(浙江专版)2018年高中数学新人教A版选修2-1:第一章常用逻辑用语(课件+学案)(7份)

文档属性

名称 (浙江专版)2018年高中数学新人教A版选修2-1:第一章常用逻辑用语(课件+学案)(7份)
格式 zip
文件大小 18.8MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-06-03 19:32:26

文档简介

复习课(一) 常用逻辑用语
命题及其关系
通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.21·世纪*教育网
[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.21cnjy.com
(1)垂直于同一平面的两条直线平行;
(2)当mn<0时,方程mx2-x+n=0有实数根.
[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.
它的逆命题、否命题和逆否命题如下:
逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)
否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)
逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)
(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.
它的逆命题、否命题和逆否命题如下:
逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)
否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)
逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)
[类题通法]
简单命题真假的判断方法
1.下列说法中错误的个数是(  )
①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数”
②命题“若x>1,则x-1>0”的否命题是“若x≤1,则x-1≤0”
③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”
④命题“x=-4是方程x2+3x-4=0的根”的否命题是“x=-4不是方程x2+3x-4=0的根”
A.1  B.2
C.3 D.4
解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x2+3x-4=0的根”.www-2-1-cnjy-com
2.原命题为“若A.真,真,真 B.假,假,真
C.真,真,假 D.假,假,假
解析:选A 3.下列说法正确的是________.(写出所有正确说法的序号)
①若p是q的充分不必要条件,则綈p是綈q的必要不充分条件;
②命题“存在x0∈R,x+1>3x0”的否定是“任意x∈R,x2+1<3x”;
③设x,y∈R,命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若f(x+1)为R上的偶函数,则f(x)的图象关于直线x=1对称.
解析:①因为p是q的充分不必要条件,所以p?q为真命题,q?p为假命题,故綈p?綈q为假命题,綈q?綈p为真命题,故綈p是綈q的必要不充分条件,即命题正确;②命题“存在x0∈R,x+1>3x0”的否定是“任意x∈R,x2+1≤3x”,故命题不正确;③逆命题为:“若x2+y2=0,则xy=0”是真命题,据互为逆否命题的两个命题真假相同,可知其否命题为真命题,故命题正确;④若f(x+1)为R上的偶函数,则f(x+1)关于y轴对称,将函数f(x+1)向右平移一个单位得到f(x),即f(x)的图象关于直线x=1对称,故正确.
答案:①③④
充分条件与必要条件
充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.【21cnj*y.co*m】
充分条件、必要条件与充要条件
(1)如果p?q,则p是q的充分条件,q是p的必要条件;
(2)如果p?q,q?p,则p是q的充要条件.
[典例] (1)(山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(2)若α∈R,则“α=0”是“sin αA.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
[解析] (1)由题意知a?α,b?β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.
(2)当α=0时,sin α=0,cos α=1,∴sin α[答案] (1)A (2)A
[类题通法]
充分条件、必要条件、充要条件的判断方法
(1)定义法.
①若“p?q”,且“qp”,则p是q的“充分不必要条件”,同时q是p的“必要不充分条件”;
②若“p?q”,则p是q的“充要条件”,同时q是p的“充要条件”;
③若p q,且qp,则p是q的“既不充分也不必要条件”,同时q是p的“既不充分也不必要条件”.
(2)等价命题法.
利用互为逆否的两个命题间的等价关系判断.
1.(北京高考)设α,β是两个不同的平面,m是直线且m?α,“m∥β ”是“α∥β ”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β?/ α∥β;当α∥β时,α内任一直线与β平行,因为m?α,所以m∥β.综上知,“m∥β ”是“α∥β ”的必要而不充分条件.【21教育名师】
2.对于任意实数x,?x?表示不小于x的最小整数,例如?1.1?=2,?-1.1?=-1,那么“|x-y|<1”是“?x?=?y?”的(  )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但?1.8?=2,?0.9?=1,即?x?≠?y?;当?x?=?y?时,必有|x-y|<1,所以“|x-y|<1”是“?x?=?y?”的必要不充分条件,故选B.
3.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的(  )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.21教育网

1.命题“若p,则q”的逆命题是(  )
A.若q则p        B.若綈p则綈q
C.若綈q则綈p D.若p则綈q
解析:选A 根据原命题与逆命题之间的关系可得,逆命题为“若q则p”,选A.
2.下列叙述中正确的是(  )
A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
C.命题“若a>b,则a-1>b-1”的逆否命题是“若a-1D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β
解析:选D 对于选项A,当a<0时,若b2-4ac≤0,则ax2+bx+c≤0,故“b2-4ac≤0”不是“ax2+bx+c≥0”的充分条件,A错;对于选项B,若ab2>cb2,则(a-c)b2>0,即a>c,若a>c,当b=0时,ab2>cb2不成立,故“ab2>cb2”是“a>c”的充分不必要条件,B错;对于选项C,命题“若a>b,则a-1>b-1”的逆否命题是“若a-1≤b-1,则a≤b”,故C错;对于选项D,由线面垂直的性质可知α∥β,故D正确,选D.
3.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )21·cn·jy·com
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:选A 先证“α⊥β ?a⊥b”.∵α⊥β,α∩β=m,b?β,b⊥m,∴b⊥α.又∵a?α,∴b⊥a;再证“a⊥b?/ α⊥β”.举反例,当a∥m时,由b⊥m知a⊥b,此时二面角αmβ可以为(0,π]上的任意角,即α不一定垂直于β.故选A.
4.“a≠1或b≠2”是“a+b≠3”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要
解析:选B a≠1或b≠2,则a+b≠3的逆否命题为a+b=3,则a=1且b=2,当a=3,b=0时,a+b=3,故是假命题.若a+b≠3,则a≠1或b≠2的逆否命题为a=1且b=2,则a+b=3,故为真命题.所以B正确.【21·世纪·教育·网】
5.条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A p?q,若x=100,y=0.1满足q:x+y>2,xy>1,但不满足p,即q?/ p.故选A.【21教育】
6.2x2-5x-3<0的一个必要不充分条件是(  )
A.-C.-3解析:选D 由2x2-5x-3<0,即(2x+1)(x-3)<0,解得-7.“x=2kπ+(k∈Z)”是“tan x=1”成立的________条件.(填充分不必要,必要不充分或充要)
解析:tan=tan=1(k∈Z),所以充分;但反之不成立,如tan=1.
答案:充分不必要
8.已知p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,那么实数m的取值范围是________________.www.21-cn-jy.com
解析:因为p(1)是假命题,所以1+2-m≤0,即m≥3,又因为p(2)是真命题,所以4+4-m>0,即m<8,故实数m的取值范围是3≤m<8.21-cnjy*com
答案:[3,8)
9.对任意实数a,b,c,给出下列命题:
①“a>b>0”是“a2>b2”成立的充分不必要条件;
②“b2=ac”是“a,b,c成等比数列”的充要条件;
③“a<5”是“a<3”的必要条件;
④“0其中真命题的是________(填序号).
解析:①中a>b>0?a2>b2,a2>b2?/ a>b>0故①正确.
②中若a=b=c=0,满足b2=ac,但a,b,c不成等比数列,故②错误.
③“a<5”是“a<3”的必要条件,故③正确.
④当0答案:①③
10.已知p:x2-8x-20>0,q:x2-2x+1-a2>0,若p是q的充分而不必要条件,求正实数a的取值范围.2·1·c·n·j·y
解:p:x2-8x-20>0?x<-2或x>10,
令A={x|x<-2或x>10},
∵a>0,∴q:x<1-a或x>1+a,
令B={x|x<1-a或x>1+a},
由题意p?q且q?/ p,知A?B,
应有或 ?0<a≤3,
∴a的取值范围为(0,3].
11.在数列{an}中,若a-a=k(n≥2,n∈N*,k为常数),则称{an}为X数列.
证明:一个等比数列为X数列的充要条件是其公比为1或-1.
证明:设数列{an}是等比数列,且an=a1qn-1(q为公比且q≠0),
若{an}为X数列,
则有a-a=aq2n-2-aq2n-4=aq2n-4(q2-1)=k(k为与n无关的常数),
所以q2=1,即q=1或q=-1.
若一个等比数列{an}的公比q=1,
则an=a1,进而a-a=0,所以{an}为X数列;
若一个等比数列{an}的公比q=-1,
则an=(-1)n-1a1,进而a-a=(-1)2n-2a-(-1)2n-4a=0,
所以{an}为X数列.
故一个等比数列为X数列的充要条件是其公比为1或-1.
12.已知集合A=yy=x2-x+1,x∈,B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.21世纪教育网
解:y=x2-x+1=2+,
∵x∈,∴≤y≤2,
∴A=.
由x+m2≥1,得x≥1-m2,
∴B={x|x≥1-m2}.
∵“x∈A”是“x∈B”的充分条件,∴A?B,
∴1-m2≤,
解得m≥或m≤-,
故实数m的取值范围是∪.
1.1 
1.1.1 命 题
预习课本P2~3,思考并完成以下问题
1.命题、真命题、假命题的概念分别是什么?
  
 
2.在命题“若p,则q”的形式中,p、q分别叫做命题的什么?
 
  
 
命题
[点睛] (1)判断一个语句是命题的两个要素:
①是陈述句,表达形式可以是符号、表达式或语言;
②可以判断真假.
(2)命题的条件与结论之间的关系属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)“集合{a,b,c}有3个子集”是命题(  )
(2)“x2-3x+2=0”是命题(  )
答案:(1)√ (2)×
2.语句“若a>b,则a+c>b+c”(  )
A.不是命题  B.是真命题
C.是假命题 D.不能判断真假
答案:B
3.下列语句中,是假命题的是(  )
A.一条直线有且只有一条垂线
B.不相等的两个角一定不是对顶角
C.直角的补角必是直角
D.两直线平行,同旁内角互补
答案:A
4.命题“一个正整数不是合数就是素数”的条件p为______,结论q为________.
答案:一个正整数 不是合数就是素数
命题的判断
[典例] 判断下列语句是否是命题,并说明理由.
(1)是有理数;
(2)3x2≤5;
(3)梯形是不是平面图形呢?
(4)x2-x+7>0.
[解] (1)“是有理数”是陈述句,并且它是假的,所以它是命题.
(2)因为无法判断“3x2≤5”的真假,所以它不是命题.
(3)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.
(4)因为x2-x+7=2+>0,所以“x2-x+7>0”是真的,故是命题.
判断语句是否是命题的策略
(1)命题是可以判断真假的陈述句,因此,疑问句、祈使句、感叹句等都不是命题.
(2)对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若不能,就不是命题.      21*cnjy*com
[活学活用]
判断下列语句是否为命题,并说明理由.
(1)若平面四边形的边都相等,则它是菱形;
(2)任何集合都是它自己的子集;
(3)对顶角相等吗?
(4)x>3.
解:(1)是陈述句,能判断真假,是命题.
(2)是陈述句,能判断真假,是命题.
(3)不是陈述句,不是命题.
(4)是陈述句,但不能判断真假,不是命题.
判断命题的真假
[典例] 判断下列命题的真假,并说明理由.
(1)正方形既是矩形又是菱形;
(2)当x=4时,2x+1<0;
(3)若x=3或x=7,则(x-3)(x-7)=0;
(4)一个等比数列的公比大于1时,该数列一定为递增数列.
[解] (1)是真命题,由正方形的定义知,正方形既是矩形又是菱形.
(2)是假命题,x=4不满足2x+1<0.
(3)是真命题,x=3或x=7能得到(x-3)(x-7)=0.
(4)是假命题,因为当等比数列的首项a1<0,公比q>1时,该数列为递减数列.
命题真假的判定方法
(1)真命题的判定方法:
真命题的判定过程实际上就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.
(2)假命题的判定方法:
通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.      
[活学活用]
下列命题中真命题有(  )
①mx2+2x-1=0是一元二次方程;
②抛物线y=ax2+2x-1与x轴至少有一个交点;
③互相包含的两个集合相等;
④空集是任何集合的真子集.
A.1个         B.2个
C.3个 D.4个
解析:选A ①中当m=0时,是一元一次方程;②中当Δ=4+4a<0时,抛物线与x轴无交点;③是正确的;④中空集不是本身的真子集.21教育网
命题的结构形式
[典例] 将下列命题改写成“若p,则q”的形式,并判断命题的真假.
(1)6是12和18的公约数;
(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;
(3)平行四边形的对角线互相平分;
(4)已知x,y为非零自然数,当y-x=2时,y=4,x=2.
[解] (1)若一个数是6,则它是12和18的公约数,是真命题.
(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.
(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.
(4)已知x,y为非零自然数,若y-x=2,则y=4,x=2,是假命题.
把一个命题改写成“若p,则q”的形式,首先要确定命题的条件和结论,若条件和结论比较隐含,则要补充完整,有时一个条件有多个结论,有时一个结论需多个条件,还要注意有的命题改写形式不唯一.      21-cnjy*com
[活学活用]
把下列命题改写成“若p,则q”的形式,并判断命题的真假.
(1)奇数不能被2整除;
(2)当(a-1)2+(b-1)2=0时,a=b=1;
(3)两个相似三角形是全等三角形;
(4)在空间中,平行于同一个平面的两条直线平行.
解:(1)若一个数是奇数,则它不能被2整除,是真命题.
(2)若(a-1)2+(b-1)2=0,则a=b=1,是真命题.
(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.
(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.
层级一 学业水平达标
1.下列语句不是命题的有(  )
①若a>b,b>c,则a>c;②x>2;③3<4;④函数y=ax(a>0,且a≠1)在R上是增函数.
A.0个          B.1个
C.2个 D.3个
解析:选C ①③是可以判断真假的陈述句,是命题;②④不能判断真假,不是命题.
2.下列命题是真命题的是(  )
A.所有质数都是奇数
B.若>,则a>b
C.对任意的x∈N,都有x3>x2成立
D.方程x2+x+2=0有实根
解析:选B 选项A错,因为2是偶数也是质数;选项B正确;选项C错;因为当x=0时x3>x2不成立;选项D错,因为Δ=12-8=-7<0,所以方程x2+x+2=0无实根.
3.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中,假命题是(  )
A.若a∥b,则α∥β
B.若α⊥β,则a⊥b
C.若a,b相交,则α,β相交
D.若α,β相交,则a,b相交
解析:选D 由已知a⊥α,b⊥β,若α,β相交,a,b有可能异面.
4.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是(  )
A.4 B.2
C.0 D.-3
解析:选C 方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.
5.已知下列三个命题:
①若一个球的半径缩小到原来的, 则其体积缩小到原来的;
②若两组数据的平均数相等, 则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2=相切.
其中真命题的序号为(  )
A.①②③ B.①②
C.①③ D.②③
解析:选C 对于命题①,设球的半径为R,则π3=·πR3,故体积缩小到原来的,命题正确;
对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;21·cn·jy·com
对于命题③,圆x2+y2=的圆心(0,0)到直线x+y+1=0的距离d==,等于圆的半径,所以直线与圆相切,命题正确.
6.下列语句中是命题的有________(写出序号),其中是真命题的有________(写出序号).
①垂直于同一条直线的两条直线必平行吗?
②一个数不是正数就是负数;
③大角所对的边大于小角所对的边;
④△ABC中,若∠A=∠B,则sin A=sin B;
⑤求证方程x2+x+1=0无实根.
解析:①疑问句.没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题;
②是假命题,0既不是正数也不是负数;
③是假命题,没有考虑在同一个三角形内;
④是真命题;
⑤祈使句,不是命题.
答案:②③④ ④
7.给出下面三个命题:
①函数y=tan x在第一象限是增函数;
②奇函数的图象一定过原点;
③若a>b>1,则0其中是真命题的是________.(填序号)
解析:①是假命题,反例:x=2π+和x=,tan=,tan =1,2π+>,但tan2π+②是假命题,反例:y=是奇函数,但其图象不过原点.
③是真命题,由对数函数的图象及单调性可知是真命题.
答案:③
8.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.
解析:∵ax2-2ax-3>0不成立,
∴ax2-2ax-3≤0恒成立.
当a=0时,-3≤0恒成立;
当a≠0时,则有
解得-3≤a<0.
综上,-3≤a≤0.
答案:[-3,0]
9.把下列命题改写成“若p,则q”的形式,并判断真假,且指出p和q分别指什么.
(1)乘积为1的两个实数互为倒数;
(2)奇函数的图象关于原点对称;
(3)与同一直线平行的两个平面平行.
解:(1)“若两个实数乘积为1,则这两个实数互为倒数”.它是真命题.
p:两个实数乘积为1;q:两个实数互为倒数.
(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.
p:一个函数为奇函数;q:函数的图象关于原点对称.
(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.
p:两个平面与同一条直线平行;q:两个平面平行.
10.已知A:5x-1>a,B:x>1,请选择适当的实数a,使得利用A,B 构造的命题“若p,则q”为真命题.21·世纪*教育网
解:若视A为p,则命题“若p,则q”为“若x>,则x>1”.由命题为真命题可知≥1,解得a≥4;
若视B为p,则命题“若p,则q”为“若x>1,则x>”.由命题为真命题可知≤1,解得a≤4.
故a取任一实数均可利用A,B构造出一个真命题,比如这里取a=1,则有真命题“若x>1,则x>”.
层级二 应试能力达标
1.在空间中,下列命题正确的是(  )
A.平行直线的平行投影重合
B.平行于同一平面的两条直线平行
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
解析:选D A中当两平行直线确定的平面不垂直于投影面时,两平行直线的平行投影不重合.B中两直线也可以相交或异面.C中两平面可以相交.D正确.故选D.
2.下面的命题中是真命题的是(  )
A.y=sin2x的最小正周期为2π
B.若方程ax2+bx+c=0(a≠0)的两根同号,则>0
C.如果M?N,那么M∪N=M
D.在△ABC中,若·>0,则B为锐角
解析:选B y=sin2x=,T==π,故A为假命题;当M?N时,M∪N=N,故C为假命题;在三角形ABC中,当·>0时,向量与的夹角为锐角,B应为钝角,故D为假命题.故选B.
3.下列命题为真命题的是(  )
A.若=,则x=y
B.若x2=1,则x=1
C.若x=y,则=
D.若x解析:选A 很明显A正确;B中,由x2=1,得x=±1,所以B是假命题;C中,当x=y<0时,结论不成立,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.故选A.
4.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是(  )
A.这个四边形的对角线互相平分
B.这个四边形的对角线互相垂直
C.这个四边形的对角线既互相平分,也互相垂直
D.这个四边形是平行四边形
解析:选C 命题可改为“若一个四边形是平行四边形,则这个四边形的对角线既互相平分,也互相垂直.”故选C.
5.命题“若a>0,则二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包括边界)”条件p:________,结论q:________________________________.它是____________命题(填“真”或“假”).
解析:a>0时,设a=1,把(0,0)代入x+y-1≥0得-1≥0不成立,
∴x+y-1≥0表示直线的右上方区域(包括边界),
∴命题为真命题.
答案:a>0 二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界) 真
6.定义“正对数”:ln+x=现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a;
②若a>0,b>0,则ln+(ab)=ln+a+ln+b;
③若a>0,b>0,则ln+≥ln+a-ln+b;
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln 2.
其中的真命题有________.(写出所有真命题的编号)
解析:对于①,当a≥1时,ab≥1,则ln+(ab)=ln ab=bln a=bln+a;当0同理讨论a,b在(0,+∞)内的不同取值,可知③④为真命题.
对于②,可取特殊值a=e,b=,则ln+(ab)=0,ln+a+ln+b=1+0=1,故②为假命题.
综上可知,真命题有①③④.
答案:①③④
7.已知p:x2-2x+2≥m的解集为R;q:函数f(x)=-(7-3m)x是减函数.若这两个命题中有且只有一个是真命题,求实数m的取值范围.
解:若命题p为真命题,由x2-2x+2=(x-1)2+1≥m,可知m≤1;
若命题q为真命题,则7-3m>1,即m<2.
命题p和q中有且只有一个是真命题,则p真q假或p假q真,
即或所以1故实数m的取值范围是(1,2).
8.试探究命题“方程ax2+bx+1=0有实数解”为真命题时,a,b满足的条件.
解:方程ax2+bx+1=0有实数解,要考虑方程为一元一次方程和一元二次方程两种情况:
当a=0时,方程ax2+bx+1=0为bx+1=0,只有当b≠0时,方程有实数解x=-;
当a≠0时,方程ax2+bx+1=0为一元二次方程,方程有实数解的条件为Δ=b2-4a≥0.
综上知,当a=0,b≠0或a≠0,b2-4a≥0时,方程ax2+bx+1=0有实数解.
1.1.2 & 1.1.3 四种命题 四种命题间的相互关系
 预习课本P4~8,思考并完成以下问题
1.一个命题的四种形式分别是什么?它们之间的相互关系分别是什么?
 
 
2.什么样的两个命题有相同的真假性?
 
 
3.两个互逆命题或互否命题,它们之间的真假性有没有关系?
 
 
1.四种命题的概念
一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这样的两个命题叫做互逆命题,如果是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫做互否命题,如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题,把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.21*教*育*名*师
2.四种命题结构
3.四种命题之间的关系
4.四种命题的真假性之间的关系
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)一个命题的否命题和逆命题有相同的真假性(  )
(2)原命题与逆命题之间的真假性没有关系(  )
答案:(1)√ (2)√
2.已知a,b∈R,命题“若a+b=1,则a2+b2≥”的否命题是(  )
A.若a2+b2<,则a+b≠1
B.若a+b=1,则a2+b2<
C.若a+b≠1,则a2+b2<
D.若a2+b2≥,则a+b=1
答案:C
3.若a≠0,则ab≠0的逆命题是________.
答案:若ab≠0,则a≠0
4.命题p:若a=1,则a2=1;命题q:若a2=1,则a=1,则命题p与q的关系是________.
答案:互逆命题
四种命题的概念
[典例] 把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.
(1)全等三角形的对应边相等;
(2)当x=2时,x2-3x+2=0.
[解] (1)原命题:若两个三角形全等,则这两个三角形三边对应相等;
逆命题:若两个三角形三边对应相等,则这两个三角形全等;
否命题:若两个三角形不全等,则这两个三角形三边对应不相等;
逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.
(2)原命题:若x=2,则x2-3x+2=0;
逆命题:若x2-3x+2=0,则x=2;
否命题:若x≠2,则x2-3x+2≠0;
逆否命题:若x2-3x+2≠0,则x≠2.
(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件和结论同时否定即得否命题,将条件和结论互换的同时,进行否定即得逆否命题.【21cnj*y.co*m】
(2)如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.      【21教育】
[活学活用]
写出以下命题的逆命题、否命题和逆否命题.
(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;
(2)如果x>10,那么x>0.
解:(1)逆命题:如果一条直线垂直于平面,那么这条直线垂直于平面内的两条相交直线;
否命题:如果直线不垂直于平面内的两条相交直线,那么这条直线不垂直于平面;
逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线.
(2)逆命题:如果x>0,那么x>10;
否命题:如果x≤10,那么x≤0;
逆否命题:如果x≤0,那么x≤10.
四种命题真假的判断
[典例] 判断下列命题的真假.
(1)“若x2+y2≠0,则x,y不全为零”的否命题.
(2)“正三角形都相似”的逆命题.
(3)“若m>0,则x2+x-m=0有实根”的逆否命题.
[解] (1)原命题的否命题为“若x2+y2=0,则x,y全为零”.真命题.
(2)原命题的逆命题为“若三角形相似,则这些三角形是正三角形”.假命题.
(3)原命题的逆否命题为“若x2+x-m=0无实根,则m≤0”.
因为方程x2+x-m=0无实根,
所以判别式Δ=1+4m<0,解得m<-,
故m≤0,为真命题.
[一题多变]
1.[变设问]若本例(3)改为判断“若m>0,则x2+x-m=0有实根”的逆命题的真假,则结果如何?21世纪教育网
解:原命题的逆命题为“若x2+x-m=0有实根,则m>0”.
因为方程x2+x-m=0有实根,所以判别式Δ=1+4m≥0,所以m≥-,故逆命题为假命题.
2.[变条件]若本例(3)改为判断“若m>0,则mx2+x-1=0有实根”的逆否命题的真假,则结论如何?2·1·c·n·j·y
解:原命题的逆否命题为“若mx2+x-1=0无实根,则m≤0”.
因为方程mx2+x-1=0无实根,则m≠0,
所以判别式Δ=1+4m<0,则m<-,
故m≤0,为真命题.
解决此类题目的关键是牢记四种命题的概念,原命题与它的逆否命题同真同假,原命题的否命题与逆命题也互为逆否命题,同真同假,故只判断二者中的一个即可. 
   
等价命题的应用
  [典例] 证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【21教育名师】
[证明] 法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)若a+b<0,则a<-b,b<-a.
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)∴f(a)+f(b)即原命题的逆否命题为真命题.
∴原命题为真命题.
法二:假设a+b<0,则a<-b,b<-a.
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)∴f(a)+f(b)这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.
因此假设不成立,故a+b≥0.
由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.      
[活学活用]
证明:若m2+n2=2,则m+n≤2.
证明:将“若m2+n2=2,则m+n≤2”视为原命题,则它的逆否命题为“若m+n>2,则m2+n2≠2”.
由于m+n>2,则m2+n2≥(m+n)2>×22=2,
所以m2+n2≠2.
故原命题的逆否命题为真命题,从而原命题也为真命题.
层级一 学业水平达标
1.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是(  )
A.原命题、否命题     B.原命题、逆命题
C.原命题、逆否命题 D.逆命题、否命题
解析:选C 因为原命题是真命题,所以逆否命题也是真命题.
2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是(  )
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
D.若a2+b2+c2≥3,则a+b+c=3
解析:选A a+b+c=3的否定是a+b+c≠3,a2+b2+c2≥3的否定是a2+b2+c2<3.
3.与命题“能被6整除的整数,一定能被3整除”等价的命题是(  )
A.能被3整除的整数,一定能被6整除
B.不能被3整除的整数,一定不能被6整除
C.不能被6整除的整数,一定不能被3整除
D.不能被6整除的整数,能被3整除
解析:选B 即写命题“若一个整数能被6整除,则一定能被3整除”的逆否命题.
4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是(  )
A.互逆命题 B.互否命题
C.互为逆否命题 D.以上都不正确
解析:选A 设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”.故q与r为互逆命题.www.21-cn-jy.com
5.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(  )www-2-1-cnjy-com
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
解析:选B 因为原命题为真,所以它的逆否命题为真;若|z1|=|z2|,当z1=1,z2=-1时,这两个复数不是共轭复数,所以原命题的逆命题是假的,故否命题也是假的.故选B.
6.命题“正数的绝对值等于它本身”的逆命题是______________________,这是________(填“真”或“假”)命题.
解析:逆命题即将原命题条件和结论互换位置.
答案:如果一个数的绝对值等于它本身,那么这个数一定是正数 假
7.已知命题“若m-1解析:由已知得,若1∴∴1≤m≤2.
答案:[1,2]
8.下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②若一个四边形对角互补,则它内接于圆;
③正方形的四条边相等;
④圆内接四边形对角互补;
⑤对角不互补的四边形不内接于圆;
⑥若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有_______;互为否命题的有________;互为逆否命题的有________.
解析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断.
答案:②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤
9.写出下列命题的逆命题、否命题、逆否命题,然后判断真假.
(1)等高的两个三角形是全等三角形;
(2)弦的垂直平分线平分弦所对的弧.
解:(1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;
否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;
逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.
(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;
否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题;
逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.
10.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.21cnjy.com
解:原命题的逆否命题为“已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集”.判断其真假如下:【21·世纪·教育·网】
抛物线y=x2+(2a+1)x+a2+2的图象开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7.
因为a<1,所以4a-7<0.
即抛物线y=x2+(2a+1)x+a2+2的图象与x轴无交点.
所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
故原命题的逆否命题为真命题.
层级二 应试能力达标
1.命题“设a,b,c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有(  )2-1-c-n-j-y
A.0个   B.1个   C.2个   D.4个
解析:选C 若c=0,则ac2>bc2不成立,故原命题为假命题.由等价命题同真同假,知其逆否命题也为假命题.逆命题“设a,b,c∈R,若ac2>bc2,则a>b”为真命题,由等价命题同真同假,知原命题的否命题也为真命题,所以共有2个真命题,故选C.
2.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的(  )
A.逆命题         B.否命题
C.逆否命题 D.无关命题
解析:选A 由于这两个命题的关系是一个命题的条件和结论分别是另一个命题的结论和条件,所以互为逆命题,故选A.
3.原命题“圆内接四边形是等腰梯形”,则下列说法正确的是(  )
A.原命题是真命题 B.逆命题是假命题
C.否命题是真命题 D.逆否命题是真命题
解析:选C 原命题是假命题,所以逆否命题是假命题,逆命题“等腰梯形是圆内接四边形”是真命题,所以否命题是真命题,故选C.
4.命题“若α=,则tan α=1”的逆否命题是(  )
A.若α≠,则tan α≠1 B.若α=,则tan α≠1
C.若tan α≠1,则α≠ D.若tan α≠1,则α=
解析:选C 否定原命题的结论作条件,否定原命题的条件作结论所得的命题为逆否命题,可知C正确.
5.命题“若x>1,则x>0”的逆命题是________________,逆否命题是________________.
答案:若x>0,则x>1 若x≤0,则x≤1
6.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.
解析:逆命题为“若A∩B≠A,则A∪B≠B”;
否命题为“若A∪B=B,则A∩B=A”;
逆否命题为“若A∩B=A,则A∪B=B”;
全为真命题.
答案:4
7.已知a,b,c∈R,证明:若a+b+c<1,则a,b,c中至少有一个小于.
证明:原命题的逆否命题为:已知a,b,c∈R,若a,b,c都不小于,则a+b+c≥1.
由条件a≥,b≥,c≥,
三式相加得a+b+c≥1,
显然逆否命题为真命题.
所以原命题也为真命题.
即已知a,b,c∈R,若a+b+c<1,
则a,b,c中至少有一个小于.
8.已知函数f(x)=x2-2x,g(x)=ax+2(a>0),若命题:对于任意的x1∈[-1,2],存在x2∈[-1,2]使f(x1)=g(x2)为真命题,求实数a的取值范围.
解:对于任意的x1∈[-1,2],存在x2∈[-1,2]使f(x1)=g(x2),则{f(x)|x∈[-1,2]}?{g(x)|x∈[-1,2]}.又f(x)=x2-2x在[-1,1]上单调递减,在[1,2]上单调递增,所以-1≤f(x)≤3.因为g(x)=ax+2(a>0)在[-1,2]上单调递增,所以-a+2≤g(x)≤2a+2,于是有即a≥3.
故实数a的取值范围为[3,+∞).
1.2 
预习课本P9~11,思考并完成以下问题
1.什么是充分条件、必要条件?
 
 
2.什么是充要条件?
 
 
  
1.充分条件与必要条件
命题真假
“若p,则q”是真命题
“若p,则q”是假命题
推出关系
p?q
p?/_q
条件关系
p是q的充分条件
q是p的必要条件
p不是q的充分条件
q不是p的必要条件
2.充要条件
(1)定义:若p?q且q?p,则记作p?q,此时p是q的充分必要条件,简称充要条件.
(2)条件与结论的等价性:如果p是q的充要条件,那么q也是p的充要条件.
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)若p是q的充分条件,则p是唯一的(  )
(2)“若綈p,则綈q”是真命题,则p是q的必要条件(  )
(3)若p是q的充要条件,则命题p和q是两个相互等价的命题(  )
答案:(1)× (2)√ (3)√
2.已知α:“a=±2”;β:“直线x-y=0与圆x2+(y-a)2=2相切”,则α是β的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案:C
3.“x=3”是“x2=9”的________条件(填“充分”或“必要”).
答案:充分
4.“ab>0”是“a>0,b>0”的________条件(填“充分”或“必要”).
答案:必要
充分条件、必要条件、充要条件的判断
[典例] (1)在△ABC 中,角A,B,C所对应的边分别为a,b,c ,则“a≤b”是 “sin A≤sin B”的(  )21cnjy.com
A.充要条件      B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
(2)设a,b∈R,则“a>b”是“a|a|>b|b|”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
[解析] (1)由正弦定理,得=,故a≤b?sin A≤sin B,选A.
(2)构造函数f(x)=x|x|,则f(x)在定义域R上为奇函数.因为f(x)=所以函数f(x)在R上单调递增,所以a>b?f(a)>f(b)?a|a|>b|b|.选C.
[答案] (1)A (2)C
充要条件的判断方法
判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”是真是假,原命题为真而逆命题为假,p是q的充分不必要条件;原命题为假而逆命题为真,则p是q的必要不充分条件;原命题为真,逆命题为真,则p是q的充要条件;原命题为假,逆命题为假,则p是q的既不充分也不必要条件,同时要注意反证法的运用.      
[活学活用]
1.已知函数f(x)=ax+b(x∈[0,1]),则“a+3b>0”是“f(x)>0恒成立”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B 若f(x)>0恒成立,则取x=,可得f=a+b>0,∴a+3b>0.反之不成立,例如取f(x)=x-,其中a=1,b=-,满足a+3b=1-=>0,但是f=1×-=-<0.∴“a+3b>0”是“f(x)>0恒成立”的必要不充分条件.
2.指出下列各组命题中,p是q的什么条件.
(1)p:四边形的对角线相等,q:四边形是平行四边形;
(2)p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0.
解:(1)∵四边形的对角线相等?/ 四边形是平行四边形,四边形是平行四边形?/ 四边形的对角线相等,21教育网
∴p是q的既不充分也不必要条件.
(2)∵(x-1)2+(y-2)2=0?x=1且y=2?(x-1)·(y-2)=0,而(x-1)(y-2)=0?/ (x-1)2+(y-2)2=0,∴p是q的充分不必要条件.21·cn·jy·com
充分条件与必要条件的应用
[典例] 已知p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0.若綈p是綈q的必要条件,求实数a的取值范围.【21教育名师】
[解] 由x2-4ax+3a2<0且a<0得3a所以p:3a由x2-x-6≤0得-2≤x≤3,
所以q:-2≤x≤3,即集合B={x|-2≤x≤3}.
因为綈q?綈p,所以p?q,所以A?B,
所以?-≤a<0,
所以a的取值范围是.
[一题多变]
1.[变条件]本例中条件“a<0”改为“a>0”,若綈p是綈q的充分条件,求实数a的取值范围.
解:由x2-4ax+3a2<0且a>0得a所以p:a由x2-x-6≤0得-2≤x≤3,
所以q:-2≤x≤3,即集合B={x|-2≤x≤3}.
因为綈p?綈q,所以q?p,所以B?A,
所以
2.[变条件]将“q:实数x满足x2-x-6≤0”改为“q:实数x满足x2+3x≤0”其他条件不变,求实数a的取值范围.21·世纪*教育网
解:由x2-4ax+3a2<0且a<0得3a所以p:3a由x2+3x≤0得-3≤x≤0,
所以q:-3≤x≤0,即集合B={x|-3≤x≤0}.
因为綈q?綈p,所以p?q,所以A?B,
所以?-1≤a<0.
所以a的取值范围是[-1,0).
充分条件与必要条件的应用技巧
(1)应用:可利用充分性与必要性进行相关问题的求解,特别是求参数的值或取值范围问题.
(2)求解步骤:先把p,q等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.  【21教育】
  
充要条件的证明
[典例] 试证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
[证明] (1)必要性:因为方程ax2+bx+c=0有一正根和一负根,所以Δ=b2-4ac>0,x1x2=<0(x1,x2为方程的两根),所以ac<0.
(2)充分性:由ac<0可推得Δ=b2-4ac>0及x1x2=<0(x1,x2为方程的两根).所以方程ax2+bx+c=0有两个相异实根,且两根异号, 即方程ax2+bx+c=0有一正根和一负根.
综上所述,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
充要条件的证明思路
(1)在证明有关充要条件的问题时,通常从“充分性”和“必要性”两个方面来证明.在证明时,要注意:若证明“p的充要条件是q”,那么“充分性”是q?p,“必要性”是p?q;若证明“p是q的充要条件”,则与之相反.
(2)证明充要条件问题,其实质就是证明一个命题的原命题和其逆命题都成立.若不易直接证明,可根据命题之间的关系进行等价转换,然后加以证明.    
[活学活用]
已知x,y都是非零实数,且x>y,求证:<的充要条件是xy>0.
证明:(1)必要性:由<,得-<0,即<0,
又由x>y,得y-x<0,所以xy>0.
(2)充分性:由xy>0及x>y,
得>,即<.
综上所述,<的充要条件是xy>0.
层级一 学业水平达标
1.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:选D 当数列{an}的首项a1<0时,若q>1,则数列{an}是递减数列;当数列{an}的首项a1<0时,要使数列{an}为递增数列,则0<q<1,所以“q>1”是“数列{an}为递增数列”的既不充分也不必要条件.故选D.www.21-cn-jy.com
2.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么(  )
A.丙是甲的充分条件,但不是甲的必要条件
B.丙是甲的必要条件,但不是甲的充分条件
C.丙是甲的充要条件
D.丙既不是甲的充分条件,也不是甲的必要条件
解析:选A 因为甲是乙的必要条件,所以乙?甲.
又因为丙是乙的充分条件,但不是乙的必要条件,所以丙?乙,但乙
丙,如图.
综上,有丙?甲,但甲丙,
即丙是甲的充分条件,但不是甲的必要条件.
3.设a,b都是非零向量,下列四个条件中,使=成立的充分条件是(  )
A.a=-b        B.a∥b
C.a=2b D.a∥b且|a|=|b|
解析:选C 对于A,当a=-b时,≠;对于B,注意当a∥b时,与可能不相等;对于C,当a=2b时,==;对于D,当a∥b,且|a|=|b|时,可能有a=-b,此时≠.综上所述,使=成立的充分条件是a=2b. 
4.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:选A φ=0时,函数f(x)=cos(x+φ)=cos x是偶函数,
而f(x)=cos(x+φ)是偶函数时,φ=π+kπ(k∈Z).
故“φ=0”是“函数f(x)=cos(x+φ)为偶函数”的充分不必要条件.
5.使|x|=x成立的一个必要不充分条件是(  )
A.x≥0 B.x2≥-x
C.log2(x+1)>0 D.2x<1
解析:选B ∵|x|=x?x≥0,
∴选项A是充要条件.选项C,D均不符合题意.
对于选项B,∵由x2≥-x得x(x+1)≥0,
∴x≥0或x≤-1.
故选项B是使|x|=x成立的必要不充分条件.
6.如果命题“若A,则B”的否命题是真命题,而它的逆否命题是假命题,则A是B的________________条件.【21·世纪·教育·网】
解析:因为逆否命题为假,所以原命题为假,即A?/ B.
又因否命题为真,所以逆命题为真,即B?A,
所以A是B的必要不充分条件.
答案:必要不充分
7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.
解析:p:x>1,若p是q的充分不必要条件,则p?q,但,也就是说,p对应集合是q对应集合的真子集,所以a<1.【21cnj*y.co*m】
答案:(-∞,1)
8.下列命题:
①“x>2且y>3”是“x+y>5”的充要条件;
②b2-4ac<0是一元二次不等式ax2+bx+c<0解集为R的充要条件;
③“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件;
④“xy=1”是“lg x+lg y=0”的必要不充分条件.
其中真命题的序号为______________.
解析:①x>2且y>3时,x+y>5成立,反之不一定,如x=0,y=6.所以“x>2且y>3”是“x+y>5”的充分不必要条件;2·1·c·n·j·y
②不等式解集为R的充要条件是a<0且b2-4ac<0,故②为假命题;
③当a=2时,两直线平行,反之,若两直线平行,则=,∴a=2.因此,“a=2”是“两直线平行”的充要条件;
④lg x+lg y=lg(xy)=0,∴xy=1且x>0,y>0.
所以“lg x+lg y=0”成立,xy=1必成立,反之不然.
因此“xy=1”是“lg x+lg y=0”的必要不充分条件.
综上可知,真命题是④.
答案:④
9.下列命题中,判断条件p是条件q的什么条件.
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:圆x2+y2=r2与直线ax+by+c=0相切,q:c2=(a2+b2)r2.
解:(1)∵|x|=|y|x=y,但x=y?|x|=|y|,
∴p是q的必要不充分条件.
(2)∵△ABC是直角三角形△ABC是等腰三角形,
△ABC是等腰三角形△ABC是直角三角形,
∴p是q的既不充分也不必要条件.
(3)∵四边形的对角线互相平分四边形是矩形,
四边形是矩形?四边形的对角线互相平分,
∴p是q的必要不充分条件.
(4)若圆x2+y2=r2与直线ax+by+c=0相切,则圆心到直线ax+by+c=0的距离等于r,即r=,21*教*育*名*师
所以c2=(a2+b2)r2;
反过来,若c2=(a2+b2)r2,则=r成立,
说明x2+y2=r2的圆心(0,0)到直线ax+by+c=0的距离等于r,
即圆x2+y2=r2与直线ax+by+c=0相切,
故p是q的充要条件.
10.已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.
证明:(1)充分性:当q=-1时,a1=p-1.
当n≥2时,an=Sn-Sn-1=pn-1(p-1).
当n=1时,上式也成立.
于是==p,即数列{an}为等比数列.
(2)必要性:当n=1时,a1=S1=p+q.
当n≥2时,an=Sn-Sn-1=pn-1(p-1).
∵p≠0且p≠1,
∴==p.
因为{an}为等比数列,
所以==p=,∴q=-1.
即数列{an}为等比数列的充要条件为q=-1.
层级二 应试能力达标
1.“0b”的(  )
A.充分不必要条件     B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 当0b成立,所以是充分条件;当a>b时,有a2.已知p:x2-x<0,那么命题p的一个必要不充分条件是(  )
A.0C.解析:选B 由x2-x<0?03.下列说法正确的是(  )
A.“x>0”是“x>1”的必要条件
B.已知向量m,n,则“m∥n”是“m=n”的充分条件
C.“a4>b4”是“a>b”的必要条件
D.在△ABC中,“a>b”不是“A>B”的充分条件
解析:选A A中,当x>1时,有x>0,所以A正确;B中,当m∥n时,m=n不一定成立,所以B不正确;C中,当a>b时,a4>b4不一定成立,所以C不正确;D中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以D不正确.故选A.
4.设p:≤x≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是(  )
A. B.
C. D.
解析:选B ∵q:a≤x≤a+1,p是q的充分不必要条件,
∴解得0≤a≤.故选B.
5.已知关于x的方程(1-a)x2+(a+2)x-4=0(a∈R),则该方程有两个正根的充要条件是________.
解析:方程(1-a)x2+(a+2)x-4=0有两个实根的充要条件是
即?
设此时方程的两根分别为x1,x2,则方程有两个正根的充要条件是??1答案:(1,2]∪[10,+∞)
6.已知“-1解析:当方程x2+y2+kx+y+k2=0表示圆时,
k2+3-4k2>0,解得-1所以-1即实数m的取值范围是(-1,1].
答案:(-1,1]
7.已知p:x2-8x-20>0,q:x2-2x+1-a2>0.若p是q的充分条件,求正实数a的取值范围.
解:不等式x2-8x-20>0的解集为
A={x|x>10或x<-2};
不等式x2-2x+1-a2>0的解集为
B={x|x>1+a或x<1-a,a>0}.
依题意p?q,所以A?B.
于是有解得0所以正实数a的取值范围是(0,3].
8.求二次函数y=-x2+mx-1的图象与两端点为A(0,3),B(3,0)的线段AB有两个不同的交点的充要条件.
解:线段AB的方程为x+y=3,由题意得方程组在[0,3]上有两组实数解,将①代入②,得x2-(m+1)x+4=0(0≤x≤3),此方程有两个不同的实数根,令f(x)=x2-(m+1)x+4,则二次函数f(x)在x∈[0,3]上有两个实根,
故有:解得3故m的取值范围是.
(时间120分钟 满分150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.命题“若x2<1,则-1A.若x2≥1,则x≥1,或x≤-1
B.若-1C.若x>1,或x<-1,则x2>1
D.若x≥1,或x≤-1,则x2≥1
解析:选D 命题“若p,则q”的逆否命题是“若綈q,则綈p”.
2.已知命题①若a>b,则<,②若-2≤x≤0,则(x+2)(x-3)≤0,则下列说法正确的是(  )
A.①的逆命题为真
B.②的逆命题为真
C.①的逆否命题为真
D.②的逆否命题为真
解析:选D ①的逆命题为<则,a>b,若a=-2,b=3,则不成立.故A错;②的逆命题为若(x+2)(x-3)≤0,则-2≤x≤0是假命题,故B错;①为假命题,其逆否命题也为假命题,故C错;②为真命题,其逆否命题也为真命题,D正确.
3.设集合M={x|x>2},P={x|x<3},那么“x∈M,或x∈P”是“x∈M∩P”的(  )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
解析:选A “x∈M,或x∈P”不能推出“x∈M∩P”,反之可以.
4.设原命题:若a+b≥2,则a,b中至少有一个不小于1,则原命题与其逆命题的真假情况是(  )
A.原命题真,逆命题假
B.原命题假,逆命题真
C.原命题与逆命题均为真命题
D.原命题与逆命题均为假命题
解析:选A 因为原命题“若a+b≥2,则a,b中至少有一个不小于1”的逆否命题为,“若a,b都小于1,则a+b<2”显然为真,所以原命题为真;原命题“若a+b≥2,则a,b中至少有一个不小于1”的逆命题为:“若a,b中至少有一个不小于1,则a+b≥2”,是假命题,反例为a=1.2,b=0.3,则a+b=1.5<2.www-2-1-cnjy-com
5.对于非零向量a,b,“a+b=0”是“a∥b”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A 要区分向量平行与向量相等,相反向量等基本概念,向量平行不一定向量相等,向量相等或相反必平行.21*cnjy*com
6.下列命题中,真命题是(  )
A.命题“若|a|>b,则a>b”
B.命题“若“a=b,则|a|=|b|”的逆命题
C.命题“当x=2时,x2-5x+6=0”的否命题
D.命题“终边相同的角的同名三角函数值相等”
解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.
7.“a<0”是“方程ax2+1=0至少有一个负根”的(  )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
解析:选C 方程ax2+1=0至少有一个负根等价于x2=-,故a<0,故选C.
8.f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),“f(x),g(x)均为偶函数”是“h(x)为偶函数”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析:选B 若f(x),g(x)均为偶函数,则h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x),所以h(x)为偶函数;若h(x)为偶函数,则f(x),g(x)不一定均为偶函数.可举反例说明,如f(x)=x,g(x)=x2-x+2,则h(x)=f(x)+g(x)=x2+2为偶函数.
二、填空题(本大题共7小题,多空题每空3分,单空题每题4分,共36分)
9.命题“若a?A,则b∈B”的逆否命题是________.
解析:逆否命题既否定其条件又否定其结论,然后交换其顺序.
答案:若b?B,则a∈A
10.在△ABC中,“A>30°”是sin A>的____________条件,“sin A>”是“A>30°”的____________条件.
解析:A>30°不一定推出sin A>,但在△ABC中,sin A>?30°30°.
答案:必要不充分 充分不必要
11.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.它的逆命题、否命题、逆否命题中是真命题的为________,假命题的为________.
解析:逆命题和否命题是假命题,逆否命题为真命题.
答案:逆否命题 逆命题、否命题
12.有下列命题:
①“若x+y>0,则x>0且y>0”的否命题;
②“矩形的对角线相等”的否命题;
③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中真命题是________,假命题是________.(填序号)
解析:①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;
②的否命题为“不是矩形的图形对角线不相等”,为假命题;
③的逆命题为若“mx2-2(m+1)x+m+3>0的解集为R,则m≥1”.
∵当m=0时,解集不是R,
∴应有 即m>1.
∴③是假命题;
④原命题为真,逆否命题也为真.
答案:①④ ②③
13.已知α、β是不同的两个平面,直线a?α,直线b?β,命题p:a与b无公共点;命题q:α∥β,则p是q的__________条件,q是p的____________条件.
解析:∵q?p,p?/ q,∴p是q的必要不充分条件,q是p的充分不必要条件.
答案:必要不充分 充分不必要
14.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.
解析:ax2-2ax-3≤0恒成立,当a=0时,-3≤0成立;当a≠0时,得-3≤a<0,∴-3≤a≤0.21-cnjy*com
答案:[-3,0]
15.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是________.
解析:由x∈[2,5]或x∈{x|x<1或x>4},
得x<1或x≥2.
∵此命题是假命题,
∴1≤x<2.
答案:[1,2)
三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)把下列命题改写成“若p,则q”的形式,并判断命题的真假.
(1)能被6整除的数一定是偶数;
(2)当+|b+2|=0时,a=1,b=-2;
(3)已知x,y为正整数,当y=x2时,y=1,x=1.
解:(1)若一个数能被6整除,则这个数为偶数,是真命题.
(2)若+|b+2|=0,则a=1且b=-2,真命题.
(3)已知x,y为正整数,若y=x2,则y=1且x=1,假命题.
17.(本小题满分15分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;
(2)正偶数不是质数.
解:(1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(真命题).
否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(真命题).
逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).
(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).
否命题:如果一个正数不是偶数,那么这个数是质数(假命题).
逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).
18.(本小题满分15分)已知命题:“所有x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题.
(1)求实数m的取值集合B;
(2)设不等式(x-3a)(x-a-2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.
解:(1)命题:“所有x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题,得x2-x-m<0在-1≤x≤1时恒成立,
∴m>(x2-x)max,得m>2,即B={m|m>2}.
(2)不等式(x-3a)(x-a-2)<0,
①当3a>2+a,即a>1时,解集A={x|2+a∴2+a≥2,此时a∈(1,+∞);
②当3a=2+a,即a=1时,解集A=?,若x∈A是x∈B的充分不必要条件,则A?B成立;
③当3a<2+a,即a<1时,解集A={x|3a∴3a≥2,此时a∈,1.
综上①②③可得a∈,+∞.
19.(本小题满分15分)设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.
证明:充分性:因为∠A=90°,
所以a2=b2+c2.
于是方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,
所以x2+2ax+(a+c)(a-c)=0.
所以[x+(a+c)][x+(a-c)]=0.
所以该方程有两根x1=-(a+c),x2=-(a-c),
同样另一方程x2+2cx-b2=0也可化为x2+2cx-(a2-c2)=0,即[x+(c+a)][x+(c-a)]=0,
所以该方程有两根x3=-(a+c),x4=-(c-a).
可以发现,x1=x3,
所以方程有公共根.
必要性:设x是方程的公共根,

由①+②,得x=-(a+c),x=0(舍去).
代入①并整理,可得a2=b2+c2.
所以∠A=90°.
所以结论成立.
20.(本小题满分15分)给出两个命题:
命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为?,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的范围.21世纪教育网
(1)甲、乙至少有一个是真命题;
(2)甲、乙中有且只有一个是真命题.
解:甲命题为真时,Δ=(a-1)2-4a2<0,
即a>或a<-1.
乙命题为真时,2a2-a>1,
即a>1或a<-.
(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,
∴实数a的取值范围为aa<-或a>.
(2)甲、乙有且只有一个是真命题,有两种情况:
甲真乙假时,甲假乙真时,-1≤a<-,
∴甲、乙中有且只有一个是真命题时,
实数a的取值范围为a课件16张PPT。课件18张PPT。课件22张PPT。课件19张PPT。