21世纪教育网 –中小学教育资源及组卷应用平台
新北师大版七下数学《第5章 生活中的轴对称》
单元测试卷
温馨提示:本卷满分100分,考试时间120分钟
一、选择题(共12小题,每小题3分,计36分)
1.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )
A.等边三角形 B.等腰直角三角形
C.等腰三角形 D.含30°角的直角三角形
2.如图,△ABC和△A′B′C′关于直线L对称,下列结论中正确的有( )
(1)△ABC≌△A′B′C′
(2)∠BAC=∠B′A′C′
(3)直线L垂直平分CC′
(4)直线BC和B′C′的交点不一定在直线L上.
A.4个 B.3个 C.2个 D.1个
3.下列图案是轴对称图形的有( )个.
A.1 B.2 C.3 D.4
4.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为( )
A.5 B.6 C.8 D.10
5.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是( )21教育网
A. B. C. D.
6.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )【21·世纪·教育·网】
A.28 B.26 C.25 D.22
7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )21·世纪*教育网
A.3 B.4 C.5 D.6
8.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD 的平分线上时,CA1的长为( )www-2-1-cnjy-com
A.3或4 B.4或3 C.3或4 D.3或4
9.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )2-1-c-n-j-y
A.30° B.35° C.40° D.50°
10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为( )
A.4cm B.6cm C.8cm D.12cm
11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD=3.5,DE=6,则线段EC的长为( )
A.3 B.4 C.2 D.2.5
12.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,较长直角边的中点为M,绕中点M转动上面的三角板ABC,直角顶点C恰好落在三角板△A1B1C1的斜边A1B1上.当∠A=30°,B1C=2时,则此时AB的长为( )www.21-cn-jy.com
A.6 B.8 C.9 D.10
二.填空题(共4小题,每小题3分,计12分)
13.在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是 .
14.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN= .2·1·c·n·j·y
15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为
16.在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC= .
三.解答题(共8小题,满分52分)
17.(6分)用三角板和直尺作图.(不写作法,保留痕迹)
如图,点A,B在直线l的同侧.
(1)试在直线l上取一点M,使MA+MB的值最小.
(2)试在直线l上取一点N,使NB﹣NA最大.
18.(6分)如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.
(1)求线段BN的长;
(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:① ;
② .
19.(6分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
20.(6分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,联结AE.21世纪教育网
(1)求线段CD的长;
(2)求△ADE的面积.
21.(6分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.21·cn·jy·com
(1)求证:DF是线段AB的垂直平分线;
(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
22.(6分)如图,已知直线l1∥l2∥l3,Rt△ABC的直角顶点C在直线l1上,点B在直线l2上,点A在直线l3上,l2与AC交于点D,且∠BAC=25°,∠BAE=25°.
(1)求证:△ABD是等腰三角形;
(2)求∠BCF的度数.
23.(8分)对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.
定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形
性质:按下列分类用文字语言填写相应的性质:
从对称性看:筝形是一个轴对称图形,它的对称轴是 ;
从边看:筝形有两组邻边分别相等;
从角看: ;
从对角线看: .
判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.
方法1:从边看:运用筝形的定义;
方法2:从对角线看: ;
如图,四边形ABCD中, .求证:四边形ABCD是筝形
应用:如图,探索筝形ABCD的面积公式(直接写出结论).
24.(8分)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.21cnjy.com
(1)试判定△ODE的形状,并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)21世纪教育网 –中小学教育资源及组卷应用平台
新北师大版七下数学《第5章 生活中的轴对称》
单元测试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,计36分)
1.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )
A.等边三角形 B.等腰直角三角形
C.等腰三角形 D.含30°角的直角三角形
解:因为三角形是轴对称图形,则该三角形是等腰三角形,
根据有一个内角是60°的等腰三角形是等边三角形.
故选:A.
2.如图,△ABC和△A′B′C′关于直线L对称,下列结论中正确的有( )
(1)△ABC≌△A′B′C′
(2)∠BAC=∠B′A′C′
(3)直线L垂直平分CC′
(4)直线BC和B′C′的交点不一定在直线L上.
A.4个 B.3个 C.2个 D.1个
解:(1)正确;
(2)正确;
(3)正确;
(4)“直线BC和B′C′的交点不一定在直线L上”,应是一定在直线L上的.
故选:B.
3.下列图案是轴对称图形的有( )个.
A.1 B.2 C.3 D.4
解:第一个图形是轴对称图形,
第二个图形不是轴对称图形,
第三个图形不是轴对称图形,
第四个图形是轴对称图形,
综上所述,轴对称图形共有2个.
故选:B.
4.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为( )
A.5 B.6 C.8 D.10
解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.www.21-cn-jy.com
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=5,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,2-1-c-n-j-y
∴△COD是等边三角形,
∴CD=OC=OD=5.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5,
故选:A.
5.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是( )21*cnjy*com
A. B. C. D.
解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小,
∴D的作法正确,
故选:D.
6.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )【21cnj*y.co*m】
A.28 B.26 C.25 D.22
解:如图,由题意得:BM=MN(设为λ),CN=DN=3;
∵四边形ABCD为矩形,
∴BC=AD=9,∠C=90°,MC=9﹣λ;
由勾股定理得:λ2=(9﹣λ)2+32,
解得:λ=5,
∴五边形ABMND的周长=6+5+5+3+9=28,
故选:A.
7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )【21教育名师】
A.3 B.4 C.5 D.6
解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AD平分∠BAC,
∴DE=CD,
∴S△ABD=AB DE=×10 DE=15,
解得DE=3.
故选:A.
8.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD 的平分线上时,CA1的长为( )21教育网
A.3或4 B.4或3 C.3或4 D.3或4
解:如图所示,过点A′作A′M⊥BC于点M.
∵点A的对应点A′恰落在∠BCD的平分线上,
∴设CM=A′M=x,则BM=7﹣x,
又由折叠的性质知AB=A′B=5,
∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,
∴25﹣(7﹣x)2=x2,
∴x=3或x=4,
∵在等腰Rt△A′CM中,CA′=A′M,
∴CA′=3或4.
故选:D.
9.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )21cnjy.com
A.30° B.35° C.40° D.50°
解:∵DE是AC的垂直平分线,
∴AE=EC,
∴∠C=∠EAC,
设∠C=x°,则∠EAC=x°,
∵∠ABC=90°,∠BAE=20°,
∴x+x+20+90=180,解得:x=35,
∴∠C=35°,
故选:B.
10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为( )
A.4cm B.6cm C.8cm D.12cm
解:延长ED交BC于M,延长AD交BC于N,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4cm,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=30°,
∴NM=2cm,
∴BN=4cm,
∴BC=2BN=8cm.
故选:C.
11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD=3.5,DE=6,则线段EC的长为( )
A.3 B.4 C.2 D.2.5
解:∵∠ABC和∠ACB的平分线相交于点F,
∴∠DBF=∠FBC,∠ECF=∠BCF,
∵DF∥BC,交AB于点D,交AC于点E.
∴∠DFB=∠DBF,∠CFE=∠BCF,
∴BD=DF=3.5,FE=CE,
∴CE=DE﹣DF=6﹣3.5=2.5.
故选:D.
12.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,较长直角边的中点为M,绕中点M转动上面的三角板ABC,直角顶点C恰好落在三角板△A1B1C1的斜边A1B1上.当∠A=30°,B1C=2时,则此时AB的长为( )2·1·c·n·j·y
A.6 B.8 C.9 D.10
解:连接C1C,
∵M是AC的中点,△ABC,△A1B1C1是两块完全一样的含30°角三角板重叠在一起的,
∴AM=CM=A1C1,
即CM=A1M=C1M,
∴∠A1=∠1,∠2=∠3,
∴A1+∠3=∠1+∠2=90°=∠A1CC1,
∴△B1C1C为直角三角形,
∵∠A1=30°,
∴∠B1=60°,
∴∠B1C1C=30°,
∴BC=B1C1=2B1C=4,
∵∠A=30°,
∴AB=2BC=8.
故选:B.
二.填空题(共4小题,每小题3分,计12分)
13.在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是 平行四边形 .
解:线段是轴对称图形;
角是轴对称图形;
等腰三角形是轴对称图形;
平行四边形不是轴对称图形;
正方形是轴对称图形.
故答案为:平行四边形.
14.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN= 32° .21·世纪*教育网
解:∵△ABC中,∠BAC=106°,
∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,
∵EF、MN分别是AB、AC的中垂线,
∴∠B=∠BAE,∠C=∠CAN,
即∠B+∠C=∠BAE+∠CAN=74°,
∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.
故答案为32°.
15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为
解:如图所示:在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.
在Rt△ABC中,依据勾股定理可知BA=10.
CH=,
∵EF+CE=EF′+EC,
∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为,
故答案为:
16.在△ABC中,∠A=45°,∠B=30°,AD为△ABC的中线,则∠ADC= 45° .
解:过C作CE⊥AB于点E,
则有∠AEC=∠BEC=90°,
∵∠CAB=45°,∠B=30°,
∴∠ACE=∠CAB=45°,∠BCE=60°,
∴AE=CE,
∵AD为三角形的中线,
∴BD=CD=DE=BC,
∴∠BED=30°,
∴△CED是等边三角形,
∴DE=CE=AE,∠CDE=60°,
∴∠ADE=∠DAE=∠BED=15°,
∴∠ADC=∠CDE﹣∠ADE=45°.
故答案为:45°.
三.解答题(共8小题,满分52分)
17.(6分)用三角板和直尺作图.(不写作法,保留痕迹)
如图,点A,B在直线l的同侧.
(1)试在直线l上取一点M,使MA+MB的值最小.
(2)试在直线l上取一点N,使NB﹣NA最大.
解:(1)如图所示:
(2)如图所示;
理由:∵NB﹣NA≤AB,
∴当A、B、N共线时,BN﹣NA的值最大.
18.(6分)如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N.
(1)求线段BN的长;
(2)连接CD,与MN交于点E,写出与点E相关的两个正确结论:① DE=EC ;
② ∠DEM=90° .
解:(1)∵D是AB的中点,
∴BD=AB=3.
设BF=x,则CF=9﹣x.
由翻折的性质可知:DF=CF=9﹣x.
在△BDF中,由勾股定理得:DF2=BD2+FB2,即(9﹣x)2=32+x2.
解得:x=4.
∴BF的长为4.
(2)如图:结论:①DE=EC;②∠DEM=90°,
故答案为DE=EC,∠DEM=90°
19.(6分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
解:(1)如图所示:△ABC的面积:×3×5=7.5;
(2)如图所示:
(3)A1(1,5),B1(1,0),C1(4,3).
20.(6分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,联结AE.21世纪教育网
(1)求线段CD的长;
(2)求△ADE的面积.
解:(1)过点D作DH⊥AB,垂足为点H,
∵BD平分∠ABC,∠C=90°,
∴DH=DC=x,
则AD=3﹣x.
∵∠C=90°,AC=3,BC=4,
∴AB=5,
∵,
∴,
∴,即CD=;
(2),
∵BD=2DE,
∴,
∴.
21.(6分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.21·cn·jy·com
(1)求证:DF是线段AB的垂直平分线;
(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
(1)证明:∵∠A=∠ABE,
∴EA=EB,
∵AD=DB,
∴DF是线段AB的垂直平分线;
(2)解:∵∠A=46°,
∴∠ABE=∠A=46°,
∵AB=AC,
∴∠ABC=∠ACB=67°,
∴∠EBC=∠ABC﹣∠ABE=21°,
∠F=90°﹣∠ABC=23°.
22.(6分)如图,已知直线l1∥l2∥l3,Rt△ABC的直角顶点C在直线l1上,点B在直线l2上,点A在直线l3上,l2与AC交于点D,且∠BAC=25°,∠BAE=25°.
(1)求证:△ABD是等腰三角形;
(2)求∠BCF的度数.
(1)证明:∵l2∥l3
∴∠ABD=∠BAE=25°,
∵∠BAC=25°
∴∠ABD=∠BAC,
∴△ABD是等腰三角形,
23.(8分)对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.
定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形
性质:按下列分类用文字语言填写相应的性质:
从对称性看:筝形是一个轴对称图形,它的对称轴是 其中一条对角线所在直线 ;
从边看:筝形有两组邻边分别相等;
从角看: 筝形只有一组对角相等 ;
从对角线看: 有且只有一条对角线被另一条对角线垂直平分 .
判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.
方法1:从边看:运用筝形的定义;
方法2:从对角线看: 有且只有一条对角线被另一条对角线垂直平分 ;
如图,四边形ABCD中, AC垂直平分BD于O点,且AO≠CO .求证:四边形ABCD是筝形
应用:如图,探索筝形ABCD的面积公式(直接写出结论).
解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.
从角看:筝形只有一组对角相等;
从对角线看:有且只有一条对角线被另一条对角线垂直平分.
判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.
结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.
证明:按照题意,画出图形1.
∵AC垂直平分BD,
∴AB=AD,CB=CD.
又∵AB=,BC=,AO≠CO,
∴AB≠BC,
∴由筝形定义得,四边形ABCD是筝形.
应用:筝形面积为对角线乘积的一半;
∵S筝形ABCD=S△ABD+S△CBD=BD AO+BD CO=BD(AO+CO)=BD AC,
∴筝形面积为对角线乘积的一半.
故答案为:其中一条对角线所在直线;筝形只有一组对角相等;有且只有一条对角线被另一条对角线垂直平分.有且只有一条对角线被另一条对角线垂直平分;AC垂直平分BD于O点,且AO≠CO.【21·世纪·教育·网】
24.(8分)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.www-2-1-cnjy-com
(1)试判定△ODE的形状,并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.
解:(1)△ODE是等边三角形,
其理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,(2分)
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°(3分)
∴△ODE是等边三角形;(4分)
(2)答:BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,(6分)
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,(7分)
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC.(8分)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)