21.2.2公式法课件

文档属性

名称 21.2.2公式法课件
格式 zip
文件大小 369.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2018-05-25 11:34:42

图片预览

文档简介

课件31张PPT。21.2 解一元二次方程第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结学练优九年级数学上(RJ)
教学课件21.2.2 公式法导入新课复习引入1.用配方法解一元二次方程的步骤有哪几步?2.如何用配方法解方程2x2+4x+1=0?导入新课讲授新课 任何一个一元二次方程都可以写成一般形式
ax2+bx+c=0
能否也用配方法得出它的解呢?合作探究用配方法解一般形式的一元二次方程
ax2+bx+c=0 (a≠0).方程两边都除以a 解:移项,得配方,得即问题:接下来能用直接开平方解吗?一元二次方程的求根公式特别提醒∵a ≠0,4a2>0,当b2-4ac ≥0时,∵a ≠0,4a2>0,当b2-4ac <0时,而x取任何实数都不能使上式成立.因此,方程无实数根. 由上可知,一元二次方程ax2+bx+c=0 (a≠0)的根由方程的系数a,b,c确定.因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0 (a≠0) ,当b2-4ac ≥0 时,将a,b,c 代入式子
就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.视频:求根公式的趣味记忆 例1 用公式法解方程 5x2-4x-12=0解:∵a=5,b=-4,c=-12,b2-4ac=(-4)2-4×5×(-12)=256>0.典例精析解:这里的a、b、c的值是什么?例3 解方程: (精确到0.001).解:用计算器求得:例4 解方程:4x2-3x+2=0因为在实数范围内负数不能开平方,所以方程无实数根.解:要点归纳公式法解方程的步骤1.变形: 化已知方程为一般形式;
2.确定系数:用a,b,c写出各项系数;
3.计算: b2-4ac的值;
4.判断:若b2-4ac ≥0,则利用求根公式求出;
若b2-4ac<0,则方程没有实数根.两个不相等实数根 两个相等实数根没有实数根两个实数根 按要求完成下列表格:练一练04有两个相等的实数根没有实数根有两个不相等的实数根3.判别根的情况,得出结论.1.化为一般式,确定a,b,c的值.要点归纳根的判别式使用方法例5:已知一元二次方程x2+x=1,下列判断正确的是( )
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定解析:原方程变形为x2+x-1=0.∵b2-4ac=1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.Bb2 - 4ac > 0时,方程有两个不相等的实数根.
b2 - 4ac = 0时,方程有两个相等的实数根.
b2 - 4ac < 0时,方程无实数根.例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )
A.k>-1 B.k>-1且k≠0
C.k<1 D.k<1且k≠0解析:由根的判别式知,方程有两个不相等的实数根,则b2-4ac>0,同时要求二次项系数不为0,即 ,k≠0.解得k>-1且k≠0,故选B.B例7:不解方程,判断下列方程的根的情况.
(1)3x2+4x-3=0;(2)4x2=12x-9; (3) 7y=5(y2+1).解:(1)3x2+4x-3=0,a=3,b=4,c=-3,
∴b2-4ac=32-4×3×(-3)=52>0.
∴方程有两个不相等的实数根.
(2)方程化为:4x2-12x+9=0,
∴b2-4ac=(-12)2-4×4×9=0.
∴方程有两个相等的实数根.例7:不解方程,判断下列方程的根的情况.
(3) 7y=5(y2+1).解:(3)方程化为:5y2-7y+5=0,
∴b2-4ac=(-7)2-4×5×5=-51<0.
∴方程有两个相等的实数根.1.解方程:x2 +7x – 18 = 0.解:这里 a=1, b= 7, c= -18.
∵ b 2 - 4ac =7 2 – 4 × 1× (-18 ) =121>0,
即 x1 = -9, x2 = 2 .当堂练习2. 解方程(x - 2) (1 - 3x) = 6.解:去括号 ,得 x –2 - 3x2 + 6x = 6,
化简为一般式 3x2 - 7x + 8 = 0,
这里 a = 3, b = -7 , c = 8.
∵b2 - 4ac=(-7 )2 – 4 × 3 × 8 = 49–96
= - 47 < 0,
∴原方程没有实数根.3. 解方程:2x2 - x + 3 = 0
解: 这里 a = 2 , b = - , c = 3 .
∵ b2 - 4ac = 27 - 4×2×3 = 3 > 0 ,

即 x1= x2=4.关于x的一元二次方程 有两个实根,则m的取值范围是 . 注意:一元二次方程有实根,说明方程可能有两个不等实根或两个相等实根两种情况.解:∴5.不解方程,判断下列方程的根的情况.
(1)2x2+3x-4=0;(2)x2-x+ =0; (3) x2-x+1=0.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,
∴b2-4ac=32-4×2×(-4)=41>0.
∴方程有两个不相等的实数根.
(2)x2-x+ =0,a=1,b=-1,c= .
∴b2-4ac=(-1)2-4×1× =0.
∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.
∴b2-4ac=(-1)2-4×1×1=-3<0.
∴方程无实数根. (3) x2-x+1=0.6.不解方程,判别关于x的方程
的根的情况.解:所以方程有两个实数根.能力提升:
在等腰△ABC 中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长.解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实
数根,所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或b=2.将b=-10代入原方程得x2-8x+16=0,x1=x2=4;将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);所以△ABC 的三边长为4,4,5,
其周长为4+4+5=13.课堂小结公式法求根公式步骤一化(一般形式);
二定(系数值);
三求( Δ值);
四判(方程根的情况);
五代(求根公式计算).根的判别式b2-4ac务必将方程化为一般形式