于光通讯。它的优点是工作电压低,耗电量小体积小、寿命长。制造发光二极管所用的半导体材料主要是磷砷化镓、碳化硅等。[科目] 物理
[关键词] 物理科普/原子弹
[文件] wlkp80.doc
[标题] 原子弹
[内容]
原子弹
以纯铀-235或纯钚-239作核燃料(或称炸药),将它们做成半球形的两块,每一块的体积小于临界体积,因此单块存在不能引起核裂变的链式反应。但当两块合成一块时,将大于临界体积,中子倍增系数K比1大很多,只要有一个中子进入,链式反应将开始,并非常激烈地进行。将这两块半球形的核燃料,分开安装在炸弹中,其中一块被固定,另一块后面装上普通炸药和引爆装置。当引爆装置引起普通炸弹爆炸时,就把两块炸药迅速压在一起,成为一个整块,这时核裂变开始并发生激烈的链式反应,大量能量在极短的时间内放出,因而形成剧烈爆炸,这就是原子弹爆炸的原理。[科目] 物理
[关键词] 物理科普/人工磁化
[文件] wlkp3.doc
[标题] 人工磁化方法的最早实践
[内容]
人工磁化方法的最早实践
我国11世纪的《武经总要》一书中,关于指南鱼的人工磁化方法,是世界上人工磁化方法的最早实践。
  这一方法的原理,是先把铁叶鱼烧红,让铁鱼内部的分子能动增加,从而使分子磁畴从原先的固定状态变为运动状态。然后使烧红的铁叶鱼沿着地球磁场方向位置,通过强大的地磁场迫使运动着的分子磁畴顺着地球磁场方向重新排列(由无规则排列到规则排列),这时铁鱼就被磁化了。最后,“蘸水盆中,没尾数分则止”,使它迅速冷却,把分子磁畴的规则排列固定下来,同时也是淬火过程。最后“以密器收之”,可能是把指南鱼放在天然磁石旁边让它保持磁化或继续磁化。这种利用地球磁场的作用使钢针磁化的方法,领先欧洲四百多年。[科目] 物理
[关键词] 物理科普/二氧化碳激光器
[文件] wlkp48.doc
[标题] 二氧化碳激光器
[内容]
二氧化碳激光器
二氧化碳激光器是以CO2气体作为工作物质的气体激光器。放电管通常是由玻璃或石英材料制成,里面充以CO2气体和其他辅助气体(主要是氦气和氮气,一般还有少量的氢或氙气);电极一般是镍制空心圆筒;谐振腔的一端是镀金的全反射镜,另一端是用锗或砷化镓磨制的部分反射镜。当在电极上加高电压(一般是直流的或低频交流的),放电管中产生辉光放电,锗镜一端就有激光输出,其波长为10.6微米附近的中红外波段;一般较好的管子。一米长左右的放电区可得到连续输出功率40~60瓦。CO2激光器是一种比较重要的气体激光器。这是因为它具有一些比较突出的优点:第一,它有比较大的功率和比较高的能量转换效率。一般的闭管CO2激光器可有几十瓦的连续输出功率,这远远超过了其他的气体激光器,横向流动式的电激励CO2激光器则可有几十万瓦的连续输出。此外横向大气压CO2激光器,从脉冲输出的能量和功率上也都达到了较高水平,可与固体激光器媲美。CO2激光器的能量转换效率可达30~40%,这也超过了一般的气体激光器。第二,它是利用CO2分子的振动-转动能级间的跃迁的,有比较丰富的谱线,在10微米附近有几十条谱线的激光输出。近年来发现的高气压CO2激光器,甚至可做到从9~10微米间连续可调谐的输出。第三,它的输出波段正好是大气窗口(即大气对这个波长的透明度较高)。除此之外,它也具有输出光束的光学质量高,相干性好,线宽窄,工作稳定等优点。因此它在国民经济和国防上都有许多应用,如应用于加工(焊接、切割、打孔等),通讯、雷达、化学分析,激光诱发化学反应,外科手术等方面。[科目] 物理
[关键词] 物理科普/固体激光器
[文件] wlkp50.doc
[标题] 固体激光器
[内容]
固体激光器
这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子(如Cr3+);(2)大多数镧系金属离子(如Nd3+、S2+、Dy2+等);(3)锕系金属离子(如U3+)。这些掺杂到固体基质中的金属离子的主要特点是:具有比较宽的有效吸收光谱带,比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉(AL2O3)、钇铝石榴石(Y3Al5,O12)、钨酸钙(CaWO4)、氟化钙(CaF2)等,以及铝酸钇(YAlO3)、铍酸镧(La2Be2O5)等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;具有良好的光谱特性、光学透射率特性和高度的光学(折射率)均匀性;具有适于长期激光运转的物理和化学特性(如热学特性、抗劣化特性、化学稳定性等)。晶体激光器以红宝石(Al2O3:Cr3+)和掺钕钇铝石榴石(简写为YAG:Nd3+)为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。[科目] 物理
[关键词] 物理科普/太阳能电池
[文件] wlkp74.doc
[标题] 太阳能电池
[内容]
太阳能电池
把太阳能直接转变为电能的装置。一般是在电子型硅单晶的小片上用扩散法或离子注入法渗入一薄层的硼或磷,以得到p-n结,再加上电极而成。当光照射到薄层表面时,两极间就产生电动势,一些小型电器如计算器等用灯光照射即可工作,但主要还是用太阳光做为能源,因此也称为“日光电池”或“阳光电池”。可用作人造卫星上仪表的电源。除硅外,化合物半导体砷化镓等也是制作太阳能电池的好材料。[科目] 物理
[关键词] 物理科普/电子计算机
[文件] wlkp45.doc
[标题] 电子计算机
[内容]
电子计算机
电子计算机包括模拟计算机和数字计算机两大类,都具有度量和计算的简单观念。然而通常所指的计算机,都指数字计算机而言。实际上,每架大型的数字计算机,包括有成千个恒温器,求积计和小型模拟计算机,这些仪器都是以度量他量,来计算某量的。电子计算机的构造极为复杂,通常可分为输入、输出、记忆、计算及控制五大部分。又记忆、计算及控制三大部分称之为“中央处理机”。图3-89为其方框图。电子计算机的计算,是有一定的法则。通常它在作计算或逻辑运算时,已有一部分的法则储存于电子计算机中,其余的法则如数目字或指令,则由外界输入。因此,电子计算机在作运算时,必须将许多输入资料事先存储于记忆单位,然后再根据需要,依次自储存单位取出,进行计算。如图3-89记忆单位与计算单位是相互沟通的,记忆单位所存储的资料,送入计算单位中,经过运算后的结果,再送回记忆单位储存。此外,指令执行的先后次序,必须根据需要而且有一定的规则,因此电子计算机除了以上两单位外,必须有一控制单位,来执行所需要的指令。经由计算的结果,并不能永远储存于记忆单位,必须取出,而用数目字或字母表达于报表或卡片上。电子计算机的功能,除了可以预测变幻无常的气象、进行医疗诊断,帮助引导人们到月球去,加强各大城市之间的通讯等。电子计算机还有绘制建筑图样和商业图表的能力,并被用来绘制各种美术图案。现在电子计算机已成为现代化办公室不可缺少的手段,在发达的国家电子计算机已进入家庭和生活中。[科目] 物理
[关键词] 物理科普/光导纤维
[文件] wlkp5.doc
[标题] 光导纤维
[内容]
光导纤维
光导纤维是利用全反射规律而使光沿着弯曲途径传播的光学元件。它是由非常细的玻璃纤维组成束,每束约有几万根,其中每根通常都是一种带套层的圆柱形透明细丝,直径约为5~10微米,可用玻璃、石英、塑料等材料在高温下控制而成。它已被广泛地应用于光学窥视(传光、传像)和光通讯。光导纤维的结构如图4—6所示,内层材料选取的折射率大,外层材料的折射率低,就是要在内外层之间的界面上产生全反射,以保证光的传输效率。如图4—7所示,单箭头线表示临界光线,它在内外层分界面上的入射角等于或小于临界角A。若在折射率为n0的媒质中入射角大于i0的那些光线(以双箭头表示),在n1、n2分界面上的入射角就小于A,这些光线无法通过纤维而在其中传播。只有在媒质n0中其顶角为2i0的锥体内的全部光线才能在光学纤维中传播,根据临界角的定义
和折射定律
n0sini0=n1sini1
可得
所以对于一定的n1和n2,i0的值是固定的,纤维所容许传播的光线所占的范围是一定的。要使更大范围内的光束能在光学纤维中传播,应该选择n1和n2的差值较大的材料。通常把n0sini0的值叫做光导纤维的数值孔径。光导纤维可用于潜望镜和内窥视系统,它可以窥视人眼所观察不到的或有损于人体健康的地方。国防上可以制成各种坦克、飞机或舰艇上的潜望镜。医学上可以用来制作胃、食道、膀胱等内腔部位进行检查和诊断的各种医用窥镜。如果配有大功率激光传输的光学纤维,还可进行内腔激光治疗。由于光纤通讯与电通讯相比具有许多优点,诸如抗电磁干扰性强、频带宽和保密性好、通讯容量大,设备轻巧,制取纤维的二氧化硅的资源又十分丰富。近年来已有数百条光纤通讯线路在世界各地进行试验或正式运行。光导纤维的问世,为光能的应用开辟了更广阔的天地。[科目] 物理
[关键词] 物理科普/超子
[文件] wlkp37.doc
[标题] 超子
[内容]
超 子
质量超过核子(中子、质子)的各种重子。超子包括三种
子。这三种超子为:(1)Λ°(lambda)粒子——只有一种,不带电,其质量约相当于1,115.4Mev。(2)Σ(sigma)粒子——共有三种:Σ+,Σ°,Σ-。并且还有与其相当的反粒子。Σ+带正电,质量约相当于1,189.4MeV。Σ°不带电,其质量约相当于1,192.3MeV。Σ-带负电,其质量约相当于1,197.2MeV。(3)Ξ(ksi)粒子——共有两种:Ξ°和Ξ-,还有其相当的反粒子。Ξ°不带电,其质量约相当于1,314MeV;Ξ-带负电,其质量约相当于1,321MeV。超子都不能稳定存在,经过一定的平均寿命后,即衰变为其他基本粒子。其中:(1)Λ°粒子的半衰期约为2.6×10-10秒,其主要衰变方式为
Λ°→P+π-
Λ°→n+π°
(2)Σ+粒子的半衰期约为0.79×10-10秒,其主要衰变方式为
Σ+→P+π°
Σ+→n+π+
(3)Σ-粒子的半衰期约为1.58×10-10秒,其主要衰变方式为
Σ-→n+π-
(4)Σ°粒子的半衰期很短,约为10-14秒,很显然Σ°的衰变主要是一个电磁交互作用的反应,因此在衰变中有光子被放出来,其反应方式为
Σ°→Λ°+γ
(5)Ξ°粒子的半衰期约为3×10-10秒,其主要衰变方式为
Ξ→Λ°+πo
(6)Ξ粒子的半衰期约为1.75×10-10秒,其主要衰变方式为
Ξ-→Λ°+π-
Ξ粒子也称为递次粒子,因为其主要的衰变方式是先衰变为Λ°粒子,然后Λ°粒子再衰变为质子和介子。[科目] 物理
[关键词] 物理科普/激光
[文件] wlkp55.doc
[标题] 激光
[内容]
激 光
用电学、光学及其它方法对工作物质进行激励,使其中一部分粒子激发到能量较高的而又能维持时间较长的所谓亚稳态上去,当这种状态的粒子数量大于能量较低状态的粒子数时,叫做粒子数的反转。由于场效应的作用,处于高能态的粒子受到感应而跃迁到低能态,同时发生光的辐射,这种辐射称为受激辐射。这种辐射又感应其他高能态的粒子发生同样的辐射。受激辐射的特点是辐射光和感应它的光子同方向、同位相、同频率并且同偏振面。若把激光的工作物质置于谐振腔内,则光辐射在谐振腔内沿轴线方向往复反射传播,多次通过工作物质,使工作物质中处于反转态的粒子不断受到感应而发光,一个粒子的辐射感应一大片造成雪崩似的放大效果,而形成一束强度很大、方向集中的光束,这种光束称之为激光。激光的特点是:具有很好的单色性、方向性和相干性,并且亮度极高。(1)单色性——如氦氖激光器发射出频率为4.74×1014赫兹的红色激光,它的频带宽仅是9×1012赫兹。(2)方向性——激光光源的光束延伸几公里后扩展范围的线度不到几厘米,而探照灯延伸几公里后的扩展范围的线度有几十米。(3)相干性——受激辐射满足干涉条件,因而激光具有很好的相干性。(4)高亮度——由于激光能把巨大的能量高度集中地辐射出来。如果把强大的激光束会聚起来照射到物体上,可以使物体的被照部分在不到千分之一秒时间内产生几千万度的高温。自从激光问世以来,不但使古老的光学又变得生气勃勃,并促使许多科学技术领域发生了巨大的变化,诸如激光手术刀,激光切割,直至激光武器等等。[科目] 物理
[关键词] 物理科普/战斗机
[文件] wlkp7.doc
[标题]  国产歼五喷气战斗机
[内容]
国产歼五喷气战斗机
  歼五是沈阳飞机制造公司生产的亚音速喷气战斗机,是中国制造的第一种喷气式飞机。沈飞于1955年初开始,根据前苏联提供的米格-17Φ喷气歼击飞机为原型进行仿制。1956年7月19日,歼五原型机首次试飞成功,同年9月停产,共生产767架。该机主要用于昼间截击和空战,也具有一定的攻击能力。其改进型歼五甲,机头装有雷达,用于夜间截击空战。
 歼五翼展9.60米,机长11.36米,机高3.80米,机翼面积022.6平方米。最大起飞重量6吨,最大平飞时速1145公里,实用升限16000米,最大航程1560公里。装1台WP-5涡论喷气发动机。机头左侧2门23毫米机炮,机头右侧1门37毫米机炮;左右翼下可各挂1颗100~250公斤炸弹。
求[科目] 物理[关键词] 物理科普/导弹驱逐舰[文件] wlkp10.doc[标题] 俄罗斯导弹驱逐舰访问上海[内容]俄罗斯导弹驱逐舰访问上海导弹驱逐舰是以舰对舰导弹为主要武器对海上目标实施打击,兼有防空、反潜、护航等任务的多用途的水面攻击型战舰。一般排水量在3000-7000吨。其主要作战任务是为大型舰队和运输船队护航。其他武器装备有舰炮、高炮、对空导弹、反潜深水炸弹、鱼雷等
为什么比重大于水的钢铁战舰可以漂浮在水面航行呢?
 同学们还记得在中学物理中学过的“浮力”吗?当物体浸入液体中,所浸入的部分就要排开这部分的液体,当排开液体的质量和物体的总质量相等时,物体就停止下沉了。如果继续下沉的话,物体排开液体的质量将大于物体的总质量,物体就会上浮。因此,舰船的水下部分的体积是比较大的。我们可以通过观察舰船的吃水刻度来计算舰船的载重。想一想怎么计算?(假设刻度反映的是吃水部分的体积数)
对了!载重量=刻度数×液体的比重 - 舰船的自重
判断一下,同一艘舰船在江水和海洋里,它的吃水哪一种深?(海水的比重大于江水的比重)[科目] 物理
[关键词] 物理科普/电子显微镜
[文件] wlkp31.doc
[标题] 电子显微镜
[内容]
电子显微镜
是一种电子仪器设备,可用来详细研究电子发射体表面电子的放射情形。其放大倍数和分辨率都比光学显微镜高得多。因为普通光学显微镜的放大倍数和分辨率有限,无法观测到微小物体。以电子束来代替可见光束,观察物体时,分辨率就没有波长要在可见光谱之内的限制,不过电子透镜无法作得像光学透镜那样完美。因此理论上,电子显微镜所具有的分辨率并不可靠。目前电子显微镜的分辨率可达10-7厘米(约为原子直径的两倍)。通常电子显微镜的放大率是200~200 000倍,再经照相放大可达1000 000倍。电子显微镜有两大类:(1)发射型。(2)电磁、静电扫描型。前者用于研究电子放射现象;后者用以增加普通光学显微镜的应用范围。1924年法国物理学家德布洛意指出电子和其他的粒子也都具有和光类似的波动性质。他还求出了计算它们波长的公式
式中m是粒子的质量而v是它的速度,h是普朗克常数。此公式发明的年代较早,后来由美国科学家德维生及革末用实验证明其正确性。既然正确,也就告诉人们:虽然电子是一种可称重量,可数数目,可以被电子枪发射的粒子,但它同时又是一种波。从公式中我们可以看到,如果使电子运动的速度十分巨大的话,它就可以明显地显示出波长极短的波动性。如果在光学显微镜中被观察物的大小比光波波长还小的话,人们就不能分辨出来。在实用上通常取波长λ的三分之一作为限度,光波波长约在6×10-5厘米左右,它的三分之一就是2×10-5厘米了。然而,有很多科学家急待观察的微小东西如病毒体、胶体粒子及结晶结构的大小都在这限度以下,既然如此,如果我们把一颗运动中的电子加速,使它产生巨大的速度,从而有极短的波长,则利用此原理制成的电子显微镜就能观察到极微小的物体了。把电子加速的办法是在真空中加上若干万伏的高电压,电子就会以极快的速度射出,其波长可能会达到4×10-5厘米这样短的长度,也就是
体。当然这是理论上的结果,在实际上由于仪器等等原因,不可能达到这样理想的地步。但无论如何,电子显微镜已可以放大五万倍以上;而有些精良到可将物体放大十万倍。电子显微镜中有一个电子枪,电子在枪集束射出,正像光学显微镜中利用光学透镜的成像作用得到显微的放大像一样,在电子显微镜中用磁透镜,使电子束会聚成像。我们把一片待观察的物体,例如一片很薄的晶体,放在电子显微镜中,电子束就会射向这片物体上,在一块荧光幕上就会得到一个放大的影像。如果在电子显微镜中用感光的底片代替荧幕的话就可以得到一张微观世界的珍贵图片。而一些特别好的电子显微镜,甚至可以观察到一些巨分子的结构!这些图片在科学研究上的价值十分重大。当然,在电子显微镜中不会这样简单,它要涉及电子射线通过物体产生不同的散射而造成明暗不同的影响。最近,有些电子显微镜是利用电子束的反射来观察较厚的物体例如病菌、病毒及其他极微小物体的巨分子组织。而最新的显微镜用的却不是电子显微镜,而是离子显微镜借以达到更短的波长,米勒曾经利用氦的离子显微镜成功地拍摄到金属表面的单独分子运动!这种离子显微镜可以分辨原子之间相隔百万分之二十七厘米的空隙,它是目前显微镜中最好的一种。[科目] 物理
[关键词] 物理科普/人造地球卫星
[文件] wlkp70.doc
[标题] 人造地球卫星
[内容]
人造地球卫星
凡火箭、太空航具,或其他人造物体经设计并置于绕地球运转之轨道上者,均称为“人造地球卫星”。人造卫星是牛顿在他《Principin》一书中所拟出来的理想实验,图1—20是从他的书上复印出来的。从一山顶射出来的子弹,当它们的初速度愈快,离山脚的距离就愈远。当速率足够高时,它将绕地球作圆周运动。人造地球卫星绕地球运行的轨道为圆形或椭圆形两种。若使卫星沿圆形轨道运行,必须注意发射方向一定要水平,发射速度必须等于圆轨道速度,如有稍许偏差,必不能成圆形轨道。椭圆轨道对发射角度与速度无上述限制,但其近地点应在300公里以上,远地点应在2000公里以上。若近地点在300公里以内会受稀薄大气阻力,而使卫星失速而坠落。据测试卫星的近地点如在500公里以上,运行时间可维持在一年以上。如近地点恰在300公里的高度,则只能维持半月之久。若其近地点只达160公里,恐运行不满一周,即因大气阻力而使之坠落。据资料判定,假定近地点在500公里高度,大约可维持5~10年,这需要用事实来判断。[科目] 物理
[关键词] 物理科普/通讯卫星
[文件] wlkp75.doc
[标题] 通讯卫星
[内容]
通讯卫星
火箭、飞弹、太空航具,或其他人造物体被置入绕地球公转之轨道上者,均称为人造卫星。而作为通讯用的卫星则称为“通讯卫星”。通讯卫星有两种,被动的和自动的。被动的通讯卫星仅仅是一具反射器。播送站向那卫星发射讯号,这讯号被传送到地面上另一个遥远的接收站。自动的通讯卫星接收讯号后,把它加强,再把它发送出去。它们包含有接收、加强和播送的设备,以特殊的电池或太阳能电池作动力。为了把通讯微波信号,传送得更远,经常采用同步通讯卫星。所谓同步卫星,是指卫星经发射后,它与地球某点的相关位置不变,实际上这些卫星并非在那里静止不动,因为要达到同步的目的,卫星必然要以和地球自转的角速度相同的速度围绕地球转动。根据开普勒第三定律,卫星绕地球的周期因其平均轨道高度增加而增长。故在某一定高度时可期望致使卫星的周期与地球自转周期相同,如此则卫星与地球某点之相关位置可以不变,这个高度大约是35783公里。此种高度的卫星称为同步卫星。严格说来,仅是高度这一要求还不够,而必须又是在赤道面中圆形轨道上的卫星才真正能与地球某点相关位置不变。需要正圆形轨道是根据开普勒第二定律而来,此定律说明卫星在椭圆轨道上时其速度永远在改变,在最低点时为最高速,最高点时为最低速,故在椭圆轨道上的同步卫星,因为速率不定的结果,对地球上某点时而偏东时而偏西。卫星在赤道面轨道运行时称之为赤道轨道,如果轨道平面与赤道面成一个角度时,这个同步卫星称之为倾斜同步卫星,这时卫星对地球上某一点来说会时而偏北时而偏南。以这样的同步卫星作为通讯用的卫星就称之为“同步通讯卫星”由于这种卫星和地球上的某一地区处于同步,如果在赤道上空36000公里以外的高处,设置三颗同步卫星,就可以把微波信号传到全世界的任何地区。[科目] 物理
[关键词] 物理科普/温差电偶温度计
[文件] wlkp76.doc
[标题] 温差电偶温度计
[内容]
温差电偶温度计
利用温差电偶来测量温度的温度计。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计。若在温差电偶的回路里再接入一种或几种不同金属的导线,所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计。这种温度计测温范围很大。例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃。[科目] 物理
[关键词] 物理科普/恒星
[文件] wlkp32.doc
[标题] 离我们最近的恒星
[内容]
离我们最近的恒星
我们人类居住的地球是太阳系的一个普通成员,太阳则是银河系中一颗普通的恒星。银何系中约有1000亿颗恒星,其中离我们太阳系最近的一颗恒星叫做比邻星,它位于半人马座,离太阳的距离是422光年。光年是天文上表示距离的单位,是指光在一年中所走的路程,约94605亿公里。422光年相当于399233亿公里。迄今为止,人类发射的宇宙飞船飞得最快的要算“旅行者”号,它的速度是每小时52000公里,如果我们想乘“旅行者”飞船到比邻星去旅行,来回一次就得17万年,以我们短暂的生命,目前根本不可能实现这个愿望。宇宙之大,虽说是比邻也远在天涯啊!
  上面是说离太阳系最近的一颗恒星。至于离地球最近的恒星就是太阳。太阳和地球的平均距离约为15亿公里,天文上把这个距离当作1个天文单位。
  离地球最近的天体要算月球了,它是一颗卫星,与地球的平均距离是384401公里,“旅行者”号飞船要不了8个小时就可以从地球到达月球。这在空间时代的今天,诗人们再也不必发出:“明月几时有,把酒问青天,不知天上宫阙,今夕是何年”的感叹了![科目] 物理
[关键词] 物理科普/霍耳效应
[文件] wlkp40.doc
[标题] 霍耳效应
[内容]
霍耳效应
当电流垂直于外磁场方向通过导体时,在垂直于电流和磁场的方向的导体两侧产生电势差的现象。电势差的大小与电流和磁场强度的乘积成正比,而与物体沿磁场方向的厚度成反比。比例系数称霍耳系数,它同物体中载流子的符号和浓度有关。一般说来,金属和电解质的霍耳效应都很小,但半导体则较显著。因此,研究固体的霍耳效应可以确定它的导电类型以及其中载流子的浓度等;利用半导体的霍耳效应可以制成测量磁场强度的磁强计、微波技术及电子计算机中的元件等。有一个厚度为d、宽为l的导电薄片,沿x轴通有电流强度I。当在y轴方向加以匀强磁场B时,在导体薄片两侧(图中的A,A')产生电势差UAA'。这就是霍耳效应。假设所讨论导电薄片的载流子(参与
可知,这些正电荷的载流子所得到的力沿+Z轴方向。若薄片中载流子为负电荷,q<0,则

轴方向的洛仑兹力
f1=qvB
设载流子为正电荷,由于洛仑兹力的作用,正电荷将在A侧堆积,而在A'侧出现负电荷,并产生由A指向A'的横向电场Et。显然Et对q的作用力fe=qEt,与fL=qvB反向,当
qEt=qvB
或当电场Et满足
Et=vB
时相同的运动状态,同时A,A'两侧停止电荷的继续堆积,从而在AA'两侧建立一个稳定的电势差UAA'
又电流强度I=nqvL·d,n为单位体积的载流子数。则载流子的漂移速度
v=I/nqLd
将其代入UAA'=vBl得
若载流子为负电荷,作与前相同的讨论,仍然得到上式,不过式中q<0,因而UAA'<0即A'点的电势高于A点。只要我们将式中的q理解为代数
k称为霍耳系数,与所测材料的物理性质有关。当载流子q>0时,k>0,
由实验测得霍耳系数k,从而确定该材料的载流子浓度n,以及载流子的电性能(q>0或q<0)。霍耳效应广泛应用于半导体材料的测试和研究中。例如用霍耳效应以确定一种半导体材料是电子型(n型——多数载流子为电子)还是“空穴”型(p型——多数载流子为空穴)。半导体内载流子的浓度受温度、杂质以及其它因素的影响很大,因此霍耳效应为研
原子价的金属符合,而对双原子价的金属以及半导体材料,霍耳系数不能写成这种形式,必须用量子理论来说明。但半导体材料的霍耳系数k与其载流子浓度n之间仍有反比关系。利用霍耳效应的霍耳元件有很多方面的用途:例如测量磁场;测量直流和交流电路中的电流强度和功率;转换信号,如把直流电流转换成交流电流并对它进行调制,放大直流或交流讯号等。[科目] 物理
[关键词] 物理科普/链式反应
[文件] wlkp62.doc
[标题] 链式反应
[内容]
链式反应
当一个中子引起一个铀核裂变后,裂变中放出的中子继续能引起其他铀核裂变,并且能不断继续下去。例如,铀-235的核吸收一个中子后发生裂变,同时放出二到三个中子;除去损耗以外,这些中子中如能至少剩下一个以引起另一个铀-235核裂变,链式反应就可持续不断。在天然铀中,99.3%是铀-238,只有0.7%是铀-235。铀-235俘获各种能量的中子都会发生裂变,而且俘获慢中子发生裂变的几率较大。铀-238和快中子作用时,大多俘获中子后形成铀-239,并不发生裂变;如果铀-238和慢中子作用,它们只发生弹性碰撞,而不发生裂变反应。因此铀-238的存在是不利于裂变反应的继续进行的。因此作为核燃料的铀均采用浓缩铀(其中铀-235的含量比天然铀中的含量高)。各种浓缩度的铀已广泛应用于原子核反应堆和原子武器中。[科目] 物理
[关键词] 物理科普/最贵重的衣服
[文件] wlkp23.doc
[标题] 最贵重的衣服
[内容]
最贵重的衣服
乘坐阿波罗飞船奔向月球的宇航员,临行之前必须穿上一套特殊的宇宙服。 到月球上去探险和考察,宇航员要经历各种各样的风险。为了保证宇航员的生命安全,完成考察任务,宇宙服内装有各种精密的仪器,而且安排得十分巧妙。宇宙服主要由三部分组成。第一部分是保护性宇宙服,是由十几层能防微流星、能保暖的织物制成的连衣裤。第二部分是一人轻便型生命保证系统,外形是个背包。背包的内部结构非常复杂,可以供给宇航员呼吸用的氧气,可以进行压力通风,可以为宇宙服换气,可以过滤掉循环中产生的杂质和臭气。包中还有电源以及无线电通讯设备,供宇航员通话和将各种遥测数据传给地面。第三部分是紧急供氧设备,当背包内的仪器一旦发生故障,它可以提供30分钟的氧气,以应急用,让宇航员有时间去排除故障。
  这套宇宙服总重83千克,在月面上重14千克。由于精致复杂,造价很高,一套宇宙服价值30万美元,可算是最贵重的衣服了。[科目] 物理
[关键词] 物理科普/核反应堆
[文件] wlkp51.doc
[标题] 核反应堆
[内容]
核反应堆
使原子核裂变的链式反应能够有控制地持续进行而获得核能的装置。是利用原子能的一种最重要的大型设备。如果裂变反应达到一定强度后,控制中子倍增系数K=1,这时裂变链式反应就能有控制地按照这一强度进行下去,不发生爆炸而输出巨大能量。按照不同的目的和要求,反应堆有许多型式。原子核反应堆主要有三种类型,它们是非均匀反应堆,均匀反应堆和增殖堆。(1)非均匀反应堆:此种反应堆的中心部分用重混凝土屏蔽,以防止各种放射性射线对反应堆周围人们的伤害。堆芯部分装着铀棒,这些铀棒是浓缩铀,这些铀棒插在减速剂(通常为石墨或重水)中,减速剂的作用是使裂变产生的高速中子和石墨或重水的原子碰撞后变成慢中子,慢中子不会被铀-238吸收,但能引起铀-235的分裂,所以减速剂使中子倍增系数K增加。堆芯中还插有控制棒,它们插在各层铀棒之间,通常是用碳化硼或镉制成的,它能吸收中子,控制棒推入深些,吸收的中子就多,逐渐拉出吸收的中子就渐渐减少,通过控制棒插入的深浅可以控制堆芯内的中子数,从而控制了链式反应的速度。堆芯的外面是传热剂,如液态钠吸收了反应堆放出的能量以后,由泵打到热交换器,在那里把热量传给水,然后再回到堆芯去循环。水获得热量后成为蒸气,可以推动汽轮机工作。可用于发电机组的动力,核潜艇的动力等。(2)均匀反应堆:这种反应堆是将浓缩铀的盐类溶解在重水中(重水又作为减速剂),然后通入堆芯,堆芯有一定的体积,在其中进行链式反应,镉棒插入堆芯以控制中子倍增系数K。溶解着铀的盐类的重水本身同时作为传热剂,这就是均匀反应堆。(3)增殖反应堆:当铀-238俘获中子以后,经过两次β蜕变形成了钚-239。在天然铀中主要是铀-238,其中有一部分钚-239。如果有一个钚-239在中子作用下发生了裂变反应,同时放出几个中子。其中有一个中子引起其他的钚-239发生裂变,而剩下的中子被铀-238俘获后蜕变成钚-239,这就意味着,这块天然铀中不但有钚-239的链式反应,而且还有钚-239的增殖。一个增殖反应堆,中心处是活性区,活性区内是铀-235和稀释剂,铀-235裂变而放出快中子。这些快中子射入围成一圈的铀棒使钚-239增殖,当铀棒中的钚-239增加到一定的程度,增殖和链式反应就开始。这种反应堆可以用较易得到的天然铀作铀棒,其功率也由控制棒来控制。当需要停止反应堆的工作时,可将所有的控制棒全部插进。将大量的中子全部吸收,链式反应停止,反应堆停止工作。反应堆的核燃料的链式反应,不象其他的化学燃料,在燃烧时需要氧气。所以核潜艇的隐蔽性更强。可以长期沉于水下,不需要到海面上吸气。[科目] 物理
[关键词] 物理科普/检波
[文件] wlkp59.doc
[标题] 检波
[内容]
检 波
将接收电路中之高频交变电流整流,便成为单向之脉动直流,以引起膜片振动。这种把无线电波讯号变成声音信号的手段,称为检波。凡具备单向传导或一方向导电优于另一方向的工具,都可以担任检波工作。解调制或检波的程序正与调制的程序相反,检波就是将在已调制载波所含的信号分出。关于对已调频载波的检波比较复杂,通常先使已调频载波成为等幅已调频载波,以减低杂波,后将已调载波的频率变化,转变成声频信号波幅变化。通常接收电波听筒膜片具有惯性,不能随振动电流之频率而振动(即使随之振动也超出听力范围而无法觉察);故需另置检波器于谐振电路中,以使调幅波变为单向脉动电流通入收话器中,再由此变为声波传入人耳。最常用的检波器有晶体检波器,二极管检波器和真空管检波器等等。[科目] 物理
[关键词] 物理科普/核反应
[文件] wlkp24.doc
[标题] 核反应
[内容]
核反应
利用天然放射性的高速粒子或利用人工加速的粒子去轰击原子核时,由于相互作用而产生各种变化的过程叫做核反应。在核反应过程中将有能量放出或吸收。所放出或吸收的能量叫做反应能。放出能量的核反应叫做放能反应,吸收能量的核反应叫做吸能反应。历史上第一个
产生了
的核反应。现在利用各种加速器和原子核反应堆,能进行上万种核反应,由此获得了千余种放射性同位素和各种介子、超子、反质子、反中子等基本粒子。任何核反应的过程都遵守能量、动量、质量和电荷等守恒定律。这方面的研究对于了解原子核的结构,基本粒子间的相互作用。以及探索新的能源等方面都有重大意义,通过裂变反应而释放出来的巨大能量在技术上已能加以控制和利用。要发生吸能反应,入射粒子的能量必须大于阈能。阈能的值大于反应能。如果入射粒子的能量小于阈能,吸能反应就不能发生。反应能的量值和符号,可以按爱因斯坦相对论的质能关系式加以确定。如果引起反应的粒子和靶核的静止质量分别为Ma和Mx,反应后产物的静止质量分别为Mb和My,根据质量守恒定律应满足下式:
如果Δm>0,则在反应中是放出能量的。反之,当Δm<0时,反应将吸收能量。反应中放出或吸收的能量为
ΔE=Δmc2[科目] 物理
[关键词] 物理科普/战略导弹
[文件] wlkp1.doc
[标题] 中国东风5型战略导弹
[内容]
中国东风5型战略导弹
该导弹采用惯性制导方式,射程8000英里,动力装置为两级自携式液体燃料火箭发动机, 战斗部装核弹头。主要任务是对敌方军事、政治、经济等重要地区实施毁灭性的打击,也是一种威慑性的武器装备。其作战过程是:本地发射穿越大气层进入外层空间,在外层空间以第一宇宙速度运行,到达敌方目标区时重返大气层进入战斗飞行状态,此时导弹上的计算机按预先输入的地标进行末级制导,通过计算各种大气物理参数,精密控制导弹的发动机的喷气方向,修正飞行误差,以使弹头准确命中目标。我国的卫星回收技术就是洲际导弹技术的和平利用。
导弹就是一种精确制导的火箭,中国古代就发明了火箭并用于军事领域。过去的火箭多采用固体燃料,即最早的黑火药。由于过去固体燃料的作用时间短,火箭飞行的大部分时间是惯性飞行,因此这对制导非常不利。在近代火箭技术上大量采用了液体燃料,这种燃料可以采用液体泵及阀门对燃烧进行量化控制,使火箭的飞行始终处于动力状态,同时制导技术也相应简单可靠。
液体燃料的加注时间比较长,且储存时间短,因此不大适于作战需要。除和平时期的卫星发射采用液体燃料火箭外,世界上几个发达国家又开始对固体燃料的量化燃烧控制进行研究。我国是少数几个掌握这项技术的国家之一。我国潜艇发射的导弹就是固体燃料的导弹,这标志着我国火箭技术的先进程度。
同学们,无论火箭采用什么燃料,其中的科学道理是一样的。那就是我们中学物理中学过的“动量守恒”原理。想一想,如果你是火箭设计师,你将采取那些方法来改进火箭的设计?也许你的想法恰恰和我们当今的科学家一样呦,只不过他们多干了几年,比你的做法更具有可行性罢了。[科目] 物理
[关键词] 物理科普/雷达
[文件] wlkp61.doc
[标题] 雷达
[内容]
雷 达
雷达是利用无线电技术进行侦察和测距的设备。它可以发现目标,并可决定其存在的距离及方向。雷达将无线电波送出,然后经远距离目标物的反射,而将此能量送回雷达的记发机。记发机与目标物间的距离,可由无线电波传雷达的目标物,再由目标物回到雷达所需的时间计算出。雷达的基本原理与无线电通讯系统的原理同时被人所发现。赫兹与马可尼两人都曾用超短波试验其反射情形,这也就是所谓雷达回波。赫兹用金属平面及曲面证明,电波的反射完全合乎光的反射定律。同时赫兹度量脉冲的波长及频率,并且计算其速度也发现与光相同,这也就是所谓的电磁辐射。雷达送出短暂的电波讯号的程序,称为脉冲程序。雷达的基本作用原理有些相似于声波的回声。唯一与声波测量距离的不同点,在于雷达系统具有一指示器,指示器中包含有一个与电视收像管相同的观察管。此管可将雷达所发出的脉冲及回波,同时显示于其标有距离的基线上。还有其他指示器,使雷达借天线所搜索的资料,制成一个图,从图上立即可以定出目标物的区域距离及方向。因为雷达的作用完全是借电波的反射原理而成,所以必须用频率在1000兆赫到10 000兆赫的类光微波方行。雷达所发射的电波可借抛物面形的反射器,使其成为极度聚焦的波束,这就像探照灯所射出的光束一样。此波束借旋转天线及抛物体形反射器的精密控制,有系统地对空间进行搜索。当波束从目标物反回来时,天线所指的方向,就表示目标物对天线的水平方位角。以角度为单位所表示的水平方位角,通常都显示于指示器上。为了决定目标物与雷达间的距离,雷达的发射脉冲距接收到回波的时间,必须精确测定。因为雷达电波在空中以每秒约30万公里的光速进行,因此在每微秒的时间内,电波行进约为300米。由于雷达脉冲必须从雷达行至目标物,再由目标物回到雷达,但目标物距雷达的距离,为雷达脉冲总行程的一半。约为每微秒l50米。此时间可利用电子束在阴极射线管的屏幕上,以直线扫描指示出。借电子束,以已知变动率(如以每微秒0.01米)作水平偏向,因此电子束打在萤光屏上所留的痕迹,就形成一个时间标度,或直接用尺,来表示。如雷达天线送出一个1微秒长的脉冲,同时指示器的阴极射线管电子束在屏幕上,以每100微秒0.0254米的变动率开始扫描。再假设雷达脉冲在30000米的距离从一飞机反射回天线。当1微秒长的脉冲离开天线的同时,在雷达指示器的左侧也显示出一个0.025厘米长的主脉冲(发射脉冲)。由天线发射的脉冲,到飞机进行了30000米的距离,需时100微秒,然后反回天线也需100微秒。结果微弱的脉冲回波也显示于指示器上,其与主脉冲之间有5厘米的距离,或指示为200微秒。由于脉冲本身有1微秒的长度,所以量度距离时,必须量度两脉冲的前缘间距离。由于回波信号太弱,所以一个单一回波信号显示于指示器,很难被发现。因此回波信号,必须于每秒内,在指示器上重复显示数次,显示的方法是借电子束随天线扫描的速率(通常天线以每分钟15到20转转动)在指示器上扫描而得。雷达无论在平时及战时,都已被广泛的应用。在二次世界大战时使用雷达的目的,只是为了预知敌机的接近。用于预警网的预警雷达,预警雷达天线都是极大的转动抛物面形反射天线,或静止双极矩阵天线。战时雷达的应用很快就被扩展到地面拦截控制,以及高射炮和探照灯的方向控制等。这些所谓的射击控制雷达不仅能察知敌机的所在,并能自动决定高射炮的发射方向及使其发射。由于雷达可度量其与目标物间的距离,当然也可以从飞机上测量距地面的垂直高度。常用的各种脉冲式雷达就可度量一架飞机的高度,供飞行员飞行的参考。然而对很低的高度(低于1000米),因距离太近,脉冲式雷达的回波有与其发射出的主脉冲合并的趋势。因此大多数雷达测高仪都不用脉冲输出,而用等幅调频电波。雷达测高仪的发射天线,送出一垂直无线电波束,此电波的频率连续不断的变化。当信号离开发射天线的瞬间,其信号的频率为某一频率。然后当信号由地反射回到测高仪的接收天线后,因接收机内有一相位鉴别器(或简称为鉴相器),鉴相器可将接收到的回波,与正在发射出的信号频率(或相角)作一比较。因为当回波回到接收天线,已经过了一段时间,当然此时发射天线所发信号的频率,也已改变。利用已知每秒周数的频率偏差,就可决定出电波由发射天线到地,在回到接收天线的时间,因此可计算出飞机距地的高度。关于电波往来所需的时间与相应的高度,事先已经算出,并直接标示在指示器上,所以可以直接从指示器上读出飞机的高度数值。除此之外,雷达还可以用在飞机和船舶的导航,作为某一城市、机场,高山或某一特定点的辨别符号用的雷达指标,都已事先标示于航行图上。[科目] 物理
[关键词] 物理科普/潮汐发电
[文件] wlkp28.doc
[标题] 潮汐发电
[内容]
潮汐发电
  由于引潮力的作用,使海水不断地涨潮、落潮。涨潮时,大量海水汹涌而来,具有很大的动能;同时,水位逐渐升高,动能转化为势能。落潮时,海水奔腾而去,水位陆续下降,势能又转化为动能。海水在运动中所具有的动能和势能统称为潮汐能。
  潮汐能的重要应用之一是发电。潮汐发电就是在海湾或有潮汐的河口建筑一座拦水堤坝,形成水库,并在坝中或坝旁放置水轮发电机组,利用潮汐涨落时海水水位的升降,使海水通过水轮机时推动水轮发电机组发电。从能量的角度说,就是利用海水的势能和动能,通过水轮发电机转化为电能。潮汐发电的优点是成本低,每度电的成本只相当火电站的八分之一。
  1913年德国在北海海岸建立了世界上第一座潮汐发电站。我国大陆海岸线长,潮汐能资源很丰富。1957年我国在山东建成了第一座潮汐发电站。据不完全统计,我国潮汐能蕴藏量为1.1亿千瓦,年发电量可达2750千瓦时,其中可供开发的约3850万千瓦,年发电量870亿千瓦时,大约相当于40多个新安江水电站。[科目] 物理
[关键词] 物理科普/激光器
[文件] wlkp29.doc
[标题] 激光器
[内容]
激光器
激光器是能够产生激光束的机器。激光束是一细束光能,它不象普通光束,它只由一种颜色的光组成,因此也不象普通光那样分散。从切割金属到完成精细的外科手术,激光在许多领域都被应用。在医院里,外科医生应用激光束做一些高难度的手术,图中所示就是在用激光器做眼科手术。一个光盘只读存储器的驱动器是一个小激光器。激光束识别出光盘上微小凹痕的格式,驱动器把他们转变为计算机能识别的数字。大功率的激光束能够切割金属板。当激光束射到金属板上时,金属变得很热以至熔化。[科目] 物理
[关键词] 物理科普/真空度
[文件] wlkp81.doc
[标题] 真空度
[内容]
真空度
绝对真空的状态是不可能达到的,只能在某种程度上接近这种状态,我们把接近真空程度称为真空度。通常所指的真空是指十分稀薄的空间,在这里压强远小于正常的大气压强,残存的气体对所在空间进行的物理过程并无明显影响。至于低到何种程度,则应由过程的具体要求而定。真空度的高低是由气体压强的大小来量度。一般压强小于13.33帕(10-1托)的空间叫低真空,0.13~0.13×10-5帕(10-3~10-8托)范围内的空间叫高真空,压强小于0.13×10-5帕(10-8托)的空间称为超高真空。目前人工所能制造的最高真空压强约为0.13×10-10帕(10-13托)。[科目] 物理
[关键词] 物理科普/半导体激光器
[文件] wlkp78.doc
[标题] 半导体激光器
[内容]
半导体激光器
这是以一定的半导体材料做工作物质而产生受激发射作用的器件。其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。电注入式半导体激光器,一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS、InAs、InSb等)做工作物质,以其他激光器发出的激光作光泵激励。高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS、CdS、ZhO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。[科目] 物理
[关键词] 物理科普/激光
[文件] wlkp30.doc
[标题] 激光的形成与发展
[内容]
激光的形成与发展
自从六十年代初发明激光器和观察到激光现象以来,激光原理、技术、应用等都获得蓬勃的发展。对基础科学、生命科学、信息科技、军事技术、能源技术,先进制造机器,工农业的发展都已起着很大影响,预期对二十一世纪的科学与技术,国民经济与国防的发展,都将发挥越来愈重要的作用。
本文将就激光的形成与发展作一简要阐述。
一、历史的回顾
激光器的发明是与物理学长期基础研究的积累与技术的进步分不开的,至少可追朔到过去的50年。首先十九世纪末引起物理学观念的革命,1900年德国物理学家普郎克,最先提出辐射的能量是量子化的概念,解释了黑体辐射的能量分布与光波波长的关系。以后如光电效应等一系列实验结果建立了光的量子论的观念,1913年丹麦物理学玻尔最早用量子论的观念于原子结构的研究,建立起原子中电子运动状态的变化与光辐射的联系,1917年爱因斯坦进而阐述辐射的量子模型时指出,原子中吸收光子只有一个过程,而原子电子发射光子存在两个过程,即自发发射与受激发射,这是首次被理论预言光源发射光子可能被感生辐射或称受激发射,并且指出受激辐射的光子与人射的光子具有相同频率,相同位相,相同偏振,相同传播方向等特性。但对通常光源在通常发光时温度处于平衡态下受激辐射是无法观察到的。因之以后多人在研究观察受激辐射,引入负温度、负吸收等概念,直至1955年由美国科学家唐斯等与苏联科学家普罗霍洛夫等,首次提出三能级模型理论,同年实现了氨分子微波激射器。后于1958年美国的唐斯与萧洛,前苏联科学家巴索夫、普罗霍洛夫分别提出在红外及可见光波段实现量子放大器的理论。终于1960年首次被美国的梅曼用红宝石作工作介质,用脉冲氙灯作光泵,发明红宝石激光器及观察到激光现象,很快在许多国家的实验室重复了该项实验。
二、激光发射的基本过程
(1)辐射的吸收与发射。众所周知,物质是由原子构成的,原子是由带正电的核与绕核运动的电子所构成。在微观世界中电子绕核运动能量不能有任意值,只能取某些固定值,为了表达电子的能量状态,通常用符号来表示,在一般条件下,电子都处于原子中最低态的能量值,称为基态,当电子离开基态至能量提升状态时称为激发态(),电子由基态至激发态,或由激发态返回基态时,一般伴随有电磁辐射过程,这些辐射可以是可见光、红外线,或紫外线,依赖于二态之间的能量差。与电磁波频率相应的光子能量值为
其中、表示二能级的能量值,为电磁辐射频率,为固定值,称为普郎克常数,其值为
光子是辐射能量的最小单位,一般讲来只有正好符合二能级差的光子才能引起光子与电子间的相互作用,产生电子在不同能级间的跃迁。这些作用过程可分为三种,可用图1加以说明。
图中代表跃迁机率系数,其中有为自发跃迁机率,为受激跃迁机率,为吸收机率。在外场作用下,若外场光场强度为,则总吸收机率与发射机率为:吸收=为光子密度,发射=,其中、为上下能级的粒子数浓度。在平衡条件下、的比例符合波兹曼分布,即/=。其中为波兹曼常数,为绝对温度。所以吸收总是大于发射,观察到的只是吸收过程和自发发射,光能只会减少。
(2)粒子数分布反转。为了获得光通过的介质,光场能量获得增加,一般要使相应于入射光子的能级的粒子数分布反转,即高能态的粒子数大于低能级上的粒子数,不符合正常温度的平衡统计分布,这从简单二个系统中较难加以考虑。如果考虑有三个或四个以上能级的系统,在某一对特定能级间粒子分布反转是可以达到的。为了说明形成分布反转的能级状态,这里只选用了一个具有四能级系统的例子。
(见图2)
图2()所描述的正常温度的粒子数分布,为粒子数占有随能量增加呈指数减少。图2()中的基态粒子数大于激发态的粒子数,当基态粒子吸收能量被激发至高激发态,由很快驰豫至态,粒子在态积累,态粒子数可大于态粒子数,即>,在、态之间形成粒子分布反转,当的光子,通过这样的介质时,由于表现出能量的增加,从而获得增益放大。光通过该介质时如用指数函数描述,则,其中为人射光强,I为出射光强,k为放大系数,当k是为负值,即通常介质,表现为吸收,因之,具有光放大作用的介质,称为负吸收介质,光通过这种介质,光子强度获得增加。只要泵的速率足够大,与之间的驰豫足够快,该过程可以持续不断的进行,以保持与间的持续反转分布。以:激光介质为例,毫秒,毫秒,可以足够达到要求。其中代表至态的寿命,是至态的寿命,是自发跃迁机率的倒数。
(3)光学谐振腔。光通过粒子数分布反转的介质获得了光增益或放大,通常有限长度的介质单程增益很低,为了获得足够的放大,需要依赖在介质的两端放置一对相互平行的反射镜,光在反射镜间可以为回多次通过,相当于无限制地延长了粒子数反转的介质,能够维持光线多次反射的平行反射镜组,称光学谐振腔。构成反射镜组可以是一对平行平面,也可以是一对球面,或泛共焦球面,即二球面的焦距不一定相同,焦点不一定重合,图3是谐振腔的作用的说明。(附图3)
图中1代表具有粒子分布反转的激活介质,2、代表平行平面反射镜对,通常其平行度要保持几个弧度秒以内,3、代表不沿轴向传播的光线,很快成为散射光,4、代表沿介质轴向传输并垂直于光腔二端面反射镜,来回多次反射的光束,当反射镜之一的透射率不为零时会有光输出,通常即为激光。
对反射镜对的相互配置有一定限制,依赖于两个镜面的曲率半径和间距大小,光线在反射镜间来回反射或称光振荡,可以是稳定的或不稳定的,一般设计的激光谐振腔,需要满足稳定条件。若令两个镜面的曲率半径为及,镜间距离为,光学谐振腔稳定的条件为:
对平面平行腔,是属极限情况。对低增益的激光介质,谐振腔镜面的反射率要求很高,通常反射镜面镀多层介质膜,其反射率可达99.9%以上,对红外及紫外器件,也可直接镀金属,如镀金、镀银,对高增益、大功率器件也有用非稳腔结构,反射镜的输出端不镀膜,甚至镀减反膜,此外行波腔等其他类型结构的应用,也对特定器件中使用。
(4)激光器振荡的阈值条件。通常由于介质的吸收、散射,晶体的不完整性。反射镜的透过率不为零等因素,激活介质的腔内损耗必然存在。为了形成激光,光在粒子数反转介质中来回传播,其每次的行程的增益必须克服或大于损耗,才能使振荡持续。当振荡中光放大的增益等于光损耗的条件,称为振荡的阈值,一旦介质的增益超出阈值增益,光强的增长将非常激烈。假定激光介质的增益与损耗的条件是均匀分布,则光在谐振腔中来回一次的增益为:
其中、是二端镜面的反射率,为激活介质的长度,K为增益系数,r为损耗系数。当=1时为振荡的阈值条件,对二能级间光束传输的小信号增益系数为:
其中、为及态的粒子数密度,、是二态能级的简并度,为介质的折射率,为真空光速。对应阈值的粒子数密度差
与此相应
当激光可持续产生振荡并产生输出,原则上已知、、及体积损耗系数,可估算出所需粒子数密度的反转值。
(5)激励条件的某些考虑。为了使激光介质形成粒子数反转,必需有外加的激励手段,依赖于激光介质的类型,其激励方式是很不相同,通常对晶体激光介质,只能用光泵激励,要选择光泵辐射的光谱与介质相应的吸收光谱相匹配,为了光泵的激励效率,外加的聚光系统也是必不可少的。光泵的光源可选择高压氙灯、氟灯、汞灯,有连续与脉冲的工作方式,其形式有直管形、共轴式,或螺旋形等,一般选用市售商品便于更换。近年来,更有用二极管激光器作-为晶体的激励光源,因为二极管激光器体积小,效率高,发光效率常达60~70%,与上能级吸收能更有效匹配。是较理想的全固化小型泵源,半导体激光器的多片集成,连续输出功率已达千瓦级,本身既是很好的激光器,又可作成很好的泵源。聚光系统,通常用椭圆聚光镜;圆柱聚光镜、漫反射聚光器等增加有效耦合入射泵的光能。为了供给光泵的能量,尚需有相应的电源,依赖于连续或脉冲输出,电源的电压、线路多有不同组合。对重复脉冲及连续激光器、介质、光泵及反射聚光系统,都要有效的冷却,以确保多余的热量可很快散发,否则由于激光介质的升温,不仅会影响激光输出的质量、稳定快,甚至会使激光器振荡停止。为了估算所需泵光的功率,可以解光泵粒子分布的速率方程组,对前述四能级系统,在阈值条件下,单位体积介质所需的泵功率。为:
该方程中只考虑了均匀展宽线型对光泵功率的需要,其中是中心发射频率,是线宽,为介质的折射率,该方程没有涉及装置的几何耦合效率、光源光谱效率、电光转换效率等因素。红宝石激光器是三能级系统,光泵需要激励至少基态1/2的粒子于激发态,因而泵的阈值功率是较高的。
气体激光器的激励方式是多种多样的,依赖于具体的激光气体介质,可用光泵、放电、电子束、化学、气体动力激励等多种手段。以放电为例,小功率HeNe激光器通常采用直流辉光放电,或射频放电激励。、离子激光器用电弧大电流等离子体放电激励,准分子激光器则用快速高电压脉冲放电激励,对激光器则用直流、高频、快脉冲、电子束、微波激励等多种手段,还可以横流放电、气体动力等方法。目前激光器的种类,可以说是五彩缤纷,各种介质都可成为激光介质,图4给出自体激光器与气体激光器的典型结构示意图。
图4()中1为激光介质,2为激励光源3、为谐振反射镜对,4、为聚光反射镜。5为高压高频脉冲触发信号,C为电容器,R为电阻,E为高压电源。图4(b)中1为气体激光介质,2、为布儒斯特窗,3、为共焦反射镜对,C为电容,R为电阻,E为电源。
三、激光的输出特性
前节仅简述了激光是怎样产生的,其所以受到广泛的重视,是因为激光器这一新型光源射出的激光与普通光源发射的光缆有很大的不同,可以概括为方向性、相干性单色性、高亮度等。
(1)方向性。普通光源,如灯泡发光、蜡烛发光、太阳光线都是由光源在立体角内均匀照明,而激光是由激光器的谐振腔振荡多次发出的光束,只垂直于谐振腔表面输出,其发散度一般只达毫弧度,即激光束行经1公里,其波束直径约1米。进一步用倒置望远镜,光束发散角可达毫弧度,直接由地球上照射,其在月球表面上的光束,直径也仅数公里。可以用于人造卫星测距、大坝安装准直、建筑物的准直、矿山开挖的自动跟踪、定向等,这是激光与通常光源的最直观的不同。
(2)相干性与单色性。即取激光束波横截面上任意二点与光束前后任意两点所组成的电磁波幅,彼此是相互关联的,前者表现为空间相干性,后者表现为时间相干性。通常两个点光源发出的光强在空间交汇于一点时是光强相加,而相于光源中两点发光在空间某点交汇,光强是其振幅相加,因为光强是比例于振幅的平方,则为单一光强的四倍,相当于,及的关系,时间相干性,即光束前后各点彼此位相有关联,表现出单一的正弦函数了则颜色单一称为单色性好。当光波为相干叠加时可于空间观察到明暗条纹,为了说明干涉程度引进干涉条纹的可见度,其定义为:
、代表干涉条纹的最大与最小处光强。是不相干,是条纹最清晰,称完全相干,称为部分相干。
倘若将一束光分裂为二束,并使该二束光行过不同的光程,若复合此H束光仍保持位相关系称为时间相干性,与此相应的长度为相干长度,为相干时间,与激光线宽的关系为:,光源线宽愈窄,相干时间愈大,相干长度愈大,通常光源的线宽很大,相干长度很短,是不相干的,激光的单色性好,它的相干长度可由几厘米直至几公里以上。利用激光的相干性常用于干涉计量法中,迈克逊干涉仪常用于测相干长度,法卜里一帕洛干涉仪常于测量光源线宽,利用双缝干涉等实验,可用于识别光源的空间相干性。激光的相干性常用于距离测量,全息技术及广泛的一类计量领域,用作频率、时间。长度的标准。相干及非相干光对材料和有机体的作用也不尽相同。
(3)高亮度。亮度是表示光源的明亮程度,定义为光源在单位表面积、单位立体角所发射的光功率,若考虑光源的线宽,则需计及单位波长间隔内的单色亮度。激光的亮度很高,由于激光的方向性和大功率,其亮度较常规光源高许多数量级。其典型值:He-Ne激光~1010瓦·米-2·立体角一1,Q调制红宝石激光器~1016瓦·米一2·立体角一1,经放大后的玻璃激光器~1021瓦·米一2·立体角一1。而太阳的亮度1.3×106瓦·米一2·立体角一1。
随着激光输出加大,新的高阶模也会参加振荡,这种随模式增加的功率增长,一般不改变或很少改变光源亮度。因而为了有效利用激光功率密度,提高单模输出的激光功率将更为基本,当然在一些只要激光能量的场合,将不受限制。
对高质量的激光器,激光束是单模高斯强度分布,对于焦长为f的透镜,光束发散角为时,其焦点的半径若考虑光束受行激限制,有。此处.F即透镜的F数,则具有波长的量级。对几毫瓦的He-Ne激光器,焦点的功率密度也可达106瓦·厘米一2。对高功率激光器这一数值可增加3至10个数量级。因而可聚焦激光束能对金属钢板切割、打孔、焊接、合金化、表面热处理,在最硬的材料,如钻石上钻孔,对机体做手术,使原子、分子瞬间离化、分离。利用单颇高功率,选择性吸收等概念,可以形成特殊的物化、生化的反应通道。从而开发更深层次的光与物质相互作用的理论与应用。
四、五彩缤纷的激光家族·
从第一台红宝石激光器发明以来,激光器的种类已进人百花齐放的时代,甚至有人认为,所有物质都可能做成激光介质,构成激光器,无论固体、液体、气体、等离子体、半导体,又无论无机材料、有机材料、聚合物、染料等都可用作工作介质。从运作的时间分类有连续、脉冲、Q调制、重复脉冲、短脉冲,超短脉冲器件,脉冲的时序已可控制,由锁模,至脉压缩等技术应用,超短脉冲已达皮秒(10-2秒)及飞秒(1飞秒=10-15秒)领域,最短的脉冲记录已达4.5飞秒脉宽,只包括几个光波波长。以功率分类:有小功率,中等功率,大功率,超高功率器件,当前最大功率的器件,连续输出超过一百万瓦,单脉冲输出大于几十万焦耳。用光波波长分类,可分为远红外、红外、近红外、可见、紫外、远紫外、软X射线。X射线激光器也能运转,其波长几乎覆盖了电磁波的整个波段。此外又可分为单频、稳频、选频、调频、多彼长、多色,直至白光激光器。激光束的质量,即模式也是重要因子,模是电磁场在空间组成的稳定花样,一种模式对应于一种花样,模可分为横模、纵模、单模、多模、选模、锁模器件等等,激光腔的结构不同,调整略有差别,模式则有变化。因为激光器光学谐振腔的长度远大于光波波长,所以是一种多模式的光学谐振腔。此外,激光器的激励方式,由于其能量供给方式不同,又可分为光泵、放电激光器、电子束泵;气体动力激励、化学反应激光器、量子阱激光器、自由电子激光器等等。
五、结束语
激光器发展的40年来,人类对光及光与物质相互作用的认识有了更新的发展,过去光源的发光是自发的,无序的,原子的运动与发光是无规可寻的。激光器的发光是非自发的,发光是有序化进行,原子是被组织起、协调一致的发光,这是由输入多余能量的熵减少过程。从而对光与物质相互作用有了更高层次的了解,由线性光学发展为非线性光学、传统光学是眼的延伸,现代光学已与电子技术相结合形成光电子信息技术,甚至发展而成为产业。由于激光器中输出大量光子,光子的能量也发挥出越来愈重要的作用。在甘一世纪知识经济时代,激光对高科技的影响也将是与日俱增,估计甘一世纪激光对高科技的作用将在:(1)生命科学,其中包括激光医学与农业应用,(2)能源科学,其中包括同位素分离。受控核反应发电、太阳能利用中发挥作用,(3)信息科技,尤其在光纤通信、计算机技术中发挥作用,(4)先进武器系统,包括战术与战略武器系统的两个方面,(5)先进制造机器、未来工业系统,将包括光、机、电、算、材的综合自动控制、智能化、灵巧机器中起关键技术作用。
此外对各学科中渗透也会广泛发生影响。[科目] 物理
[关键词] 物理科普/加速器
[文件] wlkp58.doc
[标题] 加速器
[内容]
加速器
加速器是用人工方法把带电粒子加速到较高能量的装置。利用这种装置可以产生各种能量的电子、质子、氘核、α粒子以及其它一些重离子。利用这些直接被加速的带电粒子与物质相作用,还可以产生多种带电的和不带电的次级粒子,象γ粒子、中子及多种介子、超子、反粒子等。目前世界上的加速器大多是能量在100兆电子伏以下的低能加速器,其中除一小部分用于原子核和核工程研究方面外,大部分用于其他方面,象化学、放射生物学、放射医学、固体物理等的基础研究以及工业照相、疾病的诊断和治疗、高纯物质的活化分析、某些工业产品的辐射处理、农产品及其他食品的辐射处理、模拟宇宙辐射和模拟核爆炸等。近年来还利用加速器原理,制成各种类型的离子注入机。以供半导体工业的杂质掺杂而取代热扩散的老工艺。使半导体器件的成品率和各项性能指标大大提高。很多老工艺不能实现的新型器件不断问世,集成电路的集成度因此而大幅度提高。[科目] 物理
[关键词] 物理科普/调频
[文件] wlkp47.doc
[标题] 调频
[内容]
调 频
频率调制是借改变载波的频率变化而成,载波的振幅保持恒定,因此在接收后,已调载波振幅的变化,根本不必再出现于声频电波中,所以电杂波引起的振幅变化,完全没有作用。这也表示不受杂波影响的频率调制信号杂波比值,比振幅调变小得多,因此频率调制发射机的功率虽低,也可以得到相同音质的接收。再者,因为频率调制载波的频道,包括所传送20~15000赫的整个声频频带,所以频率调变具有高度传真性。频率调制所需频道的频带宽,比振幅射频调制大。在发展频率调制的同时,很宽的特高频率的频带从(30~300兆赫)内的信息传送,已经可得到了。频率调制广播所规定的总频带为83~108兆赫(即总频带宽为20000千赫),每一广播电台所允许频道的频带宽为200千赫;这表示在同一地区,可以同时有100家电台存在。调频也有它的缺点,如要达到调频的作用,发射机的载波频率必须要在一较宽的频率波段内偏移。虽然优良调频广播,并不需要发射机的频率偏移达最高允许限度(指定中心频率上下各75000赫),但高传真度性能的调频广播电台差不多都能接近这个限度。这样宽的频率范围在通用无线电广播波段是无法容纳的,故通用调频发送指定于88~108兆赫之间。在这频率波段中,调频遭遇到和电视观众所习知的同样缺陷,这便是调频的接收主要只限于离发射天线视线距离内,边远区的接收效果,在每天内的变化极大。调频的另一缺点是每一发射机需要一较宽的频率波段,在波段重叠的情形下便只能收到最强的发射机。这样便需要把全国各地发射机的工作频率,仔细地加以分配,以避免任何可能的重叠。[科目] 物理
[关键词] 物理科普/电子感应加速器
[文件] wlkp44.doc
[标题] 电子感应加速器
[内容]
电子感应加速器
电子感应加速器是回旋式加速器的一种,它是利用变化的磁场而激发的感生电场而达到加速电子的目的。在圆形电磁铁的两极间,有一环形真空室,在交变电流激励下,两极间出现交变磁场,这交变磁场又激发一感生电场。从电子枪射到真空室的电子受到两个作用力:(1)受感生电场沿切向的加速力;(2)受磁场沿径向的洛仑兹力,充当维持圆周运动的向心力。[科目] 物理
[关键词] 物理科普/电镀
[文件] wlkp42.doc
[标题] 电镀
[内容]
电 镀
利用电解作用,在物件之表面镀以一层金属以防止生锈,并使部件美观的加工工艺。电镀时以被镀之物件作为阴极,并以欲镀金属的盐或酸溶液为电解质,通以电流则溶液分解,金属附着于物体表面。阳极为欲镀金属逐渐被溶解,以保持溶液的浓度一定。用这种方法可以将各种金属镀在物体表面,在金、银、镍、铬等金属,不易生锈又比较光亮,所以很多机件和生活日用品往往都是电镀件。电镀时析出的金属皆为结晶体,晶体越细越均匀越好。在通常电镀工艺中的注意之点有:(1)电镀时电镀液里的金属离子浓度越低越好。而液体中的金属盐浓度则大些为宜;(2)要有适当的添加剂,添加少量的明胶等胶状物质。此种物质与金属共同被阴极吸收,可使被电镀的金属结晶变小;(3)电流密度不宜过大,因为电流密度小时结晶核的生成较迟,故结晶的成长甚佳,电镀比较均匀。电流密度过大结晶核多,各部分离子浓度不均匀,以致发生树脂状海绵状等;(4)要搅拌使电镀液均匀,以得到平滑的电镀;(5)温度要适当高一点,因为温度高可以使电镀液浓度增高,因而减少含氢现象;(6)酸性不宜过强,否则生氢而妨碍电镀;(7)电镀前应把金属件的锉痕、生锈或油污等弄平滑和清洗干净,再行电镀。[科目] 物理
[关键词] 物理科普/最小的电荷
[文件] wlkp20.doc
[标题] 最小的电荷
[内容]
最小的电荷
地万物都经常带有电荷,这是因为构成物体的原子由于各种原因(如摩擦、受热、化学变化等)失去或获得电子的缘故。用现代科学方法可求得,太阳所带的总电荷量约为80库仑,电子所带的负电荷量e=1.6021892×10e-19库仑(质子所带的电荷量也是这个数值,不同的是质子所带的是正电荷)。电子的电荷是人们迄今所认识到的最小的电荷,目前已发现的基本粒子的电荷也都是这个最小的电荷的整数倍。
  但是,从60年代起,科学家们从理论上提出构成强子的基础粒子的电荷不一定是e的整数倍,而很可能是一个带有分数的电荷,即粒子所带的电荷比电子电荷e小。随后,实验物理学家也设法从多方面寻找。他们从加速器中找,从宇宙线中找,甚至从月球物质中去找……。
  美国斯坦福大学费尔班克小组,经过多年努力,于1979年1月宣称:在铌球上找到了两个分数电荷,其值分别为(0.304±0.040)e和(0.345±0.035)e。这个实验是用质量9×10e-5克的小铌球做的。他们把处于超导状态下的小铌球悬浮在由两块水平金属板构成的磁场之间,然后外加交变电场使铌球受迫振动,两测量振动幅度确定作用在铌球上的力,从而通过计算得出铌球所带的电荷。显然,这个实验与美国的物理学家密立根的测量电子电荷的油滴实验是十分相似的。
  费尔班克的实验结果,已为分数电荷的存在提供了进一步的证据。但是要确证分数电荷的存在却非易事,一方面至今还未发现处于自由状态的带分数电荷的粒子,另一方面有些科学家对费尔班克的实验结果还持有异议。若今后分数电荷的存在最终被证实,则“最小的电荷”的头衔当然要让给分数电荷了。[科目] 物理
[关键词] 物理科普/超导体
[文件] wlkp41.doc
[标题] 超导体
[内容]
超导体
在温度和磁场都小于一定数值的条件下,许多导电材料的电阻和体内磁感应强度都突然变为零的性质。具有超导性的物体叫做“超导体”。1911年荷兰物理学家卡曼林-昂尼斯(1853~1926年)首先发现汞在4.173K以下失去电阻的现象,并初次称之为“超导性”。现已知道,许多金属(如锡、铝、铅、钽、铌等)、合金(如铌—锆、铌—钛等)和化合物(如Nb3Sn、Nb3Al等)都是可具有超导性的材料。物体从正常态过渡到超导态是一种相变,发生相变时的温度称为此超导体的“转变温度”(或“临界温度”)。现有的材料仅在很低的温度环境下才具有超导性,其中以Nb3Ge薄膜的转变温度最高(23.2K)。1933年迈斯纳和奥森费耳德又共同发现金属处在超导态时其体内磁感应强度为零,即能把原来在其体内的磁场排挤出去;这个现象称之为迈斯纳效应。当磁场达到一定强度时,超导性就将破坏,这个磁场限值称为“临界磁场”。目前所发现的超导体有两类。第一类只有一个临界磁场(约几百高斯);第二类超导体有下临界磁场Hc1和上临界磁场Hc2。当外磁场达到Hc1时,第二类超导体内出现正常态和超导态相互混合的状态,只有当磁场增大到Hc2时,其体内的混合状态消失而转化为正常导体。现在已制备上临界磁场很高的超导材料(如Nb3Sn的Hc2达22特斯拉,Nb3Al0.75Ge0.25的Hc2达30特斯拉),用以制造产生强磁场的超导磁体。超导体的应用目前正逐步发展为先进技术,用在加速器、发电机、电缆、贮能器和交通运输设备直到计算机方面。1962年发现了超导隧道效应即约瑟夫逊效应,并已用于制造高精度的磁强计、电压标准、微波探测器等。近两年来,中国、美国、日本在提高超导材料的转变温度上都取得了很大的进展。1987年研制出YBaCuO体材料转变温度达到90~100K,零电阻温度达78K,也就是说过去必须在昂贵的液氦温度下才能获得超导性,而现在已能在廉价的液氮温度下获得。1988年又研制出CaSrBiCuO体和CaSrTlCuO体,使转变温度提高到114~115K。近两三年来,超导方面的工作正在突飞猛进。[科目] 物理
[关键词] 物理科普/介子
[文件] wlkp4.doc
[标题] 介子
[内容]
介 子
基本粒子的一类,包括π介子、K介子、ρ介子、ω介子、
(0、1、2)倍,即都是玻色子。介子都不能稳定存在,经历一定平均寿命后即转变为别种基本粒子。有的介子是荷电的,也有中性的。例如π介子有三种,π+和π-质量为电子的273.3倍,电荷相反,互为正、反粒子,而π°是中性的,质量为电子的264.3倍,其反粒子就是它自身。荷电K介子K+和K-互为正、反粒子,质量为966.7mc;中性K介子K■和■°互为正、反粒子,质量为976mc。中性K介子在运动时有两种组合态,
短寿命)记之。π、K、n介子的自旋都是零,有时称为标介子,ρ、ω、
年)通过核力的研究预言介子的存在,并推测它的质量介于电子与质子之间。后来在宇宙线中先后发现了μ和π介子,μ介子的质量为电子的206.6倍,现在被正式命名为μ子,不归入介子而归入轻子一类,而π介子才是核力的媒介。近几年在高能加速器中使粒子相互碰撞,新的介子(共振态)续有发现。[科目] 物理
[关键词] 物理科普/宇审大爆炸
[文件] wlkp17.doc
[标题] 最厉害的宇宙大爆炸
[内容]
最厉害的宇宙大爆炸
原子弹、氢弹爆炸时会产生巨大的能量,这是人所共知的。而太阳每秒钟辐射的能量据计算约为3?826×1033尔格,这相当于“嘀嗒”一声,在太阳上就爆炸了九百十亿颗氢弹。太阳已生存了几十亿年,这样的爆炸也持续了几十亿年。可是在银河系中,太阳的这点能量也是微乎其微的。有一种超新星在一个瞬间所释放的能量,相当于1018颗氢弹爆炸,是太阳能量的几千万倍,这更令人惊奇了。
   在宇宙中,有着千千万万个象银何系这样的星系,星系爆炸是宇宙中规模最大的爆炸。据最近美国报纸报道,科学家从不久前人造卫星自动记录下来的材料中,发现了宇宙空间中一个星系的一次大爆炸,爆炸只持续了十分之一秒,但释放出来的能量相当于太阳三千年释放的能量,这是有记录以来最强大的一次能爆炸。当科学家们看到记录这次爆炸的材料时,都惊讶得瞠目结舌,他们认为这次爆炸释放能量的比率比太阳的能量释放率大一千亿倍,如果同样的爆炸发生在银河系附近,那将使地球周围的大气层变得灼热,如果太阳也喷出与这次爆炸同样数量的能,地球就要立刻气化。由此而产生的问题:如星系内部结构是什么样的 巨大的能量究竟从何而来?……都吸引着人们去探索。[科目] 物理
[关键词] 物理科普/基本粒子
[文件] wlkp11.doc
[标题] 寿命最短的基本粒子
[内容]
寿命最短的基本粒子
所谓基本粒子的寿命,就是指粒子从产生到衰变所经历的一段时间。 迄今为止,人们所知道的基本粒子已有300多种。其中,除少数寿命特别长的稳定粒子(如光子、中微子、电子和质子)外,其他都会分别通过弱相互作用、电磁相互作用和强相互作用衰变成别的粒子。在这些会衰变的粒子中,绝大多数是瞬息即逝的,也就是说,它们往往在诞生的瞬间就已夭折。但由于引起衰变的原因不同,不同粒子的寿命(通常指粒子静止时的平均寿命)也有巨大的差异。
  通过弱相互作用衰变的粒子有20余种。其中,π±介子的寿命大致为2.6×10 -8秒,即π±介子经过一亿分之一秒就衰变成了其他秒子。一亿分之一秒,从我们日常生活中习惯了的时间概念来讲,是不值一提的;但在微观世界里,它却不能忽视,相反倒是个不太小的数字。在大量能自动衰变的基本粒子中,能活上一亿分之一秒的算是相当长寿的。
  再来看看通过电磁相互作用衰变的粒子(共两种),它们的寿命就要短得多了。π0介子的寿命是0.84×10 -16秒,η介子的寿命是3×10e-19秒。比起π±介子来,它们的寿命竟分别要短8~11个数量级。但要论寿命的最短,还轮不到它们!
  寿命最短的,则要算通过强相互作用衰变的“共振态粒子”(如?粒子、?粒子等)。它们的伙伴特别多,占基本粒子家族成员的一半以上,共200多种。它们的寿命之短达到了惊人的地步,以致于人们很难用确切的形容词来描述它们的衰变过程;粒子物理学家即使利用最优的实验手段也已无法直接测量它们,而只能用间接的方法推算出它们的寿命。它们只能生活一千万亿亿分之一秒左右,即寿命大致是10e-28秒。[科目] 物理
[关键词] 物理科普/蘑菇云
[文件] wlkp2.doc
[标题] 为什么原子弹爆炸后会有蘑菇云
[内容]
为什么原子弹爆炸后会有蘑菇云
作为普通人对原子弹的印象,除了传说中那无比巨大的破坏力外,剩下的大概只有那壮观的蘑菇云了。但是,究竟蘑菇云是怎么形成的,知道的人就寥寥无几了。下面就来介绍一下这方面的知识。 原子弹之所以不同于其它的炸弹,其关键在于它爆炸时释放的无与伦比的能量,在其爆炸中心区会产生数千万度的高温与几百万个亿帕的高压。这些高温高压迅速地影响着其周围的空气,大约在二万分之一秒的时间内就能使它周围的空气升温膨胀而又快速上升,并且依靠那上冲时的巨大能量将地面的石头、碎片、粉尘等各种物质粒上高空而形成蘑菇茎。而在上升 的过程中由于同周围低湿空气的接触,这就使得热气团的温度逐渐降到同周围气体的温度相同了,于是便向水平方向散开而形成蘑菇顶,这样一个完整的蘑菇云便形成了。 随着上升高度的增加,地面压力的逐渐减小,蘑菇茎部分的组成物便纷纷落下,最终一切恢复正常。[科目] 物理
[关键词] 物理科普/失重/宇宙开发
[文件] wlkp8.doc
[标题] 失重和宇宙开发
[内容]
失重和宇宙开发
  人造地球卫星、宇宙飞船、航天飞机进入轨道后,其中的人和物将处于失重状态.人造地球卫星、宇宙飞船、航天飞机等航天器进入轨道后,可以认为是绕地球做圆周运动,做圆周运动的物体,速度的方向是时刻改变的,因而具有加速度,它的大小等于卫星所在高度处重力加速度的大小.这跟在以重力加速度下降的升降机中发生的情况类似,航天器中的人和物都处于完全失重状态.?
  你能够想象出完全失重的条件下会发生什么现象吗 你设想地球上一旦重力消失,会发生什么现象,在宇宙飞船中就会发生什么现象.物体将飘在空中,液滴绝对呈球形,气泡在液体中将不上浮.宇航员站着睡觉和躺着睡觉一样舒服,走路务必小心,稍有不慎,将会“上不着天,下不着地”(下图).食物要做成块状或牙膏似的糊状,以免食物的碎渣“漂浮”在空中进入宇航员的眼睛、鼻孔…….你还可以继续发挥你的想象力,举出更多的现象来.?
  你还可以再想一想,人类能够利用失重的条件做些什么吗 下面举几个事例,将会帮助你思考.这里所举的事例,虽然还没有完全实现,但科学家们正在努力探索,也许不久的将来就会实现.?
  在失重条件下,融化了的金属的液滴,形状绝对呈球形,冷却后可以成为理想的滚珠.而在地面上,用现代技术制成的滚珠,并不绝对呈球形,这是造成轴承磨损的重要原因之一.
  玻璃纤维(一种很细的玻璃丝,直径为几十微米)是现代光纤通信的主要部件.在地面上,不可能制造很长的玻璃纤维,因为没等到液态的玻璃丝凝固,由于它受到重力,将被拉成小段.而在太空的轨道上,将可以制造出几百米长的玻璃纤维.?
  在太空的轨道上,可以制成一种新的泡沫材料棗泡沫金属.在失重条件下,在液态的金属中通以气体,气泡将不“上浮”,也不“下沉”,均匀地分布在液态金属中,凝固后就成为泡沫金属,这样可以制成轻得像软木塞似的泡沫钢,用它做机翼,又轻又结实.
  同样的道理,在失重条件下,混合物可以均匀地混合,由此可以制成地面上不能得到的特种合金.?
  电子工业、化学工业、核工业等部门,对高纯度材料的需要不断增加,其纯度要求为 “6 个 9” 至 “8 个 9”, 即99.9999%~99.999999%.在地面上,冶炼金属需在容器内进行,总会有一些容器的微量元素掺入到被冶炼的金属中.而在太空中的“悬浮冶炼”,是在失重条件下进行的,不需要用容器,消除了容器对材料的污染,可获得纯度极高的产品.
? 在电子技术中所用的晶体,在地面上生长时,由于受重力影响,晶体的大小受到限制,而且要受到容器的污染,在失重条件下,晶体的生长是均匀的,生长出来的晶体也要大得多.在不久的将来,如能在太空建立起工厂,生产出砷化镓的纯晶体,它要比现有的硅晶体优越得多,将会引起电子技术的重大突破.?
  在太空失重的条件下,会生产出地面上难以生产的一系列产品.建立空间工厂,已经不再是幻想.科学家们要在太空中做各种实验,青年学生也可以提出自己的太空试验设想,展开你想象的翅膀,为宇宙开发贡献一份力量吧!?[科目] 物理
[关键词] 物理科普/最小的电阻
[文件] wlkp21.doc
[标题] 最小的电阻
[内容]
最小的电阻
各种材料都有电阻。如果将某材料做成长1厘米、截面1平方米厘米的样品,则该样品的电阻就叫这种材料的电阻率。平时常用电阻率来表征材料导电的难易。良绝缘体的电阻率比良导体的要大10e25倍。良导体有铝、铜、银等。在常温下银的电阻率最小,为1.59×10e-6欧姆·厘米。为了减少因电阻所损耗的电能,人们常用铝、铜、银这类电阻小的材料来做导线,以输送电能,或传递声音、图象等信息的电信号。
  材料的电阻还会随着温度而变化。一般说来,温度越高,电阻越大;温度越胝,电阻越小。起初,人们以为温度要降到绝对零度,电阻才会为零。后来才发现,不少材料的电阻在接近绝对零度的某个温度上就会降到零,此时材料就变成了没有电阻的超导体。第一次发现超导现象是在1911年。其时,翁纳斯在作低温条件下汞的电阻与温度关系的实验,他发现汞的电阻在略低于氦的沸点处,突然降至无可测量之值。后来,不少人重复了这类实验。由于在低温下导体失去电阻,撤去电源后,其中的电流仍可经久不衰。这种超导电流持续流动的最长记录是2年,2年中虽无电源补充电流仍长流不息,毫无减弱的迹象,后来只是由于运输工人罢工,中断了液氦的供应,无法保持所要的低温,实验方告结束。利用超导体没有电阻的特点,可通以极大的电流,产生出极强磁场,以补常规磁铁不足。世界上第一个超导磁铁,在超导现象发现的50年之后,于1963年方才问世,它可产生10万奥斯特的磁场。图示照片为一与灯泡串联的线圈,当将它置于液氦中时,其电阻全部失去,灯泡发出强烈的亮光;相比之下,线圈置于常温中时,灯泡则发光微弱。[科目] 物理
[关键词] 物理科普/潮汐
[文件] wlkp27.doc
[标题] 潮汐产生的原因
[内容]
潮汐产生的原因
  到过海边的人都知道,海水有涨潮和落潮现象。涨潮时,海水上涨,波浪滚滚,景色十分壮观;退潮时,海水悄然退去,露出一片海滩。我国古书上说:“大海之水,朝生为潮,夕生为汐。”那么,潮汐是怎样产生的?
  古时候,很多贤哲都探讨过这个问题,提出过一些假想。古希腊哲学家柏拉图认为地球和人一样,也要呼吸,潮汐就是地球的呼吸。他猜想这是由于地下岩穴中的振动造成的,就像人的心脏跳动一样。
  随着人们对潮汐现象的不断观察,对潮汐现象的真正原因逐渐有了认识。我国古代余道安在《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之。”汉代思想家王充在《论衡》中写到:“涛之起也,随月盛衰。”他们都指出了潮汐与月球有关系。到了17世纪80年代,英国科学家牛顿发现了万有引力定律以后,提出了潮汐是由于月球和太阳对海水的吸引力引起的假设,从而科学地解释了潮汐产生的原因。
  原来,海水随着地球自转也在旋转,而旋转的物体都受到离心力的作用,使它们有离开旋转中心的倾向,这就好象旋转张开的雨伞,雨伞上水珠将要被甩出去一样。同时海水还受到月球、太阳和其它天体的吸引力,因为月球离地球最近,所以月球的吸引力较大。这样海水在这两个力的共同作用下形成了引潮力。由于地球、月球在不断运动,地球、月球与太阳的相对位置在发生周期性变化,因此引潮力也在周期性变化,这就使潮汐现象周期性地发生。
同课章节目录