PAGE
2008届高三物理第一轮复习教案 机械波 南京十三中高三备课组
第一讲 机械波及其图象
【基本概念与基本规律】
一、机械波
1.机械波的产生
(1)定义:机械振动在介质中的传播过程,叫做机械波。
(2)产生条件:波源和介质。
(3)产生过程:沿波的传播方向上各质点的振动都受它前一个质点的带动而做受迫振动,对简谐波而言各质点振动的振幅和周期都相同,各质点只在自己的平衡位置附近振动,并不“随波逐流”,波只是传播的运动形式和振动能量。
2.波的分类
(1)横波:质点的振动方向与传播方向垂直,突起部分叫波峰,凹陷部分叫波谷。
(2)纵波:质点的振动方向与波的传播方向在一条直线上,质点分布密的叫密部,质点分布疏的叫疏部。
3.描述机械波的物理量
(1)波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。
在横波中,两个相邻的波峰(或波谷)间的距离等于波长。
在纵波中,两个相邻的密部(或疏部)间的距离等于波长。
在一个周期内机械波传播的距离等于波长。
(2)频率f:波的频率由波源决定,在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。
(3)波速v:单位时间内振动向外传播的距离,即。波速与波长和频率的关系:,波速的大小由介质决定。
【例1】如图12-1-1,沿波的传播方向上有间距为2m的五个质点a、b、c、d、e,均静止在各自的平衡位置。一列简谐横波以2m/s的速度水平向右传播,t=0时刻波到达质点a,质点a开始平衡位置向下运动,t=3s时质点a第一次到达最高点,则下列说法中不正确的是?
( C )
A、质点d开始振动后的振动周期为4s
B、t=4s时刻波恰好传到质点e
C、t=5s时质点b到达最高点
D、在3s[思路点播]若波源向下起振,则介质中各质点也向下起振。
【例2】关于振动和波的关系,下列说法中正确的是 ( D )
A、如果波源停止振动,在介质中传播的波动也立即停止
B、物体作机械振动,一定产生机械波
C、波的速度即波源的振动速度
D、波在介质中的传播频率,与介质性质无关,仅由波源的振动频率决定
[思路点播]回忆波的基本概念。
【例3】一列在竖直方向振动的简谐横波,波长为λ, 沿正x方向传播,某一时刻,在振动位移向上且大小等于振幅一半的各点中,任取相邻的两点P1、P2 ,已知P1的x坐标小于P2的x坐标
( AC )
A、若P1P2 < λ/2 ,则P1向下运动,P2向上振动
B、若P1P2 < λ/2 ,则P1向上运动,P2向下振动
C、若P1P2 > λ/2 ,则P1向上运动,P2向下振动
D、若P1P2 > λ/2 ,则P1向下运动,P2向上振动
[思路点播]靠近振源的质点带动后面质点的振动。
二、机械波的图象
1.图象:在平面直角坐标系中,用横坐标表示介质中各质点的平衡位置;用纵坐标表示某一时刻,各质点偏离平衡位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,简谐波的图像是正弦(或余弦)曲线。
2.物理意义:某一时刻介质中各质点相对平衡位置的位移。
【例4】如图12-1-2所示为波源开始振动一个周期的波形图,设介质中质点振动的周期为T,下面说法正确的是 ( BD )
A、若M点为波源,则M点开始振动的方向向下
B、若N点为波源,则P质点振动了3T/4的时间
C、若M为波源,则P质点振动了3T/4的时间
D、若N为波源,则该时刻P质点的动能最小
【例5】已知一列在弹性绳上传播的简谐横波在某一时刻的波形,则下列说法正确的是(ABC)
A、只要绳上一点(速度不为零的点)的振动速度方向已知,就可确定波的传播方向
B、只要波的传播方向已知,就可确定此时绳子上任一点(速度不为零的点)振动的速度方向
C、波的周期等于绳上每一点的振动周期
D、波在传播过程中,绳子上的各质点将以波的传播速度沿着波形运动
[思路点播]波的产生质点振动的原因。
【例6】在均匀介质中选取平衡位置在同一直线上的9个质点,相邻两质点的距离均为L,如图(a)所示.一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,经过时间Δt第一次出现如图(b)所示的波形.则该波的 ( BC )
A、周期为Δt,波长为8L B、周期为Δt,波长为8L
C、周期为Δt,波速为12L/Δt D、周期为Δt,波速为8L/Δt
【例7】呈水平状态的弹性绳,左端在竖直方向做周期为0.4s的简谐振动,在t=0时左端开始向上振动,则在t=0.5s时,绳上的波可能是图中的 ( AC )
【例8】一列简谐横波沿直线传播,A、B、C是直线上的三个质点,如图所示。某时刻波传播到了B点,A点刚好处于波谷位置。已知波长大于7m,小于l0m,AB=14m,周期T=0.1s,振幅为5cm.再经过0. 5s,C点第一次到达波谷,则 ( AB )
A、A、C两点相距48m
B、波速为80m/s
C、到此为止,A点运动的路程为120cm
D、到此为止,A点运动的路程为125cm
第一讲 机械波及其图象 课后练习
班级__________姓名___________
1.传播一列简谐波的介质中各点具有相同的 (B )
A.步调 B.振动周期 C.动能 D.振幅
2.关于机械波的概念下列说法正确的是 (B )
A.质点振动的方向总是垂直于波传播的方向
B.波在传播过程中,介质中的质点的振动是受迫振动
C.如果振源停止振动,在媒质中传播的波动也立即停止
D.物体做机械振动,一定产生机械波
3.下列关于横波与纵波的说法中,正确的是 ( C )
A.振源上下振动形成的波是横波
B.振源左右振动形成的波是纵波
C.振源振动方向与波的传播方向相互垂直,形成的是横波
D.在固体中传播的波一定是横波
4.如图所示为沿水平方向的介质中的部分质点,每相邻两质点间距离相等,其中O为波源.设波源的振动周期为T,自波源通过平衡位置竖直向下振动时开始计时,经过T/4质点1开始起振,则下列关于各质点的振动和介质中的波的说法中正确的是 (ACD)
A.介质中所有质点的起振方向都是竖直向下的,但图中质点9起振最晚
B.图中所画出的质点起振时间都是相同的,起振的位置和起振的方向是不同的
C.图中质点8的振动完全重复质点7的振动,只是质点8振动时,通过平衡位置或最大位移的时间总是比质点7通过相同位置时落后T/4
D.只要图中所有质点都已振动了,质点1与质点9的振动步调就完全一致,但如果质点1发生的是第100次振动,则质点9发生的就是第98次振动.
5.一列横波水平方向传播,某一时刻的波形如下图所示,则图中a、b、c、d四点在此时刻具有相同运动方向的是 (BC )
A.a和c B.a和d
C.b和c D.b和d
6.如图所示,为一列简谐横波在某时刻的波动图像,已知图中质点F此时刻运动方向竖直向下,则应有 (ABD)
A.此时刻质点H和F运动方向相反
B.质点C将比质点B先回到平衡位置
C.此时刻质点C的加速度为零
D.此时刻质点B和D的加速度方向相同
7.如下图所示为波源开始振动后经过一个周期的波形图,设介质中质点振动周期为T,则下列说法中正确的是 ( B )
A.若点M为振源,则点M开始振动时的方向向下
B.若点N为振源,则点P已振动了3T/4
C.若点M为振源,则点P已振动了3T/4
D.若点N为振源,到该时刻点Q向下振动
8.一列沿x轴方向传播的横波,振幅为A,波长为,某一时刻波的图象如图所示,在该时刻某一质点的坐标为(,0)经过四分之一周期后,该质点的坐标为 ( B )
A.(5/4,0)
B.(,-A)
C.(,A )
D.(5/4,A)
9.如图所示,S点为波源,其频率100Hz,所产生的横波向右传播,波速为80m/s,P、Q是波传播途径中的两点,已知SP=4.2m,SQ=5.4m,当S通过平衡位置向上运动时,则 (A )
A.P在波谷,Q在波峰
B.P在波峰,Q在波谷
C.P、Q都在波峰
D.P通过平衡位置向上运动,Q通过平衡位置向下运动
10.细绳的一端在外力作用下从t=0时刻开始做简谐运动,激发出一列简谐横波。在细绳上选取15个点,图1为t =0时刻各点所处的位置,图2为t =T/4时刻的波形图(T为波的周期)。在图3中画出t=3T/4时刻的波形图。
11.绳中有一列正弦横波,沿x轴传播.如图7-32-14中a、b是绳上两点,它们在x轴方向上的距离小于一个波长,当a点振动到最高点时,b点恰经过平衡位置向上运动,在a、b之间画出两个波形分别表示:
(1)沿x轴正方向传播的波;
(2)沿x轴负方向传播的波,并注明①和②.
12.如图所示,有四列简谐波同时沿x轴正方向传播,波速分别是v、2v、3v和4v,a、b是x轴上所给定的两点,且ab=l.在t时刻a、b两点间四列波的波形分别如图所示,则:
(1)试推算由该时刻起a点出现波峰的先后顺序;
(2)推算频率由高到低的先后顺序。?
13.在一列沿水平直线传播的简谐横波上,有平衡位置相距0.4 m的B、C两质点,t1=0时B、C两质点的位移为正的最大值,而且B、C间有一个波谷.当t2=0.1s时,B、C两质点的位置刚好在各自的平衡位置,并且这时B、C间呈现一个波峰和一个波谷,波谷离B点为波长的1/4.试求:(1)该简谐横波的周期、波速各为多少??
(2)若波速为27 m/s,则t3=3 s时质点C的振动方向怎样??
第一讲《机械波 波的图象》参考答案
1、B 2、B 3、C 4、ACD 5、BC 6、ABD 7、B 8、B 9、A
10、设每两个相邻点之间的距离为s,则由图2可知该简谐横波的波长为,所以当时刻波传播到10号点,此时1号点在最低点、4号点在平衡位置和7号点在最高点,运用“特殊点法”可作出波形图3。
11、如图所示:
12、BDCA;DBCA
解析:现分别考查各图.对A图:λ1=l,v=λ1f1,f1=,a出现波峰时刻t1==.
对B图:λ2=,f2=,由于此时a点正向上振,故t2=.?
对C图:λ3=2l,f3=,t3==.?
对D图:λ4=,由于此时a点正向下振,故t4=.?
13、(1)T1= s,?v1=(4n+3) m/s或T2=,v2=(4n+1) m/s,其中n=0,1,2,3…(2)C向上振动
解析:(1)据题意作出t1=0时刻B、C质点间的波动图象如图(甲)所示和t2=0.1 s的波动图象(乙),可知B、C质点空间间距为波长λ,由于传播方向不明,由(甲)波形变为(乙)波形存在的两种可能.?
若波从B向C传播,则经nT1+T1时间,甲波变为乙波,即?Δt=t2-t1=nT1+T1,且v1=代入数据得: T1= s,?v1=(4n+3) m/s,?
其中n=0,1,2,3…?
同理,若波从C向B传播,则有Δt=t2-t1=nT2+T2,且v2=。
得: T2=,v2=(4n+1) m/s,其中n=0,1,2,3…?
(2)只有预先知道波的传播方向才能判定质点的振动方向,由波速公式得在Δt时间内波所传播的距离为Δs=vΔt=27×0.1 m=2.7 m=6λ+λ,故波是从B向C传播的.?Δt′=t3-t1=6T1+T1,?
则t3=0.3 s时刻C质点在“效仿”前质点Q在(甲)图的振动行为,C向上振动.?
第二讲 波的图象应用 波的特有现象
【基本概念与基本规律】
一、波的图象应用(由图象可获取的信息)
1.该时刻各质点的平衡位置、位移以及该波的波长;
2.若知道波的传播方向,可知各质点的运动方向;
3.已知该时刻某一质点的运动方向,可判断波的传播方向;
4.已知波速v的大小可求周期;
5.已知波速v的大小和方向,可画出前后Δt时刻的波形图。
【例1】一列简谐横波沿X负方向传播,下图12-2-1甲是t=1s 时的波形图,图乙是波中某振动质点位移随时间变化的振动图线(两图用同一时间起点),则图乙可能是图甲中的哪个质元的振动图线? ( A )
A、x=0m处的质点 B、x=1m处的质点
C、x=2m处的质点 D、x=3m处的质点
【例2】如图12-2-2,一列简谐横波沿一直线向左传播。直线上某质点a 向上运动到达最大位移时,a 点右方相距0.15m的b点刚好向下运动到最大位移处。则这列波的波长可能是 ( BD )
A、0.6m B、0.3m
C、0.2m D、0.1m
[思路点播]波的周期性,ab 之间是(n+1/2)个波长。
【例3】一列简谐横波沿直线ab向右传播,a、b之间的距离为2m,a、b两点的振动情况如图12-2-3所示,下列说法中正确的是( AD )
A、波长可能是 B、波长可能大于
C、波速可能大于 D、波速可能是
【例4】一简谐横波在x轴上传播。t=0时的波形图如图12-2-4所示,质点A与质点B相距1m,A点速度沿y轴的正方向;t=0.02s时,质点A第一次到达正向最大位移处。由此可知,( AB )
A、此波的传播速度为25m/s
B、此波沿X轴负方向传播
C、从t=0时刻起,经过0.04s ,质点A沿波的传播方向迁移了1m
D、在t=0.04s时,质点B处在平衡位置,速度沿y轴负方向
【例5】如图12-2-5所示,实线表示简谐波在t1=0时刻的波形图,虚线表示t2=0.5s时的波形图。(1)若T<(t2-t1)<2T,波向右传播的速度多大?(2)若2T<(t2-t1)<3T,波向左传播的速度多大?
[思路点拨]波的平移法或质点振动法都可以解决。
[答案]0.28m/s,0.36m/s。
二、波的特有现象
1.波的独立传播原理和叠加原理
独立传播原理:几列波相遇时,能够保持各自的运动状态继续传播,不互相影响;
叠加原理:介质质点的位移、速度、加速度都等于几列波单独转播时引起的位移、速度、加速度的矢量和。
两者并不矛盾:前者是描述波的性质:同时在同一介质中传播的几列波都是独立的;后者是描述介质质点的运动情况:每个介质质点的运动是各列波在该点引起的运动的矢量和。
【例6】两列波相向而行,在某时刻的波形与位置如图12-2-6所示,已知波的传播速度为v,图中标尺每个长度为L,在图中画出又经过t=7L/v时的波形。
[思路点拨]理解波的叠加基本知识。
2.波的干涉
波的干涉是两列波在特定条件下的叠加。
(1)产生干涉的条件:两列波的频率相等。
(2)现象:两列波相遇时,某些区域总是振动加强,某些区域总是振动减弱,且振动加强和减弱的区域相互间隔。
(3)振动加强区和减弱区:振动完全相同的两列波,某点到两波源间的距离之差为半波长的偶数倍(波长的整数倍),则是振动加强区;某点到两波源间的距离之差为半波长的奇数倍,则是振动减弱区。
【例7】如图12-2-7所示,S为音频发生器,A、B是两个振动情况相同的发生器,A、B间的距离为d =1m,一个人在P0P线上行走是,在P0处听到强声,到P处又听到一个强声,若L=5m,P0P=85cm,声速为340m/s,求声波的波长和频率。
[思路点拨]波的干涉中相邻明纹间距公式及波速公式,审清题意,挖掘题设的隐含条件,建立起干涉相关联的内在联系及规律方能正确求解。同时,也要明确某质点的振动是加强还是减弱,取决于两个相干波源到该质点的距离差。
A、B两发生器为相干波源,其产生的机械波在空间叠加时必产生干涉现象,P0、P为相邻的两振动的加强点,由干涉两相邻明纹间距公式,可得;由波速公式:得:。
3.波的衍射
(1)现象:波穿过小孔或障碍物,进入阴影区内。
(2)发生明显衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多。
【例8】如图12-2-8是观察水波衍射的装置,AC和BD是两块挡板,AB是一个孔,O是波源,图中已经画出波源所在区域波的传播情况,每条相邻波纹(图中曲线)之间的距离表示一个波长,则对于波经过孔之后的传播情况,下列描述中正确的是 ( ABC )
A、此时能明显观察到波的衍射现象
B、挡板前后波纹间距相等
C、如果孔AB扩大后,有可能观察不到明显的衍射现象
D、如果孔的大小不变,使波源频率增大,能更明显观察到衍射现象
4.多普勒效应
(1)由于观察者与波源之间存在相对运动,使观察者感受到的波的频率与波的实际频率不同的现象。
(2)产生的原因
观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数,当波以一定速度v通过接收者时,t内通过的其完全波的个数为N=vt/λ,因而单位时间内通过接收者的完全波的个数,即接受频率f=v/λ。
若波源不动观察者朝向波源以速度v2运动,由于相对速度增大而是的单位时间内通过观察者的完全波的个数增多,即f/=(v+v2)/λ=(1+v2/v)f ,可见,接收频率增大了,同理可知,当观察者背离波源运动时,接收频率将减小。
当观察者不动,波源向观察者以速度v1运动,由于波长变短为λ/=λ-v1T而使得单位时间内通过观察者的完全波个数增多,即f/=v/λ/=v/(λ-v1T)=vf/(v-v1)。可见,接收频率也增大;反之,减小。
【例9】当人听到声音的频率越来越低时,可能的原因是 ( AC )
A、声源和人都是静止的,声源振动的频率越来越低
B、人静止,声源远离人做匀速直线运动,声源振动的频率不变
C、人静止,声源远离人做匀加速直线运动,声源振动的频率不变
D、人静止,声源远离人做匀减速直线运动,声源振动的频率不变
【例10】一个观察者在铁路近旁,当火车迎面驶来时,他听到的汽笛声的频率f1=440HZ,当火车驶过他身旁后,他听到的汽笛声的频率降为f2=392HZ,空气中的声速一直为340m/s,求火车的速度。
[思路点拨]此为观察者不动,声源运动的类型,接受的波长变化,从而引起接收到频率变化。解析:分别以v和u表示空气中的声速和火车速度.则当火车驶近时,,当火车远离时 (式中为火车的实际频率).由上两式可得:m/s。
第二讲 波的图象应用 波的特有现象 课后练习
班级__________姓名___________
1.有一列沿水平绳传播的简谐横波,频率为10 Hz,振动方向沿竖直方向.当绳上的质点P到达其平衡位置且向下运动时,在其右方相距0.6 m处的质点Q刚好到达最高点。由此可知波速和传播方向可能是 ( )
A.8 m/s,向右传播 B.8 m/s,向左传播
C.24 m/s,向右传播 D.24 m/s,向左传播
2.如图所示,一列横波t时间的图象用实线表示,又经Δt=0.2s时的图象用虚线表示.已知波长为2m,则以下说法不正确的是 ( )
A.若波向右传播,则最大周期是2s B.若波向左传播,则最大周期是2s
C.若波向左传播,则最小波速是9m/s D.若波速是19m/s,则传播方向向左
3.如图所示,在直线PQ垂线OM上有A、B两个声源,A、B分别距O点6m和1m,两个声源同时不断向外发出波长都为2 m的完全相同的声波,在直线PQ上从-∞到+∞的范围内听不到声音的小区域共有 ( )
A.无穷多个 B.5个
C.4个 D.3个
4.如图所示中S为在水面上振动的波源,M、N是水面上的两块挡板,其中N板可以上下移动,两板中间有一狭缝,此时测得A处水没有振动,为使A处水也能发生振动,可采用的方法是 ( )
A.使波源的频率增大 B.使波源的频率减小
C.移动N使狭缝的间距增大 D.移动N使狭缝的间距减小
第2题图 第3题图 第4题图
5.一条弹性绳子呈水平状态,M为绳子中点,两端P、Q同时开始上下振动,一小段时间后产生的波形如图,对于其后绳上各点的振动情况,以下判断正确的是 ( )
A.两列波将同时到达中点M
B.两列波的波速之比为l∶2
C.中点M的振动是加强的
D.M点的位移大小在某时刻可能为零
6.如左图所示为一列简谐横波在t=20 s时的波形图,右图是这列波中P点的振动图线,那么该波的传播速度和传播方向是 ( )
A.v=25 cm/s,向左传播
B.v=50 cm/s,向左传播
C.v=25 cm/s,向右传播
D.v=50 cm/s,向右传播
7.A、B两列波在某时刻的波形如图所示,经过t=TA时间(TA为波A的周期),两波再次出现如图波形,则两波的速度之比υA∶υB可能是 ( )
A.1∶3 B.1∶2 C.2∶1 D.3∶1
8.如图所示表示两列相干水波的叠加情况,图中的实线表示波峰,虚线表示波谷。设两列波的振幅均为5 cm,且图示的范围内振幅不变,波速和波长分别为1m/s和0.5m。C点是BE连线的中点,下列说法中正确的是 ( )
A.C、E两点都保持静止不动
B.图示时刻A、B两点的竖直高度差为20cm
C.图示时刻C点正处于平衡位置且向水面上运动
D.从图示的时刻起经0.25s,B点通过的路程为20cm
9.关于多普勒效应的说法中,正确的是 ( )
A.只要波源在运动,就一定能观察到多普勒效应
B.当声源静止.观察者运动时,也可以观察到多普勒效应
C.只要声源在运动,观察者总是感到声音的频率变高
D.当声源相对观察者运动时,观察者听到的声音的音调可能变高,也可能变低
10.当正在鸣笛的火车向着我们急驶而来时,我们听到的汽笛声的音调变高了,这是因为
( )
A.声源振动的频率变高了 B.声波传播的速度变大了
C.耳膜振动的频率变大了 D.耳膜振动的频率变小了
11.如图表示一个机械波的波源S做匀速运动的情况,图中的圆表示机械波的波面,A、B、C、D是四个观察者的位置,由图可以看出
( )
A.波源正在向A运动 B.波源正在向C运动
C.B点的观察者接收到的频率最低
D.D点的观察者接收到的频率最高
12.沿x轴连续均匀的介质中,距离为L的等距离排列的0、1、2……10等11个点,某时刻0点向y轴正方向开始做振幅为A,周期为8s的简谐振动,以后各点依次滞后开始振动。从0点开始振动后,各点依次滞后________s开始振动,且第一次出现如图所示的图形历时__________s。
13.一列简谐波在x轴上传播,波速为50 m/s,已知t=0时刻的波形图象如图所示,图中M处的质点此时正经过平衡位置沿y轴的正方向运动.请将t=0.5 s时的波形图象画在图B上(至少要画出一个波长)。
14.如图所示,甲为某一波在t=1.0s时的图象,乙为对应该波动的P质点的振动图象。
(1)说出两图中AA’的意义?
(2)说出甲图中OA’B图线的意义?
(3)求该波速v=?
(4)在甲图中画出再经3.5s时的波形图。
(5)求再经过3.5s时P质点的路程s和位移。
15.如图所示,一列沿 x 正方向传播的简谐横波,波速大小为 0.6 m/s ,P点的横坐标为96 cm ,从图中状态开始计时,求:
(1)经过多长时间,P质点开始振动,振动时方向如何?
(2)经过多少时间,P质点第一次到达波峰?
16.如图中的实线是某时刻的波形图象,虚线是经过0.2 s时的波形图象。
(1)假定波向左传播,求它传播的可能距离;
(2)若这列波向右传播,求它的最大周期;
(3)假定波速是35 m/s,求波的传播方向。
17.从甲地向乙地发出频率f=100Hz的声波,当波速为330m/s时,刚好在甲、乙两地间形成一列有若干个完整波形的波,当波速为340m/s时,设完整波形的波数减少了2个,试求出甲、乙两地的距离。
18.正在报警的警钟,每隔0.5s钟响一声,一声接一声地响着.有一个人在以60km/h的速度正向警钟所在地接近的火车中,则这个人在5min内能听到几响
第二讲《波的图象应用 波的特有现象》参考答案
1、BC 2、B 3、B 4、BD 5、AD 6、B 7、ABC 8、BCD 9、BD 10、C 11、D
12、1s,16s 13、如右图
14、(1)参解析 (2)参解析 (3)
(4)参解析 (5)路程,位移为0
解析:(1)甲图中AA’表示A质点的振幅或1.0s时A质点的位移大小为0.2m,方向为负,乙图中AA’表示P质点的振幅,也是P质点在0.25s的位移大小为0.2m,方向为负。
(2)甲图中OA’B段图线表示O到B之间所有质点在1.0s时的位移、方向均为负,由乙图看出P质点在1.0s时向-y方向振动,所以甲图中波向左传播,则OA’间各质点正向远离平衡位置方向振动,A’B间各质点正向衡位置方向振动。
(3)甲图得波长,乙图得周期T=1s所以波速
(4)传播距离 所以只需将波形向x轴负向平移即可,
如图所示:
(5)求路程:因为 所以路程
求位移:由于波动的重复性,经历时间为周期的整数倍时,P质点又回到图示位置,其位移为0。
15、(1)t=1.2 s (2)t′=1.5 s
解析:开始计时时,这列波的最前端的质点坐标是24 cm ,根据波的传播方向,可知这一点沿 y轴负方向运动,因此在波前进方向的每一个质点开始振动的方向都是沿 y轴负方向运动,故P点开始振动时的方向是沿 y 轴负方向,P质点开始振动的时间是
(1)t==1.2 s
(2)用两种方法求解
质点振动法:这列波的波长是λ=0.24 m,故周期是 T==0.4 s
经过1.2 s,P质点开始振动,振动时方向向下,故还要经过T才能第一次到达波峰,因此所用时间是1.2 s+0.3 s=1.5 s.
波形移动法:质点P第一次到达波峰,即初始时刻这列波的波峰传到P点,因此所用的时间是
t′==1.5 s
16、(1)参解析 (2)Tm=0.8s (3)波向左传播
(1)向左传播时传播的距离为 s=(n+)λ=(n+)×4 m =(4n+3)m (n=0、1、2…)
(2)根据t=(n+)T 得T= 在所有可能的周期中,当n=0时的最大,故Tm=0.8s
(3)波在0.2 s内传播的距离s=vt=7 m,等于个波长,故可判得波向左传播。
17、答案:
18、答案:v=16.7m/s,
图12-1-1
图12-1-2
图12-2-8
图12-2-7
图12-2-6
图12-2-5
图12-2-1
图3 t=3T/4
图2 t=T/4
图1 t=0
图12-2-3
图12-2-2
图8-2-4
PAGE
72008届高三物理第一轮复习教案 机械振动 南京十三中高三备课组
第一讲 简谐运动、简谐运动的表达式及其图象
【基本概念与基本规律】
一、简谐运动定义
1、机械振动
物体在平衡位置附近所做的往复运动叫机械振动。
机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。
2、回复力
使振动物体返回平衡位置的力叫回复力。回复力时刻指向平衡位置。回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。
3、简谐运动
物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。表达式为:F=-kx。
4、描述简谐运动的物理量
(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅;
(2)振幅A:是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)
(3)周期T:是描述振动快慢的物理量。频率f=。
【例1】下列属于机械振动选择完整的是…………………………………………( D )
①乒乓球在地面上的来回上下运动;②弹簧振子在竖直方向的上下运动;③秋千在空中来回的运动;④竖于水面上的圆柱形玻璃瓶上下振动
A、①② B、②③ C、③④ D、②③④
【例2】关于简谐运动回复力的说法正确的是……………………………………( A )
A、回复力中的是指振子相对于平衡位置的位移
B、回复力中的是指振子从初位置指向末位置的位移
C、振子的回复力一定就是它所受的合力
D、振子的回复力一定是恒力
【例3】关于简谐运动的位移、速度、加速度的关系,下列说法中正确的是 ( CD )
A、位移减小时,加速度增大,速度增大
B、位移方向总跟加速度方向相反,跟速度方向相同
C、物体运动方向指向平衡位置时,速度方向跟位移方向相反
D、物体向平衡位置运动时,做加速运动,背离平衡位置时,做减速运动
【例4】如图所示,一个弹簧振子沿轴在B、C间做简谐运动,O为平衡位置,当振子从B点向O点运动经过P点时振子的位移为 ,振子的回复力为 ,振子速度为 ,振子的加速度为 (填“正”“负”或“零”)
答案:负 负 正 正
二、理解简谐运动重难点
1、平衡位置的理解
平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。
(1)平衡位置是回复力为零的位置;
(2)平衡位置不一定是合力为零的位置;
(3)不同振动系统平衡位置不同:竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。
2、回复力的理解
(1)、回复力是指振动物体所受的总是指向平衡位置的合外力,但不一定是物体受到的合外力。
(2)、性质上,回复力可以是重力、弹力、摩擦力、电场力、磁场力等。
(3)、回复力的方向总是“指向平衡位置”。
(4)、回复力的作用是使振动物体回到平衡位置。
3、简谐运动
(1)、简谐运动的判定
在简谐运动中,回复力的特点是大小和位移成正比,方向与位移的方向相反,即满足公式 F=-kx。所示对简谐运动的判定,首先要正确分析出回复力的来源,再根据简谐运动中回复力的特点进行判定。
(2)、简谐运动的特点
周期性:简谐运动的物体经过一个周期或n个周期后,能回复到原来的运动状态,因此处理实际问题时,要注意多解的可能性或需定出结果的通式。千万不要用特解代替通解。
【例5】如图所示,质量为m的木块放在弹簧上,与弹簧一起在竖直方向上做简谐运动。当振幅为A时,物体对弹簧的最大压力是物体重力的1.5倍,则物体对弹簧的最小弹力是多大?要使物体在振动中不离开弹簧,振幅不能超过多大?
解析:当木块运动到最低点时,对弹簧弹力最大,此时由牛顿第二定律得:
Fmax-mg=ma,因为Fmax=1.5mg,所以a=0.5g.
当木块运动到最高点时,对弹簧弹力最小,此时由牛顿第二定律得:
mg-Fmin=ma,由运动的对称性知,最高点与最低点的加速度大小相等,即
a=0.5g,代入求得Fmin=mg/2.
在最高点或最低点:kA=ma=,所以弹簧的劲度系数k=.
物体在平衡位置下方处于超重状态,不可能离开弹簧,只有在平衡位置上方可能离开弹簧.要使物体在振动过程中恰好不离开弹簧,物体在最高点的加速度a=g此时弹簧的弹力为零.若振幅再大,物体便会脱离弹簧.物体在最高点刚好不离开弹簧时,回复力为重力,所以:mg=KA/,则振幅A/==2A.
【例6】轻质弹簧上端固定在天花板上,下端悬挂物体m,弹簧的劲度系数为k,现将物体从平衡位置向下拉开一段距离后释放,试证明物体的运动是简谐振动。
解析:如图所示,设振子的平衡位置为O,向下方向为正方向,此时弹簧的形变为 ,根据胡克定律及平衡条件有 ①
当振子向下偏离平衡位置为时,回复力(即合外力)为
②
将①代人②得: ,
可见,重物振动时的受力符合简谐运动的条件。
【例7】一弹簧振子做简谐运动,周期为T,下述正确的是 ( CD )
A、若t时刻和(t+△t)时刻振子对平衡位置的位移大小相等,方向相同,则△t一定等于T的整数倍
B、若t时刻和(t+△t)时刻振子运动速度大小相等,方向相反,则△t一定等于的整数倍.
C、若△t=,则在t时刻和(t+△t)时刻的时间内振子的位移可能大于振幅,可能等于振幅,可能小于振幅
D、若△t=,则在t时刻和(t+△t)时刻振子的速度大小一定相等
三、简谐运动的图象及其理解
1、物理意义:表示振动物体的位移随时间变化的规律,振动图象不是质点的运动轨迹。
2、特点:简谐运动的图象是正弦(余弦)曲线。
3、简谐运动图象的应用:简谐运动的图象表示振动质点位移随时间的变化规律,从图象上可获取以下信息:
(1)、图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移——时间函数图象。切不可将振动图象误解为物体的运动轨迹。
(2)、从振动图象可以知道质点在任一时刻相对平衡位置的位移;
(3)、从振动图象可以知道振幅;
(4)、从振动图象可以知道周期(两个相邻正向最大值之间的时间间隔或两个相邻负向最大值之间的时间间隔);
( 5 )、从振动图象可以知道开始计时时(t=0)振动物体的位置;
( 6 )、从振动图象可以知道质点在任一时刻的回复力和加速度的方向(指向平衡位置);
( 7 )、振动图象可以知道质点在任一时刻的速度方向。斜率为正值时速度为正,斜率为负值时速度为负。
( 8 )、利用简谐运动图象可判断某段时间内振动物体的速度、加速度、回复力大小变化及动能、势能的变化情况。
若某段时间内质点的振动速度指向平衡位置(可为正也可为负),则质点的速度、动能均变大,回复力、加速度、势能均变小,反之则相反。凡图象上与t轴距离相同的点,振动物体具有相同的振动动能和势能。
( 9 )、在简谐运动问题中,凡涉及到与周期有关的问题,可先画出振动图线,利用图线的物理意义及其对称性分析,求解过程简捷、直观。
【例8】.如图所示,一个弹簧振子在A、B间做简谐运动,O是平衡位置,以某时刻作为计时零点(t=0),经过周期,振子具有正方向的最大加速度,那么四个振动图线中正确反映了振子的振动情况的图线是( D )
【例9】如图为一质点作简谐运动的图象,则在图中t1和t2两个时刻,振子具有相同的物理量是………………………………………………………………………………… ( C )
A、加速度 B、位移 C、速度 D、回复力
【例10】一质点做简谐运动,如图所示,在0.2 s 到0.3 s这段时间内质点的运动情况是………………………………………………………………………………………………( C )
A、沿负方向运动,且速度不断增大 B、沿负方向运动,且位移不断增大
C、沿正方向运动,且速度不断增大 D、沿正方向运动,且加速度不断增大
【例11】如图所示,是质量相等的甲、乙两个物体分别做简谐运动时的图象,则…( BCD )
A、甲、乙物体的振幅分别是2 m和1 m B、甲的振动频率比乙的大
C、前2 s内两物体的加速度均为负值 D、第2s末甲的速度最大,乙的加速度最大
【例12】如图所示为某一声音的振动图象,关于这个声音的判断正确的是…………( C )
A、该声是单个简谐运动的声源发出的 B、振动周期是2 s
C、振动频率为 D、振动周期为
【例13】如图所示是一弹簧振子的振动图象,由图可知,该振子的振幅是 ,周期是 ,频率是 ,振子在0.8 s内通过的路程是 ,若振子从A时刻开始计时,那么到 点为止,振子完成了一次全振动,图象上B点振子的速度方向是 ,D点振子的速度方向是 。
答案:4 cm 0.4 s 2.5Hz 32 cm E -x方向 +x方向
【例14】如图所示,A、B两物体组成弹簧振子,在振动过程中A、B始终保持相对静止,图中能正确反映振动过程中A受的摩擦力Ff与振子的位移x关系的图线应为( C )
第一讲 简谐运动、简谐运动的表达式及其图象课后练习
1.有一弹簧振子做简谐运动,则 ( )
A.加速度最大时,速度最大 B.速度最大时,位移最大
C.位移最大时,回复力最大 D.回复力最大时,加速度最大
2.一质点做简谐运动的振动图象如下图所示,由图可知t=4s时质点 ( )
A.速度为正的最大值,加速度为零
B.速度为零,加速度为负的最大值
C.位移为正的最大值,动能为最小
D.位移为正的最大值,动能为最大
3.一质点做简谐运动,先后以相同的动量通过A、B两点,历时1s.质点B点后再经过1s又第二次通过B点,这2s内质点的总路程为12cm,则指点的振动周期和振幅分别为 ( )
A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm
4.一物体做简谐运动的图象如图所示,则在t=T和t=T两个时刻,物体的 ( )
A.位移相同 B.回复力相同
C.动量相同 D.动能相同
5.如下图所示为质点P在0~4s内的振动图象,下列说法中正确的是 ( )
A.再过1s,该质点的位移是正的最大
B.再过1s,该质点的速度方向向上
C.再过1s,该质点的加速度方向向上
D.再过1s,该质点的加速度最大
6.甲、乙两弹簧振子,振动图象如图所示,则可知 ( )
A.两弹簧振子完全相同
B.两弹簧振子所受的回复力最大值之比为F甲:F乙=2:1
C.振子甲速度为零时,振子乙速度最大
D.振子的振动频率之比为f甲:f乙=1:2
7.一平台沿竖直方向做简谐运动,一物体置于平台上随平台运动,振动平台处于什么位置时,物体对台面的压力最大? ( )
A.当振动平台运动到最高点时 B.当振动平台向下运动过振动中心时
C.当振动平台运动到最低点时 D.当振动平台向上运动过振动中心时
8.如图所示,质量为m的物体A放在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A、B之间无相对运动。设弹簧劲度系数为k,但物体离开平衡位置的位移为x时,A、B间摩擦力的大小等于 ( )
A.kx B.kx
C.kx D.0
9.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图象中,正确反映振子振动情况(以向右为正方向)的是 ( )
10.弹簧振子以O为平衡位置,在A、B间作简谐振动,如图所示,振子在10s内完成5次全振动,若A、B间相距20cm,振子从A到B所经历的时间为________,若从振子运动到B点时开始计时,则经3s振子的位置在_________处3s内振子运动的路程是_______,此过程中的平均速度为___________,平均速率为________。
11.弹簧振子在光滑的水平面上振动,当A和B在最大位移处时,A被竖直方向的外力作用下脱离振动系统,于是下列物理量如何变?
(1)最大加速度___________; (2)最大速度___________;
(3)振幅___________; (4)系统总能量___________。
第10题图 第11题图
12.如图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下由静止开始竖直向上作匀变速运动,一个装有指针的振动频率为5Hz的电动音叉在玻璃板上画出如图所示的曲线,量得OA=1cm,OB=4cm,OC=9cm,(g=10m∕s2不计阻力),求外力F的大小。
13.如图所示,一个竖直弹簧连着一个质量M的薄板,板上放着一个木块,木块质量为m.现使整个装置在竖直方向做简谐运动,振幅为A。若要求在整个过程中小木块m都不脱离木板,则弹簧劲度系数k应为多大?
答案:1、CD 2、BC 3、B 4、CD 5、AD 6、CD 7、C 8、C 9、D
10、1s, A, 60cm, m/s, 0.2m/s 11、变大 变大 不变 不变
12、24N 解析:OA=1 cm AB=3 cm BC=5 cm
因为:TOA=TAB=TBC=T/2=0.1 s
根据:Δs=aT2 a==2 m/s2
F-mg=ma 得:F=mg+ma=24 N
13、k≤g
解析:木板运动到最高点又不脱离,弹簧可能处于两种状态:无形变状态和压缩状态。
若恰好脱离,则弹簧此时无形变,m、M的加速度均为g,
此时,系统回复力为 F=(M+m)g
所以弹簧在平衡位置时的弹力为 kA=(M+m)g k=g
若弹簧处于压缩状态,则系统在最高点的回复力为 F’<(M+m)g
则弹簧在平衡位置时的弹力为 F’ = (M+m)g>kA
则 k所以 k≤g
第二讲 单摆 受迫振动 振动中的能量
一、单 摆
(1)单摆:一条不可伸长的、忽略质量的细线,一端固定,另一端拴一质点,这样构成的装置叫单摆.
这是一种理想化的模型,实际悬线(杆)下接小球的装置都可作为单摆.
(2)单摆振动可看作简谐运动的条件是最大偏角α<5°.
(3)摆球做简谐运动
回复力:是重力在切线方向的分力F回=G1;
重力的另一分力G2和摆线的拉力合力提供向心力;F-G2=mv2/l
在最大位移处v=0,F=G2.
(4)周期公式:
式中L为小球摆动的圆孤半径即摆长,量取时应从圆心量到球心.g为当地重力加速度(受力复杂时有“等效重力加速度”之说).
(5)单摆的等时性:在小振幅摆动时,单摆的振动周期跟振幅和振子的质量都没关系.
(6)几种单摆模型
【例1】把实际的摆看作单摆的条件是……………………………………………… ( C )
①细线的伸缩可以忽略;②小球的质量可以忽略;③细线的质量可以忽略;④小球的直径比细线的长度小得多;⑤小球的最大偏角足够小
A、①②③④⑤ B、①②③④ C、①③④⑤ D、②③④⑤
【例2】下列有关单摆运动过程中受力的说法中,正确的是……………………………( B )
A、回复力是重力和摆线拉力的合力
B、回复力是重力沿圆弧方向的一个分力
C、单摆过平衡位置时合力为零
D、回复力是摆线拉力的一个分力
【例3】单摆运动到达其平衡位置时,摆球所受回复力的方向或数值正确的是……( C )
A、指向地面 B、指向悬点 C、数值为零 D、垂直于摆线
【例4】甲、乙两个单摆摆长相等,将两个单摆的摆球由平衡位置拉开,使摆角,(都小于)由静止开始释放,则……………………………………… ( C )
A、甲先到达平衡位置
B、乙先到达平衡位置
C、甲、乙同时到达平衡位置
D、无法判断
【例5】将秒摆(周期为2 s)的周期变为1 s,下列措施可行的是…………………( D )
A、将摆球的质量减半 B、振幅减半
C、摆长减半 D、摆长减为原来的
【例6】一个打磨得很精细的小凹镜,其曲率很小可视为面.将镜面水平放置如图所示.一个小球从镜边缘开始释放,小球在镜面上将会往复运动,以下说法中正确的是( C )
A.小球质量越大,往复运动的周期越长
B.释放点离最低点距离越大,周期越短
C.凹镜曲率半径越大,周期越长
D.周期应由小球质量、释放点离平衡位置的距离,以及曲率半径共同决定
【例7】.关于小孩子荡秋千,有下列四种说法:
①质量大一些的孩子荡秋千,它摆动的频率会更大些 ②孩子在秋千达到最低点处有失重的感觉 ③拉绳被磨损了的秋千,绳子最容易在最低点断开 ④自己荡秋千想荡高一些,必须在两侧最高点提高重心,增加势能 ( B )
上述说法中正确的是
A.①② B.③④ C.②④ D.②③
【例8】细长轻绳下端拴一小球构成单摆,在悬挂点正下方摆长处有一个能挡住摆线的钉子A,如图所示.现将单摆向左方拉开一个小角度,然后无初速地释放,对于以后的运动,下列说法中正确的是 ( AB )
A.摆球往返运动一次的周期比无钉子时的单摆周期小
B.摆球在左、右两侧上升的最大高度一样
C.摆球在平衡位置左右两侧走过的最大弧长相等
D.摆线在平衡位置右侧的最大摆角是左侧的两倍
【例9】一只单摆在第一行星表面上的周期为T1,在第二行星表面上的周期为T2,若这两个行星的质量之比M1∶M2=4∶1,半径之比R1∶R2=2∶1,则 ( A )
A.T1∶T2=1∶1 B.T1∶T2=4∶1 C.T1∶T2=2∶1 D.T1∶T2=2∶1
【例10】(1)某同学在做“利用单摆测重力加速度”实验中,先测得摆线长为97.50cm;用50分度的游标卡尺(测量值可准确到0.02mm)测得小球的读数如图所示,则摆球直径为 cm;然后用秒表记录了单摆振动50次所用的时间为99.9s.则
①该摆摆长为_______cm,周期为 s
②(单选题)如果他测得的g值偏小,可能的原因是 [ ]
A.测摆线长时摆线拉得过紧
B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了
C.开始计时,秒表过迟按下
D.实验中误将49次全振动数为50次 (2.00,98.50,2.00 ,A)
(2)在一次用单摆测定加速度的实验中,图A的O点是摆线的悬挂点,a、b点分别是球的上沿和球心,摆长L= m.
图B为测量周期用的秒表,长针转一圈的时间为30s,表盘上部的小圆共15大格,每一大格为lmin,该单摆摆动n=50次时,长、短针位置如图中所示,所用时间t= s.
用以上直接测量的物理量的英文符号表示重力加速度的计算式为
g= (不必代入具体数值).
为了提高测量精度,需多次改变L的值并测得相应的T值.现测得的六组数据标示在以L为横坐标、T为纵坐标的坐标纸上,即图中用“”表示的点。根据图中的数据点作出T2与L的关系图线.
答案. 0.9906 ,100.40; ;略
二、受迫振动和振动的能量
(1)对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能与势能之和.
(2)振动系统的机械能大小由振幅大小决定,同一系统振幅越大,机械能就越大.若无能量损失,简谐运动过程中机械能守恒,为等幅振动.
2.阻尼振动与无阻尼振动
振幅逐渐减小的振动叫阻尼振动.
振幅不变的振动为等幅振动,也叫无阻尼振动.
3.受迫振动
振动系统在周期性驱动力作用下的振动叫受迫振动.
受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.
4.共振
当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大的现象叫做共振.
共振曲线如图所示
【例11】工厂里,有一台机器正在运转,当其飞轮转得很快的时候,机器的振动并不强烈,切断电源,飞轮逐渐慢下来,到某一时刻机器发生强烈的振动,此后飞轮转得更慢,机器的振动又转动减弱。这种现象说明( D )
A.纯属偶然现象,并无规律
B.在某一时刻,飞轮的惯性最大
C.在某一时刻,飞轮转动的频率最大
D.在某一时刻,飞轮转动的频率与机身的固有频率相等
【例12】如图所示,在曲轴上悬挂一弹簧振子,转动摇把,曲轴可以带动弹簧振子上下振动。开始时不转动摇把,让振子自由上下振动,测得其频率为2HZ;然后以60r/min的转速匀速转动摇把,当振子振动稳定时,它的振动周期为( C )
A.0.25s
B.0.5 s
C.1 s
D.2s
【例13】单摆在振动过程中,摆动幅度越来越小这是因为:( D )
A.能量正在逐渐消灭 B.动能正在转化为势能
C.机械能守恒 D.总能量守恒,减少的动能转化为内能
【例14】任何物体都有一定的固有频率.如果把人作为一个振动系统,在水平方向的固有频率约为3 Hz~6 Hz,在竖直方向的固有频率约为4 Hz~8 Hz.拖拉机、风镐、风铲、铆钉机等的操作工在工作时将做________振动,这时若操作工的固有频率与振源振动的频率________,就会对操作工的健康造成伤害.为保证操作工的安全与健康,有关部门作出规定:用于操作的各类振动机械的频率必须大于20 Hz,这是为了防止________所造成的伤害.
答案:受迫 接近或相等 共振
【例15】如图所示,一轻弹簧的左端固定在竖直墙上,右端与质量为M的滑块相连,组成弹簧振子,在光滑的水平面上做简谐运动.当滑块运动到右侧最大位移处时,在滑块上轻轻放上一木块组成新振子,继续做简谐运动.新振子的运动过程与原振子的运动过程相比( AC )
A.新振子的最大速度比原振子的最大速度小
B.新振子的最大动能比原振子的最大动能小
C.新振子的振动周期比原振子的振动周期大
D.新振子的振幅比原振子的振幅小
【例16】右图为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?(g取10m/s2)
解:由图可知,单摆在f驱=0.5Hz时振动最剧烈,表明此时发生了共振,振幅为10cm。
由,得:L===1.01m
【例17】如图1所示,三角架质量为M,沿其中轴线用两根轻弹簧拴一质量为m的小球,原来三角架静止在水平面上.现使小球做上下振动,已知三角架对水平面的压力最小为零,求:
(1)此时小球的瞬时加速度;
(2)若上、下两弹簧的劲度系数均为k,则小球做简谐运动的振幅为多少
答案: (1) g,方向竖直向下 (2)
解析:(1)当小球上下振动过程中,三角架对水平面的压力最小为零,则上下两根弹簧对三角架的作用力大小为Mg,方向向下,小球此时受弹簧的弹力大小为Mg,方向向上,故小球所受合力为(m+M)g,方向向下,小球此时运动到上面最高点即位移大小等于振幅处.根据牛顿第二定律,小球的瞬时加速度的最大值为:am=,加速度的方向为竖直向下.
(2)小球由平衡位置上升至最高点时,上面的弹簧(相当于压缩x)对小球会产生向下的弹力kx,下面的弹簧(相当于伸长x)会对小球产生向下的弹力kx,两根弹簧对小球的作用力为2kx,故最大回复力大小F回=2kA,而最高时F回=(M+m)g,故A=.
【例18】如图,A、B两单摆摆长分别为 、,两球静止时刚好接触,且重心等高、质量相等。今把A球从平衡位置向右拉开一个微小角度,然后无初速释放,于是AB将发生一系列弹性正碰,设碰撞后两球速度互换,碰撞时间不计.则释放A球后20s内两球碰撞多少次?
解:先求出AB摆长的单摆周期:
A释放后经与B发生碰撞,碰后速度交换,A静止,B球向左摆动,再经又摆回与A发生碰撞,碰后B静止,A向右运动,再经回到最右边。可见每经过,A、B发生两次碰撞,A又回到释放初的最右位置。所以有:
表明经过了13个碰撞周期,碰了26次,而0。5s正好是TA/4,所以第20s末A刚好回到平衡位置,第27次碰撞正在发生.
第二讲 单摆 受迫振动 振动中的能量 课后练习
1.单摆做简谐振动的回复力为 ( )
A.摆球重力沿切线运动方向上的分力
B.摆线拉力与重力的合力
C.摆线拉力、重力、向心力的合力
D.摆球在最低点时合力为0,回复力为0
2.在某一地方,减小单摆的振动周期,可以 ( )
A.增大摆球的质量 B.减小单摆的振幅
C.缩短单摆的摆长 D.摆角从2°减小到4°
3.做简谐振动的单摆当回复力由小变大时,下列哪些物理量是变小( )
A.动量 B.摆锤的重力势能
C.摆线的张力 D.摆锤的机械能
4.光滑槽半径R远大于小球运动的弧长,今有两个质点(视为质点)同时由静止释放其中甲球开始时离圆槽最低点O较远一些,则它们第一次相遇点是在 ( )
A.O点 B.O点偏左
C.O点偏右 D.无法确定,因为两球质量不知
5.关于单摆的周期和频率,下列说法正确的是:( )
A.将单摆从地球北极移到赤道时,振动周期变小
B.将单摆从地面移到距离地面高度为地球半径时,振动周期变为原来的2倍
C.同一单摆,在同一地点冬天气温低时的频率比夏天气温高时的频率要低
D.将单摆移到绕地球运行的卫星中时,它将不振动
6.如图所示,在一根张紧的水平绳上,悬挂有 a、b、c、d、e五个单摆,让a摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。下列说法中正确的有 ( )
A.各摆的振动周期与a摆相同
B.各摆的振幅大小不同,c摆的振幅最大
C.各摆的振动周期不同,c摆的周期最长
D.各摆均做自由振动
7.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是 ( )
A.降低输入电压 B.提高输入电压
C.增加筛子质量 D.减小筛子质量
8.某一星球的质量是地球质量的4倍,半径是地球半径的2/3,一只在地球表面周期为To的单摆放到该星球表面时,周期变为(不考虑摆长等因素的变化) ( )
A.8To/ 3 B.9To/ 8 C.3 To D.To/ 3
9.在水平方向做简谐运动的弹簧振子,其质量为m,最大速率为v,则下列说法正确的是( )
A.从某时刻起,在半个周期时间内,弹力做功一定为零
B.从某时刻起,在半个周期时间内,弹力做的功可能是0到mv2之间的某一个值
C.从某时刻起,在半个周期时间内,弹力的冲量一定为零
D.从某时刻起,在半个周期时间内,弹力的冲量可能是0到2mv之间的某一个值
10.将一个力电传感器接到计算机上,可以测量快速变化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图线提供的信息做出下列判断:①t=0.2s时刻摆球正经过最低点;②t=1.1s时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T=0.6s。上述判断中正确的是 ( )
A.①③ B.②④ C.①② D.③④
第10题图 第11题图
11.如图所示为一单摆及其振动图象,由图回答:
(1)单摆的振幅为 ,频率为 ,摆长为 ;一周期内位移x最大的时刻为 ;
(2)若摆球从E指向G为正方向,a为最大摆角,则图形中O、A、B、C点分别对应单摆中的 点。一周期内加速度为正且减小,并与速度同方向的时间范围是 ,势能增加且速度为正的时间范围是 ;
(3)单摆摆球多次通过同一位置时,下述物理量变化的是( )
A.位移 B.速度 C.加速度 D.动量 E.动能 F.摆线张力
(4) 当在悬点正下方O’处有一光滑水平细铁可挡住摆线,且O’E=OE/4.则单摆周期为 s.比较钉挡绳前后瞬间摆线的张力_______________;
(5)若单摆摆球在最大位移处摆线断了,此后球做什么运动?若在摆球过平衡位置时摆线断了,摆球又做什么运动?
12.如图所示是一个单摆的共振曲线:
(1)若单摆所处环境的重力的加速度g=9.8m/s2,试求此摆的摆长。
(2)若将此单摆移到高山上,共振曲线的峰将怎样移动?
13.如图所示,一双线摆,两绳长均为L,绳与水平方向夹角为a,当摆球A垂直于纸面做简谐振动经过平衡位置时,另一小球B从A球的正上方开始自由下落,正好打在A球上,则该小球B距平衡位置的高度h应该为多少?
14.如图所示,有一水平轨道AB,在B点处与半径为160m的光滑弧形轨道BC相切,一质量为0.99kg的木块静止于B处,现有一质量为10g的子弹以500m/s的水平速度从左边射入木块且未穿出。已知木块与该水平轨道间的动摩擦因数μ=0.5,g取10m/s2,求:子弹射入木块后,木块需经多长时间才能停下来?
答案:1、A 2、C 3、AC 4、A 5、BD 6、AB 7、AD 8、D 9、AD 10、C
11、(1)周期T=2s, 频率f=0.5Hz, 摆长l =1m,有最大值的时刻为0.5s末和1.5s末。
(2)1.5~2.0s,0~0.5s (3)B、D.
(4)钉左侧的半个周期,.T左=π=1s,钉右侧的半个周期,T右=π=0.5s,
所以T=T左+T右=1.5s, 挡后绳张力变大。
(5)在最大位移处线断,此时球速度为零,只受重力作用,所以做自由落体运动;在平衡位置线断,此时球有最大水平速度,又只受重力,所以球做平抛运动。
12、(1)= 2.8(m) (2)“峰”向左移
(1)由图象知,单摆的固有频率f=0.3Hz.由得= 2.8(m);
(2)由知单摆移动到高山上,重力加速度g减小,其固有频率减小,故“峰”向左移。
13、h=g(kπ)2/2=k2π2Lsina/2(k=1,2,3……)
解析:双线摆在摆动过程中,等效摆长L’=Lsina,双线摆的振动周期为T=2π,
A球从平衡位置每经过T/2回到平衡位置均有可能与B球想碰,则A球所用时间
tA=kT/2=k·2π/2=kπ ①
设B球下落h高度所用时间为tB,则h=gtB2/2 ②
且tA=tB ③
可得h=g(kπ)2/2=k2π2Lsina/2(k=1,2,3……)
14、
解析:子弹射入木块由动量守恒定律得子弹和木块的共同速度为
子弹和木块在光滑弧形轨道BC上的运动可看作简谐运动,,,子弹在水平轨道上作匀减速运动加速度
,,
t/s
F/N
0 0.4 0.8 1.2 1.6 2.0 2.4
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
θ
θ
θ
a
O
R
C
O
B
P
x
m
t/s
2
-2
例10图
2
4
6
x/cm
1
-1
甲
乙
0.2
例9图
t/s
x/cm
5
-5
0.4
例8图
A/2
-A/2
t1
t/s
x/cm
t2
O
例12图
F
E
D
0.2 0.4 0.6
-4
4
t/s
x/cm
A
B
C
例11图
t/s
x/cm
1 2 4 6 7 8 10 12
第 16 页 (共16页)第一讲 光的折射
【基本概念与基本规律】
1. 光的反射定律:光从一种介质射到另一种介质的分界面时发生反射。
光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光分别位于法线的两侧。
2. 光的折射现象,光的折射定律:折射光线与入射光线、法线处于同一平面内,折射光线与入射光线分别位于法线两侧,入射角的正弦与折射角的正弦成正比。
注意两角三线的含义
折射率 (光线从介质Ⅰ——介质Ⅱ)
折射现象的光路可逆性
3.折射率:入射角的正弦与折射角的正弦的比。
①折射率的物理意义:表示介质折射光的本领大小的物理量
②折射率大小的决定因素——介质、光源(频率)
在其它介质中的速度,式中n为介质的折射率,n>1,故v介质的折射率是反映介质光学性质的物理量,它的大小由介质本身决定,同时光的频率越高,折射率越大,而与入射角、折射角的大小无关
某一频率的光在不同介质中传播时,频率不变但折射率不同,所以光速不同,波长也不同(与机械波相同);不同频率的光在同一介质中传播时,折射率不同,所以光速不同,波长也不同(与机械波的区别).频率越高,折射率越大。
4.折射时的色散:含有多种颜色的光被分解为单色光的现象叫光的色散。
(1)光通过棱镜时将向棱镜的横截面的底边方向偏折
(2)通过棱镜成像偏向顶点
(3)实验表面,一束白光进入棱镜而被折射后,在屏上的光斑是彩色的,说明光在折射时发生了色散。
(4)光的色散规律:红光通过棱镜后偏折的程度比其他颜色的光的要小,而紫光的偏折程度比其他颜色的光要大。 ( http: / / baike. / pic / 12 / 11686038256831732.jpg" \t "_blank )
说明透明物质对于波长不同的光的折射率是不同的。波长越长,折射率越小。
5.应用(一般方法):分析光的折射时,一般需作出光路图,以便应用折射规律及光路图中提供的几何关系来解答。
在实际应用中,常见方法是:①三角形边角关系法;②近似法,即利用小角度时,θ≈tanθ≈sinθ的近似关系求解。记住光路是可逆的原理。
(1)折射率的测定
(2)利用折射定律结合几何知识解答的折射问题
(3)多向思维方式理解、应用关键物理量n
①像似深度h/=H/n
②全反射
③折射率与波速度的关系
6.光的全反射现象、反射条件、临界角
全反射产生的条件是:(1)光从光密介质射向光疏介质;(2)入射角大于或等于临界角.
两条件必须同时存在,才发生全反射。
临界角是一种特殊的入射角.当光线从某介质射入真空(或空气)时,其临界角的正弦值为。
注意:
①临界角的含义:折射角为90时的入射角.②规律:一旦发生全反射,即符合光的反射定律③光密介质与光疏介质——两个不同的介质,
【例题精选】:
【例1】如图所示,一储油圆桶,底面直径与桶高均为d。当桶内无油时,从某点A恰能看到桶底边缘上的某点B。当桶内油的深度等于桶高的一半时,在A点沿AB方向看去,看到桶底上的C点,C、B相距,由此可得油的折射率n= ;光在油中传播的速度v= m/s。(结果可用根式表示)
答案
(举一反三)、由某种透光物质制成的等腰直角棱镜ABO,两腰长都是16 cm.为了测定这种物质的折射率,将棱镜放在直角坐标系中,并使两腰与ox、oy轴重合,如图所示.从OB边的C点注视A棱,发现A棱的视位置在OA边D点.在C、D两点插大头针,看出C点坐标位置(0,12)D点坐标位置(9,0),由此可计算出该物质的折射率为 .
答案 4/3
【例2】如图所示,为用透明介质做成的空心球,其折射率为,内、外半径分别为,用内表面涂上能完全吸光的物质,当一束平行光射向此球时被内表面吸收掉的光束在射进空心球前的横截面积是多少?
答案
【例3】某三棱镜的横截面是一直角三角形,如图所示,∠A=90°,∠B=30°,∠C=60°,棱镜材料的折射率为n,底面BC涂黑,入射光沿平行于底面BC面,经AB面和AC面折射后出射.求(1)出射光线与入射光线延长线间的夹角δ;(2)为使上述入射光线能从AC面出射,折射率n的最大值为多少?
解答:画出光路图如图所示。
(1)因为入射光平行于BC面,i=60°
由折射定律有,所以
光折到AC面上时,
由几何关系可得:A+β=90°
,,
(2)要使有光线从AC面射出,应有sinr≤1:即,得
【例4】如图所示,一玻璃柱体的横截面为半圆形,细的单色光束从空气射向柱体的O点(半圆的圆心)产生反射光束1和2,已知玻璃折射率为,入射角为450(相应的折射角为240),现保持入射光线不变,将半圆柱绕通过O点垂直于图面的轴线顺时针转过150,如图中虚线所示,则:
A. 光束1转过150
B. 光束1转过300
C. 光束2转过的角度小于150
D.光束2转过的角度大于150
答案:BC
【例5】如图所示,只含黄光和紫光的复色光束PO,沿半径方向射入空气中的玻璃半圆柱内,被分成两光束OA和OB,若OA和OB分别沿如图所示的方向射出,则:
A.OA为黄色,OB为紫色
B.OA为紫色,OB为黄色
C.OA为黄色,OB为复色
D.OA为紫色,OB为复色
答案:C
【例6】如图所示,一束白光以较大的入射角到三棱镜的一个侧面,从另一个侧面射出,在屏上形成从红到紫的彩色光带.当入射角逐渐减小时
A.红光最先消失. B.红光紫光同时消失
C.紫光最先消失. D.红光紫光都不消失
答案:C
【例7】一点光源发出一束光经一平面镜反射,打在天花
板上,平面镜以角速度ω匀速转动,当入射角为α时,光
斑的运动速度是多少?(已知天花板到平面镜的距离为h)
答案:
【例7】太阳照在平坦的大沙漠上,我们在沙漠中向前看去,发现前方某处射来亮光,好象太阳光从远处水面射来的一样,我们认为前方有水,但走到该处仍是干燥的沙漠,这种现象在夏天城市中太阳照在沥青路面时也能看到。对此有以下解释:
①这是光的干涉现象; ②这是光的全反射现象;
③形成原因是越靠近地面处折射率越大; ④形成原因是越靠近地面处折射率越小。
其中正确的是:A、①③; B、①④; C、②③; D、②④。
答案D。
第一讲 光的折射 课后练习
1.发出白光的细线光源ab,长度为l0,竖直放置,上端a恰好在水面以下,如图。现考虑线光源ab发出的靠近水面法线(图中的虚线)的细光束经水面折射后所成的像,由于水对光有色散作用,若以l1表示红光成的像的长度,l2表示蓝光成的像的长度,则 (答案 D )
A.l1<l2<l0
B.l1>l2>l0
C.l2>l1>l0
D.l2<l1<l0
2.一束复色光由空气射向一块平行平面玻璃砖,经折射分成两束单色光a、b.已知a光的频率小于b光的频率.图中哪个光路图可能是正确的 (答案 B )?
3.如图所示,一个棱镜的顶角为θ=41.30°,一束白光以较大的入射角从棱镜的左侧面射入,在光屏上形成从红到紫排列的彩色光带,各色光在棱镜中的折射率和临界角见表.当入射角逐渐减小到0的过程中,彩色光带的变化情况是 (答案A )
色光 红 橙 黄 绿 蓝 紫
折射率 1.513 1.514 1.517 1.519 1.528 1.532
临界角 41.370 41.340 41.230 41.170 40.880 40.750
A.紫光最先消失,最后只剩红光、橙光
B.紫光最先消失,最后只剩红光、橙光、黄光
C.红光最先消失,最后只剩紫光
D.红光最先消失,最后只剩紫光、蓝光
4.如图激光液面控制仪的原理是:固定的一束激光AO以入射角i照射到水平液面上,反射光OB射到水平放置的光屏上,屏上用光电管将光讯号转换为电讯号,电讯号输入控制系统来控制液面的高度,若发现光点在屏上向右移动了Δs距离,射到B′点,则液面的高度变化是 (答案D )
A.液面降低 B.液面升高
C.液面降低 D.液面升高
5.一块透明的光学材料,AB为其一个端面,建立平面直角坐标系如图甲所示,设该光学材料的折射率沿y轴正方向(即BA方向)均匀减小,有一光线PO从真空中以某一入射角射向O点,并进入该材料的内部,则该光线在光学材料内都可能的传播路径是图乙中的 (答案 D )
解:如图所示,由于该材料折射率由下向上均匀减小,可以设想将它分割成折射率不同的薄层。光线射到相邻两层的界面时,如果入射角小于临界角,则射入上一层后折射角大于入射角,光线偏离法线。到达更上层的界面时入射角逐渐增大,当入射角达到临界角时发生全反射,光线开始向下射去直到从该材料中射出。
6.如图所示,一条长度为L=5.0m的光导纤维用折射率为n=的材料制成。一细束激光由其左端的中心点以α= 45°的入射角射入光导纤维内,经过一系列全反射后从右端射出。求:
(1)该激光在光导纤维中的速度v是多大?
(2)该激光在光导纤维中传输所经历的时间是多少?
答案.(l)2.12×108m/s;(2)2.36×10—8s
7.如图所示,两块同样的玻璃直角三棱镜ABC,两者的AC面是平行放置的,在它们之间是均匀的未知透明介质,一单色细光束O垂直于AB面入射,在图示的出射光线中
A.1、2、3(彼此平行)中的任一条都有可能
B.4、5、6(彼此平行)中的任一条都有可能
C.7、8、9(彼此平行)中的任一条都有可能
D.只能是4、6中的某一条
(答案B)
8. 某液体中有一个空心的玻璃棱镜,假如有光线射在棱镜的AB面上,如图所示,这条光线折射后的出射光线将会:(答案B)
A.向棱镜底边BC偏折 B.向棱镜顶角A偏折
C.不发生偏折 D.在AB面折射进入空心部分后可能全部照到BC面上.
9、如图所示,和都是厚度均匀的平玻璃板,它们之间的夹角为,一细光束以入射角从P点射入,,已知此光束由红光和蓝光组成,则当光束透过板后:
A. 传播方向相对于入射光方向向左偏转角
B. 传播方向相对于入射光方向向右偏转角
C. 红光在蓝光的左边
D. 红光在蓝光的右边
(答案C)
10、如图所示,光从A点射入圆形玻璃,而从B点射出,若出射光
线相对于入射光线的偏向角为,AB弧所对的圆心角为,下列说法正确的是:
A.玻璃的折射率为 B.玻璃的折射率为
C.玻璃的折射率为 D.光线在A点的入射角为
(答案:A)
11、如图所示,横截面为等腰三角形的两个玻璃三棱镜,它们的顶角分别为α、β,且α < β。a、b两细束单色光分别以垂直于三棱镜的一个腰的方向射入,从另一个腰射出,射出的光线与入射光线的偏折角均为θ。则ab两种单色光的频率υ1、υ2间的关系是(答案B)
A. υ1 = υ2
B. υ1 > υ2
C. υ1 < υ2
D. 无法确定
解析:设三棱镜的顶角为γ,则光线从一腰垂直射入,到达另一腰时的入射角也是γ,由于偏折角为θ,所以拆射角为γ+θ。根据折射率的定义,可以推导出折射率的计算式为:n==cosθ+co tγ sinθ,由于两种情况下偏折角θ是相同的,γ小的 cot γ反而大,对应的n也大。由本题的已知α<β,得到a光的折射率大,因此a光的频率比b光的频率高。
12.(‘06广东·7)两束不同频率的单色光a、b从空气射入水中,发生了图2所示的折射现象(>)。下列结论中正确的是 (答案 C )
A.光束b的频率比光束a低
B.在水中的传播速度,光束a比光束b小
C.水对光束a的折射率比水对光束b的折射率小
D.若光束从水中射向空气,则光束b的临界角比光束a的临界角大
13.abc为一全反射棱镜,它的主截面是等腰直角三角形,如图所示,一束白光垂直入射到ac面上,在ab面上发生全反射,若光线入射点O的位置保持不变,改变光线的入射方向(不考虑自bc面反射的光线)(答案 A )
A.使入射光按图中的顺时针方向逐渐偏转,如果有色光射出ab面,则红光首先射出
B.使入射光按图中的顺时针方向逐渐偏转,如果有色光射出ab面,则紫光首先射出
C.使入射光按图中所示的逆时针方向逐渐偏转,红光将首先射出ab面
D.使入射光按图中所示的逆时针方向逐渐偏转,紫光将首先射出ab面
14.图中ABCD是一个用折射率n=2.4的透明介质做成的四棱柱镜.图中所示其横截面,∠A=∠C=90°,∠B=60°,AB>BC.现有平行光线垂直入射到棱镜的AB面上,如图所示,若每个面上的 反射都有不能忽略,求出射光线,要求
(1)画出所有典型光线 从入射到射出的光路图(为了图面简洁,表示光线 进行方向的箭头只在棱镜外面的光线上标出即可)
(2)简要说明所画光路的根据,并说明每条典型光线只可能从棱镜表面的哪部分射出.
15.现在高速公路上的标志牌都用“回归反光膜”制成,夜间行车时,它能把车灯射出的
光逆向返回,标志牌上的字特别醒目。这种“回归反光膜”是用球体反射元件制成的,如图所示,反光膜内均匀分布着直径为10μm的细玻璃珠,所用玻璃的折射率为,为使入射的车灯光线经玻璃珠折射→反射→再折射后恰好和入射光线平行,那么第一次入射的入射角应是( 答案D )
A.15° B.30°
C.45° D.60°
16.光导纤维在信息传递方面有很多应用,利用光导纤维进行光纤通信所依据的原理是 (答案B )
A.光的折射 B.光的全反射 C.光的干涉 D.光的色散
17、测定玻璃折射率的实验中
(1) 某同学做实验插针的步骤如下:
A. 在表示入射光线的AO上插上大头针P1和P2
B. 通过玻璃砖观察P1和P2,调整视线,直到P1的像被P2的像挡住
C. 在观察一侧插上大头针P3和P4,并记下P3和 P4的位置。
这位同学在操作中有什么重要疏漏?
(2) 以通过P1P2的直线与玻璃砖的交点O为圆心,以某一适当长度R为半径画圆.与OA交于P,于OO′的延长线交于Q,从P和Q分别做玻璃砖界面的法线NN′的垂线,P′和Q′分别为垂足,如图17-3-4所示,用刻度尺量得PP′=45mm,QQ′=30mm.求玻璃砖的折射率.
答案:(1)疏漏:插针时应使P3挡住P1和P2的像,P4挡住P1、P2、P3的像.(2)根据折射定律:
18.半径为R的玻璃半圆柱体,横截面如图所示,圆心为O。两条平行单色红光沿截面射向圆柱面方向与底面垂直。光线1的入射点A为圆柱面的顶点,光线 2的入射点B,∠AOB=60,已知该玻璃对红光的折射率n=。
(1)求两条光线经柱面和底面折射后交点与O点的距离d。
(2)若入射的是单色蓝光,则距离d将比上面求得的结果大还是小?
答案(1)R/3,(2)小
19.学校开展研究性学习,某研究性学习小组的同学根据所学的光学知识,设计了一个测量液体折射率的仪器,如图所示.在一个圆形木盘上过其圆心O作两条相互垂直的直径BC、EF,在半径OA上垂直圆盘面插下两枚大头针P1、P2并保持P1、P2的位置不变,每次测量时,让圆盘的BFC部分竖直进入液体中,而且总使得液面与直径BC相平,EF为界面的法线,而后在图中右上方区域观察P1、P2的像,并在圆周上插上大头针P3,使P3正好挡住P1、P2.同学们通过计算,预先在圆周EC部分刻好了折射率的值。这样只要根据P所插的位置,就可直接读出液体折射率的值.则
(1)若,OP3与OC的夹角为,则P3处所对应的折射率的值为________.
(2)图中P3、P4两位置哪一处所对应的折射率值大?__________.
(3)作AO的延长线交圆周于K,K处所对应的折射率的值应为_________.
答案:(1)1.73 (3分) (2)P4 (3分) (3)1
第二讲 光的干涉、用双缝干涉测波长、衍射现象
【基本概念基本规律】:
1、光的干涉现象:频率相同,振动方向一致,相差恒定(步调差恒定)的两束光,在相遇的区域出现了稳定相间的加强区域和减弱区域的现象。
产生干涉的条件:
若S1、S2光振动情况完全相同,则符合,(n=0、1、2、3…)时,出现亮条纹;若符合,((n=0,1,2,3…)时,出现暗条纹。相邻亮条纹(或相邻暗条纹)之间的中央间距为。
熟悉条纹特点:中央为明条纹,两边等间距对称分布明暗相间条纹。
2. 用双缝干涉测量光的波长
原理:两个相邻的亮纹或暗条纹的中心间距是Δx=lλ/d
测波长为:λ=d·Δx /l
(1)观察双缝干涉图样:只改变缝宽,用不同的色光来做,改变屏与缝的间距
看条纹间距的变化
单色光:形成明暗相间的条纹。
白光:中央亮条纹的边缘处出现了彩色条纹。这是因为白光是由不同颜色的单色光复合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。
(2).测定单色光的波长:双缝间距是已知的,测屏到双缝的距离,测相邻两条亮纹间的距离,测出个亮纹间的距离,则两个相邻亮条纹间距
3.光的色散:不同的颜色的光,波长不同在双缝干涉实验中,各种颜色的光都会发生干涉现象,用不同色光做实验,条纹间距是不同的,说明:不同颜色的光,波长不同。
含有多种颜色的光被分解为单色光的现象叫光的色散。
各种色光按其波长的有序排列就是光谱。
从红光→紫光,光波的波长逐渐变小。
4.薄膜干涉中的色散现象
如图:把这层液膜当做一个平面镜,用它观察灯焰的像:是液膜前后两个反射的光形成的,与双缝干涉的情况相同,在膜上不同位置,来自前后两个面的反射光用图中实虚线来代表两列光,所走的路程差不同。
在某些位置叠加后加强,出现了亮纹,在另一些位置,叠加后相互削弱,于是出现了暗纹。
注意:关于薄膜干涉要弄清的几个问题:Ⅰ是哪两列光波发生干涉; Ⅱ应该从哪个方向去观察干涉图样;Ⅲ条纹会向哪个方向侧移
5.应用:
(1)照相机、望远镜的镜头表面的增透膜。
(2)检查工件表面是否平整。
6.光的衍射现象:光偏离直线传播绕过障碍物进入阴影区域里的现象。
产生明显衍射的条件:障碍物或孔(缝)的尺寸与波长可比(相差不多)或更小。
单色光单缝衍射图象特点:中央条纹最宽最亮,两侧为不等间隔的明暗相间的条纹。
应用:用衍射光栅测定光波波长。
精选例题:
【例1】(1997年高考全国卷)在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时( 答案C )
A.只有红色和绿色的双缝干涉条纹,其它颜色的双缝干涉条纹消失
B.红色和绿色的双缝干涉条纹消失,其它颜色的双缝干涉条纹依然存在
C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮
D.屏上无任何光亮
【例2】(如图所示).单色光源发出的光经一狭缝,照射到光屏上,则可观察到的图象是 (答案A)
【例3】如图(a)所示是利用双缝干涉测定单色光波长的实验装置,滤光片的作用是_____,单缝的作用是_______________,双缝的作用是______________,单缝和双缝之间的方向关系是_______________.某同学在做该实验时,第一次分划板中心刻度对齐A条纹中心时(图1),游标卡尺的示数如图3所示,第二次分划板中心刻度对齐B条纹中心时(图2),游标卡尺的示数如图4所示,已知双缝间距为0.5mm,从双缝到屏的距离为1m,则图3中游标卡尺的示数为__________mm.图4游标卡尺的示数为_______________mm.实验时测量多条干涉条纹宽度的目的是______________,所测单色光的波长为___________m.
答案:获得单色光,产
生线光源,产生相干光源,平行,11.5mm,16.7mm,减小实验误差,6.5×10-7.
【例4】劈尖干涉是一种薄膜干涉,其装置如图16-1-4所示,将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气膜,当光垂直入射后,从上往下看的干涉条纹如图乙所示,干涉条纹有如下特点:(1)任意一条明纹或暗纹所在位置下面的薄膜厚度相等(2)任意相邻明纹或暗纹所对应的薄膜厚度恒定;现若在图甲装置中抽去一张纸片,则当光垂直入射到新的劈形空气薄膜后,从上往下观察到的干涉条纹:( 答案A )
A.变疏 B.变密 C.不变 D.消失
【例5】如图所示是用干涉法检查某块厚玻璃板的上表面是否平整的装置,所用单色光是用普通光源加滤光片产生的。检查中所观察到的干涉条纹是由下列哪两个表面反向的光叠加而成的( 答案 C )
A.a的上表面、b的下表面
B.a的上表面、b的上表面
C.a的下表面、b的上表面
E. a的下表面、b的下表面
【例6】现代光学装置中的透镜,棱镜的表面常涂上一层薄膜(一般用氟化镁),当薄膜的厚度是入射光在薄膜中波长的1/4时,可以大大减少入射光的反射损失,从而增强透射光的强度,这种作用是应用了光的(答案C)
A.色散现象 B.全反射现象
C.干涉现象 D.衍射现象
( 举一反三)、登山运动员在登雪山时要注意防止紫外线的过度照射,尤其是眼睛更不能长时间被紫外线照射,否则将会严重地损坏视力。有人想利用薄膜干涉的原理设计一种能大大减小紫外线对眼睛的伤害的眼镜。他选用的薄膜材料的折射率为n=1.5,所要消除的紫外线的频率为8.1×1014Hz,那么它设计的这种“增反膜”的厚度至少是多少?答案
【例7】(2001年全国高考)在如图中所示,A、B两幅图是由单色光
分别入射到圆孔而成成的的图像,其中图A是光的 衍射
(填干涉或衍射)图像,由此可以判断出图A所对应的圆孔的孔径 小于 (填大于或小于)图B所对应的圆孔的孔径。
【例8】在双缝干涉实验中,如果将双缝中的一条挡住,其它都不改变,那么在光屏上观察到的现象将是 (答案C)
A.仍然是均匀分布的明暗相间的条纹,只是亮纹的亮度变暗了
B.仍然是均匀分布的明暗相间的条纹,只是由于挡住一条缝,所以光屏上只有一半区域内有干涉条纹,另一半区域内将没有干涉条纹
C.仍然有明暗相间的条纹,只是条纹的宽窄和亮度分布不再是均匀的了
D.由于只有单缝,不能形成相干光源,所以不会发生光的干涉现象,光屏上将没有任何条纹出现
【例9】.如右图所示,L为水平放置的点亮的8w日光灯,T为一藤椅的竖直靠背,横藤条与日光灯管平行,竖藤条相互垂交织,它们之间是透空方格,P是与藤条靠背平行的白屏。现将屏从紧贴椅背处慢慢向远处(图中右方)平移,从屏上将依次看到( 答案C )
A.横藤条的影,横竖藤条的影?
B.竖藤条的影,横竖藤条的影?
C.横竖藤条的影,竖藤条的影,没有藤条的影?
D.横竖藤条的影,横藤条的影,没有藤条的影?
第二讲 光的干涉 衍射 课后练习
1.如图所示是光的双缝干涉的示意图,下列说法中正确的是(答案:D )
①单缝S的作用是为了增加光的强度.
②双缝S1、S2的作用是为了产生两个频率相同的线状光源.
③当S1、S2发出两列光波到P点的路程差为光的波长λ的1.5倍时,产生第二条暗条纹.
④当S1、S2发出的两列光波到P点的路程差为长λ时,产生中央亮条纹.
A.① B.①② C.②④ D.②③
2.在双缝干涉实验中,双缝到光屏上P点的距离之差△x=0.6,若分别用频率为f1=5.0×1014Hz和f2=7.5×1014Hz的单色光垂直照射双缝,则P点出现明、暗条纹的情况是(答案:AD )
A.用频率为f1的单色光照射时,出现明条纹.
B.用频率为f2的单色光照射时,出现明条纹.
C.用频率为f1的单色光照射时,出现暗条纹.
D.用频率为f2的单色光照射时,出现暗条纹.
3.关于双缝干涉条纹的以下说法中正确的是( 答案:ABD )
A.用同一种单色光做双缝干涉实验,能观察到明暗相间的单色条纹.
B.用同一种单色光经双缝干涉的明条纹到两缝的距离之差为该色光波长的整数倍.
C.用同一种单色光经双缝干涉的明条纹到两缝的距离之差一定为该色光波长的奇数倍.
D.用同种单色光经双缝后干涉的暗条纹到两缝的距离之差一定为该色光半波长的奇数倍.
4.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时 (答案:C )
A.只有红色和绿色的双缝干涉条纹,其它颜色的双缝干涉条纹消失
B.红色和绿色的双缝干涉条纹消失,其它颜色的双缝干涉条纹依然存在
C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮
D.屏上无任何光亮
5.如图所示,一束白光从左侧射人肥皂薄膜,下列说法中正确的是 ( 答案:A )
①人从右侧向左看,可看到彩色条纹
②人从左侧向右看,可看到彩色条纹
③彩色条纹水平排列
④彩色条纹竖直排列
A.②③ B.①②④ C.②④ D.①③
6.用绿光做双缝干涉实验,在光屏上呈现出绿、暗相间的条纹,相邻两条绿条纹间的距离为Δx。下列说法中正确的有 (答案: C )
A.如果增大单缝到双缝间的距离,Δx 将增大
B.如果增大双缝之间的距离,Δx 将增大
C.如果增大双缝到光屏之间的距离,Δx将增大
D.如果减小双缝的每条缝的宽度,而不改变双缝间的距离,Δx将增大
解:公式中l表示双缝到屏的距离,d表示双缝之间的距离。因此Δx与单缝到双缝间的距离无关,于缝本身的宽度也无关。本题选。
7.如图甲所示,在一块平板玻璃上放置一平凸薄透镜,在两者之间形成厚度不均匀的空气膜,让一束单一波长的光垂直入射到该装置上,结果在上方观察到如图乙所示的同心内疏外密的圆环状干涉条纹,称为牛顿环,以下说法正确的是 (答案:A C )
A.干涉现象是由于凸透镜下表面反射光和玻璃上表面反射光叠加形成的
B.干涉现象是由于凸透镜上表面反射光和玻璃上表面反射光叠加形成的
C.干涉条纹不等间距是因为空气膜厚度不是均匀变化的
D.干涉条纹不等间距是因为空气膜厚度是均匀变化的
8.在一发光的小电珠和光屏之间放一个大小可以调节的圆形孔屏,在圆屏从较大调到完全闭合的过程中,在屏上看到的现象是:(答案:A)
A.先是圆形亮区,再是圆形亮环,最后完全黑暗
B.先是圆形亮区,最后完全黑暗
C.先是圆形亮环,最后完全黑暗
D.先是圆形亮环,再是圆形亮区,最后完全黑暗
9.关于光学装置上的增透膜,下列说法中错误的是:(答案:B D)
A.照相机的镜头上涂增透膜后,可提高成像质量
B.光学镜头上涂增透膜,是为了使入射光的各种色光都不发生反射
C.增透膜的厚度应是入射光在介质中波长的四分之一
D.涂有增透膜的镜头,看上去呈淡紫色,说明增透膜增加了镜头对紫光的透射程度
10. 在光的双缝干涉实验中,如果只改变一个条件,以下说法中正确的是:(答案:AC)
A.使双缝间距变小,则条纹间距变宽
B.使屏与双缝距离变小,则条纹间距变宽
C.将入射光由绿光改为红光,则条纹间距变宽
D.将入射光由绿光改为紫光,则条纹间距变宽
11.如图所示的双缝干涉实验装置中,当使用波长为的橙光做实验时,光屏中心点P点及其上方的P1点形成两条相邻的亮纹;若换用波长为的紫光重复上述实验,在P和P1点形成的亮、暗纹情况是(答案:B)
A.P和P1都是亮纹
B.P是亮纹,P1是暗纹
C.P是暗纹,P1是亮纹
D.P和P1都是暗纹
12.下面哪些属于光的干涉现象:(答案:D)
A.雨后美丽的彩虹
B.对着日光灯从两铅笔的缝中看到的彩色条纹
C.光通过三棱镜产生的彩色条纹
D.阳光下肥皂膜上的彩色条纹
13.关于光的衍射现象,以下说法中正确的是:(答案:B )
A.缝的宽度越小,衍射图案越亮
B.缝的宽度越小,衍射现象越明显
C.缝的宽度越小,光的传播路线越接近直线
D.入射光的波长越短,衍射现象越明显
14、激光散斑测速是一种崭新的技术,它应用了光的干涉原理,用二次曝光照相所获得的“散斑对”相当于双缝干涉实验中的双缝,待测物体的速度与二次曝光的时间间隔的乘积等于双缝间距,实验中可测得二次曝光时间间隔、双缝到屏之距离以及相邻亮纹间距,若所用的激光波长为,则该实验确定物体运动速度的表达式为( )
A、 B、
C、 D、
解析:如图,点光源S发出的光一部分直接照到光屏
(如阴影部分所示),另一部分则照到平面镜上,经平面镜反射后再照到光屏上。这一部分光好像是从点光源的像点S’发出的一样,这样就把同一束光分成了两束,形成相干光源,在它们叠加的区域内,形成明暗相间的干涉条纹。
作法:连接S和平面镜的右边缘并延长交平面镜于b;根据对称性做S在平面镜中的像点S/ ,连接S/ 和平面镜的左、右边缘并延长交平面镜于c、d;光屏上c、d之间的部分是两束光叠加的区域,在此区域内可以观察到干涉现象
15.双缝干涉实验装置如图所示,绿光通过单缝S后,投射到具有双缝的挡板上,双缝S1和S2与单缝的距离相等,光通过双缝后在与双缝平行的屏上形成干涉条纹。屏上O点距双缝S1和S2的距离相等,P点是距O点最近的第一条亮条纹。如果将入射的单色光换成红光或蓝光,讨论屏上O点及其上方的干涉条纹的情况是:①O点是红光的亮条纹;②红光的第一条亮条纹在P点的上方;③O点不是蓝光的亮条纹;④蓝光的第一条亮条纹在P点的上方。其中正确的是
A.只有①②正确 B.只有①④正确 C.只有②③正确 D.只有③④正确
(答案A)
*16.在用双缝干涉测光的波长的实验中:⑴已知双缝到光屏之间的距离是600mm,双缝之间的距离是0.20mm,单缝到双缝之间的距离是100mm,某同学在用测量头测量时,先将测量头目镜中中看到的分划板中心刻线对准某条亮纹(记作第1条)的中心,这时手轮上的示数如左图所示。然后他转动测量头,使分划板中心刻线对准第7条亮纹的中心,这时手轮上的示数如右图所示。这两次示数依次为_______mm和______mm。由此可以计算出本实验所用的单色光的波长为_______nm。
(答案0.641 10.296, 536)
、
第三讲 光 的 偏 振、激光
【基本概念基本规律】:
一、自然光和偏振光的定义
1.光的偏振
偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。
⑴光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场E的方向、磁场B的方向和电磁波的传播方向之间,两两互相垂直。
⑵光波的感光作用和生理作用主要是由电场强度E引起的,因此将E的振动称为光振动。
⑶自然光。太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。
自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。
1、 偏振光的产生方式:
A、 偏振光的理论意义
B、 应用:利用偏振滤光片摄影、观看立体电影等。
2、 激光
A、 激光的定义:
B、 激光的特点及应用:(1)频率单一;(2)相干性好;(3)平行度好(方向性好);(4)亮度高(能在很小空间、很短时问内集中很大的能量)。
【精选例题】
【例1】有关偏振和偏振光的下列说法中正确的有 (答案选BD)
A.只有电磁波才能发生偏振,机械波不能发生偏振
B.只有横波能发生偏振,纵波不能发生偏振
C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光
D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光
解:机械能中的横波能发生偏振。自然光不一定非要通过偏振片才能变为偏振光。本题应。
【例2】.下列有关光现象的说法中正确的是 (答案 AC )
A.在太阳光照射下,水面上油膜出现彩色花纹是光的色散现象
B.在光的双缝干涉实验中,若仅将入射光由绿光改为红光,则干涉条纹间距变窄
C.光异纤维丝内芯材料的折射率比外套材料的折射率大
D.光的偏振现象说明光是一种纵波
例2、通过一块偏振片观察电灯、蜡烛、月亮、反光的黑板、当以入射光线为轴转动偏振片时,看到的现象有何变化?
第三讲 光的偏振、激光 课后练习
1.如图所示,让太阳光或白炽灯光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,这是光的偏振现象.这个实验表明 (答案 B )
A.光是电磁波
B.光是一种横波
C.光是一种纵波
D.光是概率波
2.有关偏振和偏振光的下列说法中正确的有 ( 答案 BD )
A.只有电磁波才能发生偏振,机械波不能发生偏振
B.只有横波能发生偏振,纵波不能发生偏振
C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光
D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光
3、纳米技术是跨世纪的新技术,将激光束的宽度集中到纳米范围内,可修复人体已损坏的器官,对DNA分子进行超微型基因修复,把诸如癌症等彻底根除。在上述技术中,人们主要利用了激光的:(答案BC)
A、单色性 B、单向性
C、亮度高 D、粒子性
4、如图所示,人眼隔着起偏器B、A去看一只电灯泡S,一束透射光都看不到,那么,以下说法中哪些是正确的( 答案AC )
A.使A和B同时转过90°,仍然一束光都看不到
B.单使B转过90°过程中,看到光先变亮再变暗
C.单使B转过90°过程中,看到光逐渐变亮
D.单使A转动时,始终看不到透射光
第四讲 电磁波、电磁波与信息化社会 电磁波谱
【基本概念与基本规律】
1.电磁场
麦克斯韦电磁场理论的要点:要深刻理解和应用麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。
按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。
2.电磁波
变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。
有效地发射电磁波的条件是:(1)频率足够高(单位时间内辐射出的能量P∝f 4);(2)形成开放电路(把电场和磁场分散到尽可能大的空间里去)。
电磁波的传播:
(1)不需要任何介质
(2)在真空中任何电磁波传播速度都是c=3.00×108m/s,跟光速相同。
(3)频率不同的电磁波波长不同。三者关系式:。
(4)电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横波。
无线电波的发射与接收:(了解)
(1) 振荡电路的特点:
(2) 调制:
(3) 调谐:
(4) 检波
3.电磁波与信息化社会(考纲中无要求)
知道广播、电视、雷达、无线通信等都是电磁波的具体应用。
4.电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。电磁波谱如图。
5.各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。
电磁波谱从左至右频率越来越大,波长越来越短,因此就越不容易发生干涉和衍射现象,但穿透本领却越来越强.
6.红外线、紫外线、X射线的主要性质及其应用举例。
种类 产生 主要性质 应用举例
红外线 一切物体都能发出 热效应 遥感、遥控、加热
紫外线 一切高温物体能发出 化学效应 荧光、杀菌、合成VD2
X射线 阴极射线射到固体表面 穿透能力强 人体透视、金属探伤
实验证明:物体辐射出的电磁波中辐射最强的波长λm和物体温度T之间满足关系λmT=b(b为常数)。可见高温物体辐射出的电磁波频率较高。在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。
可见光频率范围是3.9-7.5×1014Hz,波长范围是400-770nm。
(电磁波的能量:微波加热原理
太阳辐射的特点。
精选例题:
【例1】如图为LC振荡电路中电容器极板上的电荷量随时间变化的图线,由图可知(答案:ACD)
A.在时刻,电路的磁场能最小
B.从到,电路中的电流值不断变小
C.从到,电容器不断充电
D.在时刻电容器的电场能最小
【例2】有一LC振荡电路,能产生一定波长的电磁波,若要产生波长比原来短些的电磁波,可采取的措施为:(答案:D)
A.增加线圈的匝数
B.在线圈中插入铁芯
C.减小电容器极板间的距离
D.减小电容器极板正对面积
【例题3】如图所示,平行板电容器和电池组相连。用绝缘工具将电容器两板间的距离逐渐增大的过程中,关于电容器两极板间的电场和磁场,下列说法中正确的是(答案BD)
A.两极板间的电压和场强都将逐渐减小
B.两极板间的电压不变,场强逐渐减小
C.两极板间将产生顺时针方向的磁场
D.两极板间将产生逆时针方向的磁场
【例题4】(提高题)电子感应加速器是利用变化磁场产生的电场来加速电子的。在圆形磁铁的两极之间有一环形真空室,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速。被加速的电子同时在洛伦兹力的作用下沿圆形轨道运动。设法把高能电子引入靶室,能使其进一步加速。在一个半径为r=0.84m的电子感应加速器中,电子在被加速的4.2ms内获得的能量为120MeV。这期间电子轨道内的高频交变磁场是线性变化的,磁通量从零增到1.8Wb,求电子共绕行了多少周?
解:根据法拉第电磁感应定律,环形室内的感应电动势为,设电子在加速器中绕行了N周,则电场力做功NeE应该等于电子的动能EK,所以有N= EK/Ee,带入数据可得N=2.8×105周。
【例5】80年代初,科学家发明了硅太阳能电池,如果在太空设立太阳能卫星电站,可24小时发电,且不受昼夜气候的影响,利用微波——电能转换装置,将电能转换成微波向地面发送,卫星电站的最佳位置在离地1100km的赤道上空,微波定向性很好,飞机通过微波区不会发生意外,但微波对飞鸟是致命的,可在地面站附近装上保护网或驱逐音响,不让飞鸟通过,预计在21世纪初地球上空将建成卫星电站,(地球半径为6400km),
(1) 太阳能电池将实现哪种转换?
A.光能微波 B.光能热能
C.光能电能 D.电能微波
(2) 在1100km高空的卫星电站的速度约为多少?
A. B.
C. D.
(3) 微波指的是:
A.超声波 B.次声波
C.电磁波 D.机械波
(4) 飞机外壳对微波的哪种作用,使飞机安全无恙:
A.反射 B.吸收
C.干涉 D.衍射
(5) 微波对飞鸟是致命的,这是因为:
A.电离作用 B.穿透作用
C.生物电作用 D.产生强涡流
答案:(1)C (2)B (3)C (4)B
【例6】家用微波炉是一种利用微波的电磁能加热食物的新型灶具,主要由磁控管、波导管、微波加热器、炉门、直流电源、冷却系统、外壳等组成。接通电源后,220V交流电经一变压器,一方面在次级3.4V交流对磁控管加热,同时在次级产生2000V高压,经整流加到磁控管的阴、阳两极之间,使磁控管产生频率为的微波。微波输送至金属制成的加热器(炉腔),被来回反射,微波的电磁作用使食物内分子高频地运动而内外同时加热,迅速熟热,并能最大限度地保存食物中的维生素。
(1)试计算微波炉里变压器的高压变压比
(2)试计算磁控管产生的微波的波长?
(3)试分析微波炉的工作原理中利用了电磁波的哪些性质?
(4)微波炉产生的高频微波若发生泄漏造成电磁辐射污染,直接伤害人的肌体,试述原因?
第四讲 电磁波 课后练习
1.根据麦克斯韦电磁场理论,以下说法正确的是 (答案:BCD )
A.稳定的电场产生稳定的磁场,稳定的磁场产生稳定的电场
B.均匀变化的电场将产生稳定的磁场,均匀变化的磁场将产生稳定的电场
C.振荡的电场在周围空间产生振荡的磁场
D.开放的振荡电路产生的电磁波能传到更大的范围
2.电磁波由真空进入介质后,发生变化的物理量有 (答案:C )
A.波长和频率 B.波速和频率
C.波长和波速 D.频率和能量
3.关于电磁波,以下说法中正确的是 (答案:AB )
A.电磁波本身就是物质,因此可在真空中传播
B.电磁波由真空进入介质,速度变小,频率不变
C.在真空中,频率高的电磁波波速较大
D.只要发射电路的电磁振荡停止,产生的电磁波立即消失
4.关于电磁波的发射和接收,下列说法正确的是 (答案:BCD )
A.为了使振荡电路有效地向空间辐射能量,必须是闭合电路
B.电台功率比较低,不能直接用来发射电磁波
C.当接收电路的固有频率与收到的电磁波的频率相同时,接收电路中产生的振荡电流最强
D.要使电视机的屏上有图象,必须要有检波过程
5.如图所示,氢原子中的电子绕核逆时什快速旋转,匀强磁场垂直于轨道平面向外,电子的运动轨道半径r不变,若使磁场均匀增加,则电子的动能 (答案C )
A.不变 B.增大
C.减小 D.无法判断
6.过量接收电磁辐射有害人体健康。按照有关规定,工作场所受到的电磁辐射强度(单位时间内垂直通过单位面积的电磁辐射能量)不得超过某一临界值W。若某无线电通讯装置的电磁辐射功率为P,则符合规定的安全区域到该通讯装置的距离至少为 (答案D )
A. B. C. D.
8.在图所示的四个电场与时间的关系图象中,不能产生磁场的是图 A ,能产生稳定磁场的是图 B ,能产生电磁波的是图 CD .
9、下列说法中正确的是:(答案:ABD)
A.摄像机实际上是一种将光信号转变为电信号的装置
B.电视机实际上是一种将电信号转变为光信号的装置
C.电视机接收的画面是连续的,
D.摄像机在1s内要送出25张画面
10、电子钟是利用LC振荡电路来工作计时的,现发现电子钟每天要慢30s,造成这一现象的原因可能是:(答案:BC)
A.电池用久了 B.振荡电路中电容器的电容大了
C.振荡电路中线圈的电感大了 D.振荡电路中的电容器的电容小
11.电磁波与机械波相比较,下列说法中正确的是:(答案:ABCD)
A.电磁波传播不需要介质,机械波传播需在介质中
B.电磁波与机械波的波动频率都由波源确定
C.电磁波、机械波都会发生衍射和干涉
D.电磁波、机械波都包括横波和纵波
12.关于雷达的特点,下列说法中正确的是:(答案:AC)
A.雷达所用的无线电波的波长比短波更短
B.雷达只有连续发射无线电波,才能发现目标
C.雷达的显示屏上可以直接读出障碍物的距离
D.雷达在能见度低的黑夜将无法使用
13.如图所示,两个荷质比相同的带正电荷的粒子和以相同的动能在匀强磁场中运动,从区运动到区,已知;在初时磁感强度为的磁场中做匀速圆周运动,然后磁场逐渐增强到,则、两粒子的动能可能:(答案A)
A.不变,增加 B.不变,变小
C.、都变小 D. 、都变大
14(提高题)某雷达工作站,发射电磁波的波长为,每秒脉冲数,每个脉冲持续时间,问电磁波的频率为多少?最大的侦察距离是多少?
答案:由于电磁波的波长、频率和波速之间满足关系,真空中电磁波的传播速度等于光速,一般在空气中传播,电磁波的传播速度就认为等于光速ν=3.00×l 08 m/s,因此,即电磁波频率为1.5×109 Hz.雷达工作时发射电磁脉冲,每个脉冲持续t=0.02μs,在两个脉冲时间间隔内,雷达必须接收到反射回来的电磁脉冲,否则会与后面的电磁脉冲重叠而影响测量,设最大侦察距离为s,则2s=△t,而△t=1/5000 s=200μs〉〉0.02μs(脉冲持续时间可以略去不计),所以s=△t/2=3×104m.
15.“神州五号”载人飞船成功发射,如果你想通过同步卫星转发的无线电话与杨利伟通话,则在你讲完话后,至少要等多长时间才能听到对方的回话?(已知地球的质量为 M=6.0×1024kg,地球半径为R=6.4×106m,万有引力恒量G=6.67×10-11Nm2/kg2)
答案:t=0.48s
解析:同步卫星是相对于地面静止的,它的运动周期T=3600×24s,设卫星离地面距离为h,它绕地球转动的向心力是它对地球的万有引力,即,代入,h=3.59×107m。最短通信距离是发话人和听话人均在同步卫星的正下方,这时电磁波传播的最短距离为s=2h,所以最短时间为t=2×2h/c=0.48s。
16.由于空气中含量增多,导致全球气温升高,这被称为温室效应,是环境保护面临的一个重大问题,对地面附近气温产生影响,主要是因为气体:()
A.对射来的太阳光中的红外线有强烈的吸收作用,这就足以使全球气温升高
B.在一昼夜中对射来的太阳光中吸收的热大于它向地球四周辐射的热,这就使的温度升高,导致全球气温升高
C.对由地面向外辐射的红外线有强烈的吸收作用,是这些被吸收的热使大气温度升高
D.强烈吸收由地面向外辐射的红外线,又向各方向辐射红外线,其中约一半向地面辐射,从而使地面附近气温升高
17.在下列电磁波中,有明显热效应的是:答案:C
A.射线 B.可见光
C.红外线 D.紫外线
18.关于红外线的作用和来源的正确叙述有:答案:AD
A.一切物体都在不停地辐射红外线 B.红外线有很强的荧光效应和热作用
C.红外线的主要作用是化学作用 D.红外线容易穿过云雾烟尘
19.防治"非典"期间,在机场、车站等交通出入口,使用了红外线热像仪,红外线热像仪通过红外线遥感,可检测出经过它时的发热病人,从而可以有效控制疫情的传播,关于红外热像仪,下列说法中正确的是:答案:D
A.选择红外线进行检测,主要是因为红外线光子波长较大,容易发生明显衍射
B.红外线热像仪通过发射红外线照射人体来检测体温
C.红外线热像仪同时还具有杀菌作用
D.一切物体都能发射红外线,而且物体在不同温度下发射的红外线的频率和强度不同
20.下列说法符合实际的是:答案:BD
A.医院里常用X射线对病房进行消毒
B.医院里常用紫外线对病房进行消毒
C.在人造卫星上对地球进行拍摄是利用紫外线有较好的分辨能力
D.在人造卫星上对地球进行拍摄是利用红外线有较好的穿透云雾烟尘能力和热作用.
+
+
Ⅰ
Ⅱ
a
b
O
S
150
450
入射光线
1
2
O
A
B
P
0
A
B
C
P
左
右
A
B
图16-1-1
图乙
图甲
图A
图B
10 15
双缝
P
绿光
S2
S1
O
光振动
在纸面
光振动垂直纸面
直于纸面
图
25 30
0 5 10