名称 | (浙江专版)2018年高中数学新人教A版选修2-3试题(21份) | | |
格式 | zip | ||
文件大小 | 2.9MB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2018-06-03 19:35:00 |
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
9.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是__________.
解析:法一:由题意可知每次试验不成功的概率为,成功的概率为,在2次试验中成功次数X的可能取值为0,1,2,则P(X=0)=,P(X=1)=C××=,P(X=2)=2=.
所以在2次试验中成功次数X的分布列为
X
0
1
2
P
则在2次试验中成功次数X的均值为
E(X)=0×+1×+2×=.
法二:此试验满足二项分布,其中p=,所以在2次试验中成功次数X的均值为E(X)=np=2×=.
答案:
10.4男3女排成一排有________种排法,女生要排在一起有________种排法.
解析:4男3女排成一排共有A=5 040种,女生相邻的排法有A·A=720种.
答案:5 040 720
11.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.
解析:从1,2,3,4四个数字中任取两个共有6种取法.取的两个数字都是奇数只有1,3一种情况,故此时的概率为.若取出两个数字之和是偶数,必须同时取两个偶数或两个奇数,有1,3;2,4两种取法,所以所求的概率为=.
答案:
12.设离散型随机变量X的分布列为
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
若随机变量Y=|X-2|,则m=________,P(Y=2)=________.
解析:由分布列的性质,知0.2+0.1+0.1+0.3+m=1,∴m=0.3.
由Y=2,即|X-2|=2,得X=4或X=0,
∴P(Y=2)=P(X=4或X=0)=P(X=4)+P(X=0)
=0.3+0.2=0.5
答案:0.3 0.5
13.(全国乙卷改编)(2x+)5的展开式中,x3的系数是________,二项式系数是________.(用数字作答)2·1·c·n·j·y
解析:(2x+)5展开式的通项为Tr+1=C(2x)5-r·()r=25-r·C·x5-.
令5-=3,得r=4.
故x3的系数为25-4·C=2C=10,
二项式系数是C=5.
答案:10 5
14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.
解析:十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P==.
答案:
15.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:21-cnjy*com
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14.
其中正确结论的序号是________(写出所有正确结论的序号).
解析:①因为各次射击是否击中目标相互之间没有影响,所以第3次击中目标的概率是0.9,正确;
②恰好击中目标3次的概率应为C×0.93×0.1;
③4次射击都未击中的概率为0.14;
所以至少击中目标1次的概率为1-0.14.
答案:①③
三、简答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)已知(a2+1)n展开式中的各项系数之和等于5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.
解:5的展开式的通项为
Tr+1=C5-rr
=5-rCx,
令20-5r=0,得r=4,
故常数项T5=C×=16.
又(a2+1)n展开式的各项系数之和等于2n,
由题意知2n=16,得n=4.
由二项式系数的性质知,(a2+1)n展开式中系数最大的项是中间项T3,
故有Ca4=54,解得a=±.
17.(本小题满分15分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.21世纪教育网
解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,从袋中取出的两个球的编号之和不大于4的事件有:(1,2),(1,3),共2个,因此所求事件的概率为P==.2-1-c-n-j-y
(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
又满足条件n≥m+2的有:(1,3),(1,4),(2,4),共3个.
所以满足条件n≥m+2的事件的概率为P1=,
故满足条件n<m+2的事件的概率为1-P1=1-=.
18.(本小题满分15分)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出
险次数
0
1
2
3
4
≥5
概率
0.30
0.15
0.20
0.20
0.10
0.05
(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=1-(0.30+0.15)=0.55.21教育网
(2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.www.21-cn-jy.com
又P(AB)=P(B),
故P(B|A)====.
因此所求概率为.
(3)记续保人本年度的保费为X,则X的分布列为
X
0.85a
a
1.25a
1.5a
1.75a
2a
P
0.30
0.15
0.20
0.20
0.10
0.05
EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23A.21·世纪*教育网
因此续保人本年度的平均保费与基本保费的比值为1.23.
19.(本小题满分15分)(天津高考)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.21*cnjy*com
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
解:(1)由已知,有P(A)==.
所以事件A发生的概率为.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
所以随机变量X的分布列为
X
0
1
2
P
随机变量X的数学期望E(X)=0×+1×+2×=1.
20.(本小题满分15分)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6,击中目标时,击中任何一部分的概率与其面积成正比.21·cn·jy·com
(1)设X表示目标被击中的次数,求X的分布列和数学期望;
(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).
解:(1)依题意知X~B,
P(X=0)=C04=,
P(X=1)=C13=,
P(X=2)=C22=,
P(X=3)=C31=,
P(X=4)=C40=.
∴X的分布列为
X
0
1
2
3
4
P
E(X)=0×+1×+2×+3×+4×=.
(2)设Ai表示事件“第一次击中目标时,击中第i部分”,i=1,2.
Bi表示事件“第二次击中目标时,击中第i部分”,i=1,2.
依题意知P(A1)=P(B1)=0.1,
P(A2)=P(B2)=0.3,
A=A1∪B1∪A1B1∪A2B2,
所求概率为
P(A)=P(A1 )+P( B1)+P(A1B1)+P(A2B2)
=P(A1)P()+P()P(B1)+P(A1)P(B1)+P(A2)P(B2)
=0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28.
课时跟踪检测(一) 两个计数原理及其简单应用
层级一 学业水平达标
1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )
A.13种 B.16种
C.24种 D.48种
解析:选A 应用分类加法计数原理,不同走法数为8+3+2=13(种).
2.从集合中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )
A.30个 B.42个
C.36个 D.35个
解析:选C ∵a+bi为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.
3.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有( )
A.6种 B.12种
C.30种 D.36种
解析:选B ∵甲、乙两人从4门课程中各选修1门,∴由分步乘法计数原理,可得甲、乙所选的课程不相同的选法有4×3=12种.
4.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
A.40 B.16
C.13 D.10
解析:选C 分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;
第2类,直线b与直线a上5个点可以确定5个不同的平面.
故可以确定8+5=13个不同的平面.
5.从集合中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )21*教*育*名*师
A.32个 B.34个
C.36个 D.38个
解析:选A 先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32个这样的子集.21-cnjy*com
6.一个礼堂有4个门,若从任一个门进,从任一门出,共有不同走法________种.
解析:从任一门进有4种不同走法,从任一门出也有4种不同走法,故共有不同走法4×4=16种.
答案:16
7.将三封信投入4个邮箱,不同的投法有________种.
解析:第一封信有4种投法,第二封信也有4种投法,第三封信也有4种投法,由分步乘法计数原理知,共有不同投法43=64种.2·1·c·n·j·y
答案:64
8.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有 种.www.21-cn-jy.com
解析:按照焊接点脱落的个数进行分类:
第1类,脱落1个,有1,4,共2种;
第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;
第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;
第4类,脱落4个,有(1,2,3,4),共1种.
根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.
答案:13
9.若x,y∈N*,且x+y≤6,试求有序自然数对(x,y)的个数.
解:按x的取值进行分类:
x=1时,y=1,2,…,5,共构成5个有序自然数对;
x=2时,y=1,2,…,4,共构成4个有序自然数对;
…
x=5时,y=1,共构成1个有序自然数对.
根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.
10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.21世纪教育网
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?
解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.21·世纪*教育网
所以共有不同的选法N=7+8+9+10=34(种).
(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.
所以共有不同的选法N=7×8×9×10=5 040(种).
(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.
所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
层级二 应试能力达标
1.(a1+a2)(b1+b2)(c1+c2+c3)完全展开后的项数为( )
A.9 B.12
C.18 D.24
解析:选B 每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为2×2×3=12.21*cnjy*com
2.(全国卷Ⅰ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12 D.9
解析:选B 由题意可知E→F有6种走法,F→G有3种走法,由分步乘法计数原理知,共6×3=18种走法,故选B.【21教育名师】
3.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式( )
A.24 B.14
C.10 D.9
解析:选B 第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法.∴由分类加法计数原理得,共有12+2=14(种)选择方式.【21·世纪·教育·网】
4.从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y=ax2+bx+c的系数a,b,c,则可以组成顶点在第一象限且过原点的抛物线条数为( )
A.6 B.20
C.100 D.120
解析:选A 分三步:第一步c=0只有1种方法;
第二步确定a:a从-2,-1中选一个,有2种不同方法;
第三步确定b:b从1,2,3中选一个,有3种不同的方法.
根据分步乘法计数原理得共有1×2×3=6种不同的方法,故所求抛物线的条数共6条.
5.圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为________.www-2-1-cnjy-com
解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,即一个点可形成n-1个直角三角形,而这样的点有2n个,所以一共可形成2n(n-1)个符合条件的直角三角形.
答案:2n(n-1)
6.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为________.
解析:0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).
答案:252
7.某校高二共有三个班,各班人数如下表.
男生人数
女生人数
总人数
高二(1)班
30
20
50
高二(2)班
30
30
60
高二(3)班
35
20
55
(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?
(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?21cnjy.com
解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:
第1类,从高二(1)班中选出1名学生,有50种不同的选法;
第2类,从高二(2)班中选出1名学生,有60种不同的选法;
第3类,从高二(3)班中选出1名学生,有55种不同的选法.
根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.21教育网
(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:2-1-c-n-j-y
第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;
第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;
第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.
根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.【21cnj*y.co*m】
8.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4,j=1,2)均为实数.21·cn·jy·com
(1)从集合A到集合B能构成多少个不同的映射?
(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?
解:(1)因为集合A中的每个元素ai(i=1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.【21教育】
(2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.
所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.
课时跟踪检测(七) 二项式定理
层级一 学业水平达标
1.(x+2)n的展开式共有12项,则n等于( )
A.9 B.10
C.11 D.8
解析:选C ∵(a+b)n的展开式共有n+1项,而(x+2)n的展开式共有12项,∴n=11.故选C.21世纪教育网
2.设n为正整数,2n展开式中存在常数项,则n的一个可能取值为( )
A.16 B.10
C.4 D.2
解析:选B 2n展开式的通项公式为Tr+1=Cx2n-rr=C(-1)rx,令=0,得r=,∴n可取10.www.21-cn-jy.com
3.已知7的展开式的第4项等于5,则x等于( )
A. B.-
C.7 D.-7
解析:选B T4=Cx43=5,∴x=-.
4.若二项式n的展开式中第5项是常数项,则自然数n的值可能为( )
A.6 B.10
C.12 D.15
解析:选C ∵T5=C()n-4·4=24·Cx是常数项,∴=0,∴n=12.
5.在4的二项展开式中,如果x3的系数为20,那么ab3=( )
A.20 B.15
C.10 D.5
解析:选D Tr+1=Ca4-rbrx24-7r,令24-7r=3,得r=3,则4ab3=20,∴ab3=5.
6.(全国卷Ⅰ)(2x+)5的展开式中,x3的系数是______.(用数字填写答案)
解析:(2x+)5展开式的通项为Tr+1=C(2x)5-r()r=25-r·C·x5-.
令5-=3,得r=4.
故x3的系数为25-4·C=2C=10.
答案:10
7.若(1+2x)6的展开式中的第2项大于它的相邻两项,则x的取值范围是________.
解析:由得解得<x<.
答案:
8.若(x+a)10的展开式中,x7的系数为15,则a=______.(用数字填写答案)
解析:二项展开式的通项公式为Tr+1=Cx10-rar,
当10-r=7时,r=3,T4=Ca3x7,则Ca3=15,
故a=.
答案:
9.若二项式6(a>0)的展开式中x3的系数为A,常数项为B,且B=4A,求a的值.
解:∵Tr+1=Cx6-rr=(-a)rCx6-,
令6-=3,则r=2,得A=C·a2=15a2;
令6-=0,则r=4,得B=C·a4=15a4.
由B=4A可得a2=4,又a>0,所以a=2.
10.已知m,n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.21cnjy.com
解:由题设m+n=19,∵m,n∈N*.
∴…,
x2的系数C+C=(m2-m)+(n2-n)
=m2-19m+171=2+.
∴当m=9或10时,x2的系数取最小值81,
此时x7的系数为C+C=156.
层级二 应试能力达标
1.在(1-x3)(1+x)10的展开式中x5的系数是( )
A.-297 B.-252
C.297 D.207
解析:选D x5应是(1+x)10中含x5项与含x2项.
∴其系数为C+C(-1)=207.
2.使n(n∈N*)的展开式中含有常数项的最小的n为( )
A.4 B.5
C.6 D.7
解析:选B 由二项式定理得,Tr+1=C(3x)n-rr=C3n-rxn-r,令n-r=0,当r=2时,n=5,此时n最小.21·cn·jy·com
3.在二项式n(n∈N*)的展开式中,常数项为28,则n的值为( )
A.12 B.8
C.6 D.4
解析:选B 展开式中第r+1项是C(x3)n-r·r=C(-1)rx3n-4r,令(-1)rCx3n-4r=28,则,∴n=8.2·1·c·n·j·y
4.在n的展开式中,常数项为15,则n的一个值可以是( )
A.3 B.4
C.5 D.6
解析:选D 通项Tr+1=C(x2)n-rr=(-1)rCx2n-3r,常数项是15,则2n=3r,且C=15,验证n=6时,r=4合题意,故选D.21教育网
5.x7的展开式中,x4的系数是________.(用数字作答)
解析:x4的系数,即7展开式中x3的系数,
Tr+1=C·x7-r·r=(-2)r·C·x7-2r,
令7-2r=3得,r=2,∴所求系数为(-2)2C=84.
答案:84
6.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是________.
解析:展开式中含x3项的系数为C(-1)3+C(-1)3+C(-1)3+C(-1)3=-121.
答案:-121
7.记n的展开式中第m项的系数为bm.
(1)求bm的表达式;
(2)若n=6,求展开式中的常数项;
(3)若b3=2b4,求n.
解:(1)n的展开式中第m项为
C·(2x)n-m+1·m-1
=2n+1-m·C·xn+2-2m,
所以bm=2n+1-m·C.
(2)当n=6时,n的展开式的通项为
Tr+1=C·(2x)6-r·r=26-r·C·x6-2r.
依题意,6-2r=0,得r=3,
故展开式中的常数项为T4=23·C=160.
(3)由(1)及已知b3=2b4,得2n-2·C=2·2n-3·C,
从而C=C,即n=5.
8.求证:1+2+22+…+25n-1(n∈N*)能被31整除.
证明:∵1+2+22+…+25n-1=
=25n-1=32n-1=(31+1)n-1
=C·31n+C·31n-1+…+C·31+C-1
=31(C·31n-1+C·31n-2+…+C),显然C·31n-1+C·31n-2+…+C为整数,
∴原式能被31整除.
课时跟踪检测(三) 排列与排列数公式
层级一 学业水平达标
1.下面问题中,是排列问题的是( )
A.由1,2,3三个数字组成无重复数字的三位数
B.从40人中选5人组成篮球队
C.从100人中选2人抽样调查
D.从1,2,3,4,5中选2个数组成集合
解析:选A 选项A中组成的三位数与数字的排列顺序有关,选项B、C、D只需取出元素即可,与元素的排列顺序无关.21cnjy.com
2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A.144 B.120
C.72 D.24
解析:选D 先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A4=24(种)方法,故选D.【21·世纪·教育·网】
3.乘积m(m+1)(m+2)…(m+20)可表示为( )
A.A B.A
C.A+20 D.A
解析:选D 因为m,m+1,m+2,…,m+20中最大的数为m+20,且共有m+20-m+1=21个因式.所以m(m+1)(m+2)…(m+20)=Am+20.21·世纪*教育网
4.计算:=( )
A.12 B.24
C.30 D.36
解析:选D A=7×6×A5,A=6×A,
所以原式==36.
5.体操男队共六人参加男团决赛,但在每个项目上,根据规定,只需五人出场,那么在鞍马项目上不同的出场顺序共有( )21*cnjy*com
A.6种 B.30种
C.360种 D.A6种
解析:选D 问题为6选5的排列即为A6.
6.计算:5A5+4A4=________.
解析:原式=5×5×4×3+4×4×3=348.
答案:348
7.从a,b,c,d,e五个元素中每次取出三个元素,可组成________个以b为首的不同的排列.
解析:画出树形图如下:
可知共12个.
答案:12
8.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有________种.
解析:根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有A6=360种不同的情况,其中包含甲从事翻译工作,有A5=60种,乙从事翻译工作,有A5=60种,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有360-60-60=240种.【21cnj*y.co*m】
答案:240
9.写出下列问题的所有排列.
(1)甲、乙、丙、丁四名同学站成一排;
(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长.
解:(1)四名同学站成一排,共有A4=24个不同的排列,它们是:
甲乙丙丁,甲乙丁丙,甲丙乙丁,甲丙丁乙,甲丁乙丙,甲丁丙乙;
乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;
丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;
丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.
(2)从五名同学中选出两名同学任正、副班长,共有A5=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54.
10.(1)解关于x的方程:=89;
(2)解不等式:A9>6A9.
解:(1)法一:∵Ax=x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)=(x-5)(x-6)·Ax,
∴=89.
∵Ax>0,∴(x-5)(x-6)=90.
故x=-4(舍去),x=15.
法二:由=89,得Ax=90·Ax,
即=90·.
∵x!≠0,∴=,
∴(x-5)(x-6)=90.解得x=-4(舍去),x=15.
(2)原不等式即>,
由排列数定义知
∴2≤x≤9,x∈N*.
化简得(11-x)(10-x)>6,∴x2-21x+104>0,
即(x-8)(x-13)>0,∴x<8或x>13.
又2≤x≤9,x∈N*,∴2≤x<8,x∈N*.
故x=2,3,4,5,6,7.
层级二 应试能力达标
1.从1,2,3,4中,任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( )21世纪教育网
A.2 B.4
C.12 D.24
解析:选C 本题相当于从4个元素中取2个元素的排列,即A4=12.
2.下列各式中与排列数An相等的是( )
A. B.n(n-1)(n-2)…(n-m)
C. D.An·An-1
解析:选D ∵An=,而An·An-1=n·=,∴An=An·An-1,故选D.
3.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为( )21教育网
A.6 B.9
C.12 D.24
解析:选B 构成四位数,可从特殊元素0进行分类:第一类,0在个位有,,,共3个;第二类,0在十位有,,,共3个;第三类,0在百位有,,,共3个,故由这四张卡片可组成不同的四位数的个数为9.
4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有( )
A.34种 B.48种
C.96种 D.144种
解析:选C 程序A有A2=2(种)排法,将程序B和C看作元素集团与除A外的元素排列有A2A4=48(种),2·1·c·n·j·y
∴由分步乘法计数原理得,实验编排共有2×48=96(种)方法.
5.满足不等式>12的n的最小值为________.
解析:由排列数公式得>12,即(n-5)(n-6)>12,解得n>9或n<2.又n≥7,所以n>9,www-2-1-cnjy-com
又n∈N*,所以n的最小值为10.
答案:10
6.在编号为1,2,3,4的四块土地上分别试种编号为1,2,3,4的四个品种的小麦,但1号地不能种1号小麦,2号地不能种2号小麦,3号地不能种3号小麦,则共有______种不同的试种方案.www.21-cn-jy.com
解析:画出树形图,如下:
由树形图可知,共有11种不同的试种方案.
答案:11
7.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?2-1-c-n-j-y
解:由题意可得An+2-An=58,即(n+2)(n+1)-n(n-1)=58,解得n=14.
所以原有车站14个,现有车站16个.
8.规定Ax=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax=1,这是排列数An(n,m是正整数,且m≤n)的一种推广.21·cn·jy·com
(1)求A-15的值;
(2)确定函数f(x)=Ax的单调区间.
解:(1)由已知得A-15=(-15)×(-16)×(-17)=-4 080.
(2)函数f(x)=Ax=x(x-1)(x-2)=x3-3x2+2x,则f′(x)=3x2-6x+2.
令f′(x)>0,得x>或x<,
所以函数f(x)的单调增区间为
-∞,,;
令f′(x)<0,得
课时跟踪检测(二) 两个计数原理的综合应用
层级一 学业水平达标
1.由数字1,2,3组成的无重复数字的整数中,偶数的个数为( )
A.15 B.12
C.10 D.5
解析:选D 分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个.由分类加法计数原理知共有偶数5个.21·世纪*教育网
2.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )
A.4种 B.5种
C.6种 D.12种
解析:选C 若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.21·cn·jy·com
3.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b,c,且满足b≤4≤c,则这样的三角形有( )
A.10个 B.14个
C.15个 D.21个
解析:选A 当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有10个这样的三角形.选A.
4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为( )
A.18 B.16
C.14 D.10
解析:选C 分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.
5.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )
A.24对 B.30对
C.48对 D.60对
解析:选C 与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对.正方体的12条面对角线共有12×8=96(对),且每对均重复计算了一次,故共有=48(对).
6.如图所示为一电路图,则从A到B共有 条不同的单支线路可通电.
解析:按上、中、下三条线路可分为三类:从上线路中有3条,中线路中有1条,下线路中有2×2=4(条).根据分类加法计数原理,共有3+1+4=8(条).
答案:8
7.将4种蔬菜种植在如图所示的5块试验田里,每块试验田种植一种蔬菜,相邻试验田不能种植同一种蔬菜,不同的种法有________种.(种植品种可以不全)
解析:分五步,由左到右依次种植,种法分别为4,3,3,3,3.
由分步乘法计数原理共有4×3×3×3×3=324(种).
答案:324
8.古人用天干、地支来表示年、月、日、时的次序.用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成______组.21教育网
解析:分两类:第一类,由天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,则有5×6=30组不同的结果;同理,第二类也有30组不同的结果,共可得到30+30=60组.【21教育】
答案:60
9.某高中毕业生填报志愿时,了解到甲、乙两所大学有自己感兴趣的专业,具体情况如下:
甲大学
乙大学
专业
生物学
数学
化学
会计学
医学
信息技术学
工商管理学
物理学
如果这名同学只能选择一所大学的一个专业,那么他的专业选择共有多少种?
解:由图表可知,分两类,第一类:甲所大学有5个专业,共有5种专业选择方法;
第二类:乙所大学有3个专业,共有3种专业选择方法.
由分类加法计数原理知,这名同学可能的专业选择有N=5+3=8(种).
10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?21*cnjy*com
解:分两类完成.
第1类,当A或B中有一个为0时,表示的直线为x=0或y=0,共2条.
第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.
第1步,确定A的值,有4种不同的方法;
第2步,确定B的值,有3种不同的方法.
由分步乘法计数原理知,共可确定4×3=12条直线.
由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.
层级二 应试能力达标
1.把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有( )
A.4种 B.5种
C.6种 D.7种
解析:选A 分类考虑,若最少一堆是1个,由至多5个知另两堆分别为4个、5个,只有一种分法;若最少一堆是2个,则由3+5=4+4知有2种分法;若最少一堆是3个,则另两堆为3个、4个共1种分法,故共有分法1+2+1=4种.www.21-cn-jy.com
2.要把3张不同的电影票分给10个人,每人最多一张,则有不同的分法种数是( )
A.2 160 B.720
C.240 D.120
解析:选B 可分三步:
第一步,任取一张电影票分给一人,有10种不同分法;
第二步,从剩下的两张中任取一张,由于一人已得电影票,不能再参与,故有9种不同分法.
第三步,前面两人已得电影票,不再参与,因而剩余最后一张有8种不同分法.所以不同的分法种数是10×9×8=720(种).21cnjy.com
3.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有( )【21教育名师】
A.36个 B.18个
C.9个 D.6个
解析:选B 分三步完成,第一步,确定哪一个数字被使用2次,有3种方法;第二步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第三步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.
A
B
C
D
4.用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有( )21*教*育*名*师
A.12种 B.24种
C.48种 D.72种
解析:选D 先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72(种)涂法.【21·世纪·教育·网】
5.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成________个不同的对数值.www-2-1-cnjy-com
解析:要确定一个对数值,确定它的底数和真数即可,分两步完成:
第1步,从这8个数中任取1个作为对数的底数,有8种不同取法;
第2步,从剩下的7个数中任取1个作为对数的真数,有7种不同取法.
根据分步乘法计数原理,可以组成8×7=56个对数值.
在上述56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,所以满足条件的对数值共有56-4=52个.2-1-c-n-j-y
答案:52
6.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有________种.【21cnj*y.co*m】
解析:先涂A,D,E三个点,共有4×3×2=24种涂法,然后再按B,C,F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264种.21-cnjy*com
答案:264
7.用6种不同颜色为如图所示的广告牌着色,要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色,求共有多少种不同的着色方法?
解:(1)法一:分类:
第一类,A,D涂同色,有6×5×4=120(种)涂法,
第二类,A,D涂异色,有6×5×4×3=360(种)涂法,
共有120+360=480(种)涂法.
法二:分步:先涂B区,有6(种)涂法,再涂C区,有5(种)涂法,最后涂A,D区域,各有4(种)涂法,2·1·c·n·j·y
所以共有6×5×4×4=480(种)涂法.
8.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)21世纪教育网
(1)每人恰好参加一项,每项人数不限;
(2)每项限报一人,且每人至多参加一项;
(3)每项限报一人,但每人参加的项目不限.
解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).
(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).
课时跟踪检测(五) 组合与组合数公式
层级一 学业水平达标
1.C+C的值为( )
A.36 B.84
C.88 D.504
解析:选A C+C=C=C==84.
2.以下四个命题,属于组合问题的是( )
A.从3个不同的小球中,取出2个排成一列
B.老师在排座次时将甲、乙两位同学安排为同桌
C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星
D.从13位司机中任选出两位开两辆车从甲地到乙地
解析:选C 选项A是排列问题,因为2个小球有顺序;选项B是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C是组合问题,因为2位观众无顺序;选项D是排列问题,因为两位司机开哪一辆车是不同的.选C.21教育网
3.方程C=C的解集为( )
A.4 B.14
C.4或6 D.14或2
解析:选C 由题意知或
解得x=4或6.
4.某公司新招聘5名员工,分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案种数是( )21cnjy.com
A.6 B.12
C.24 D.36
解析:选B 甲部门分一名电脑编程人员有CCC种分配方案,甲部门分两名电脑编程人员有CCC种分配方案.∴由分类加法计数原理得,共有CCC+CCC=12(种)不同的分配方案.2-1-c-n-j-y
5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )21*cnjy*com
A.60种 B.48种
C.30种 D.10种
解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C种方法,再从剩下的3人中选派2人参加星期日的公益活动有C种方法,由分步乘法计数原理可得不同的选派方法共有C·C=30种.故选C.【21cnj*y.co*m】
6.C+C+C+…+C的值等于________.
解析:原式=C+C+C+…+C
=C+C+…+C
=C+C=C=C=7 315.
答案:7 315
7.若已知集合P={1,2,3,4,5,6},则集合P的子集中含有3个元素的子集数为________.【21教育名师】
解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C=20种.【21教育】
答案:20
8.不等式C-n<5的解集为________.
解析:由C-n<5,得-n<5,
∴n2-3n-10<0.解得-2
∴n=2,3,4.故原不等式的解集为{2,3,4}.
答案:{2,3,4}
9.(1)解方程:A=6C;
(2)解不等式:C>3C.
解:(1)原方程等价于
m(m-1)(m-2)=6×,
∴4=m-3,m=7.
(2)由已知得:
∴x≤8,且x∈N*,
∵C>3C,
∴>.
即>,
∴x>3(9-x),解得x>,
∴x=7,8.
∴原不等式的解集为{7,8}.
10.某区有7条南北向街道,5条东西向街道.(如图)
(1)图中有多少个矩形?
(2)从A点走向B点最短的走法有多少种?
解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C·C=210(个).21·cn·jy·com
(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C=C=210(种)走法.【21·世纪·教育·网】
层级二 应试能力达标
1.若C>C,则n的集合是( )
A.{6,7,8,9} B.{0,1,2,3}
C.{n|n≥6} D.{7,8,9}
解析:选A ∵C>C,∴
?
??
∵n∈N*,∴n=6,7,8,9.
∴n的集合为{6,7,8,9}.
2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )21世纪教育网
A.12种 B.18种
C.36种 D.54种
解析:选B 由题意,不同的放法共有CC=3×=18种.
3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种 B.63种
C.65种 D.66种
解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C=1种,取2奇数2偶数的取法有C·C=60种,取4个数均为奇数的取法有C=5种,故不同的取法共有1+60+5=66种.2·1·c·n·j·y
4.过三棱柱任意两个顶点的直线共15条,其中异面直线有( )
A.18对 B.24对
C.30对 D.36对
解析:选D 三棱柱共6个顶点,由此6个顶点可组成C-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.21·世纪*教育网
5.方程C-C=C的解集是________.
解析:因为C=C+C,所以C=C,由组合数公式的性质,得x-1=2x+2或x-1+2x+2=16,得x1=-3(舍去),x2=5.www-2-1-cnjy-com
答案:{5}
6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种(用数字作答).www.21-cn-jy.com
解析:两种情况:①选2本画册,2本集邮册送给4位朋友,有C=6种方法;②选1本画册,3本集邮册送给4位朋友,有C=4种方法,所以不同的赠送方法共有6+4=10(种).
答案:10
7.已知C,C,C成等差数列,求C的值.
解:由已知得2C=C+C,
所以2·=+,
整理得n2-21n+98=0,
解得n=7或n=14,
要求C的值,故n≥12,所以n=14,
于是C=C==91.
8.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,则不同的映射f有多少个?
(2)若B中的元素0无原象,则不同的映射f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,则不同的映射f又有多少个?
解:(1)显然映射f是一一对应的,故不同的映射f共有A=24个.
(2)∵0无原象,而1,2,3是否有原象,不受限制,故A中每一个元素的象都有3种可能,只有把A中每一个元素都找出象,这件工作才算完成,∴不同的映射f有34=81个.
(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,
∴不同的映射有:1+CA+CA+C=31个.
课时跟踪检测(八) “杨辉三角”与二项式系数的性质
层级一 学业水平达标
1.关于(a-b)10的说法,错误的是( )
A.展开式中的二项式系数之和为1 024
B.展开式中第6项的二项式系数最大
C.展开式中第5项或第7项的二项式系数最大
D.展开式中第6项的系数最小
解析:选C 根据二项式系数的性质进行判断,由二项式系数的性质知:二项式系数之和为2n,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数,所以是系数中最小的.
2.已知(a+b)n展开式中只有第5项的二项式系数最大,则n等于( )
A.11 B.10
C.9 D.8
解析:选D ∵只有第5项的二项式系数最大,
∴+1=5.∴n=8.
3.设(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,当a0+a1+a2+…+an=254时,n等于( )21教育网
A.5 B.6
C.7 D.8
解析:选C 令x=1,则a0+a1+…+an=2+22+23+…+2n,∴=254,∴n=7.
4.若对于任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为( )
A.3 B.6 C.9 D.12
解析:选B x3=[2+(x-2)]3,a2=C·2=6.
5.已知C+2C+22C+…+2nC=729,则C+C+C的值等于( )
A.64 B.32
C.63 D.31
解析:选B C+2C+22C+…+2nC=(1+2)n=729.
∴n=6,∴C+C+C=32.
6.设二项式n(n∈N*)展开式的二项式系数和与各项系数和分别为an,bn,则=________.21cnjy.com
解析:由题意知an=2n成等比数列,令x=1则bn=n也成等比数列,所以=2n+1.
答案:2n+1
7.(2x-1)10展开式中x的奇次幂项的系数之和为________.
解析:设(2x-1)10=a0+a1x+a2x2+…+a10x10,
令x=1,得a0+a1+a2+…+a10=1,再令x=-1,得
310=a0-a1+a2-a3+…+a10,
两式相减,可得a1+a3+…+a9=.
答案:
8.(1+)n展开式中的各项系数的和大于8而小于32,则系数最大的项是________.
解析:因为8
答案:6x
9.若(x2-3x+2)5=a0+a1x+a2x2+…+a10x10.
(1)求a1+a2+…+a10;
(2)求(a0+a2+a4+a6+a8+a10)2-(a1+a3+a5+a7+a9)2.
解:(1)令f(x)=(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,
a0=f(0)=25=32,a0+a1+a2+…+a10=f(1)=0,
故a1+a2+…+a10=-32.
(2)(a0+a2+a4+a6+a8+a10)2-(a1+a3+a5+a7+a9)2
=(a0+a1+a2+…+a10)(a0-a1+a2-…+a10)=f(1)·f(-1)=0.
10.已知n,若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数.【21·世纪·教育·网】
解:∵C+C=2C,整理得n2-21n+98=0,
∴n=7或n=14,
当n=7时,展开式中二项式系数最大的项是T4和T5,
T4的系数为C423=;T5的系数为C324=70;当n=14时,展开式中二项式系数最大项是T8,T8的系数为C727=3 432.21·世纪*教育网
层级二 应试能力达标
1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为( )
A.2n-1 B.2n-1
C.2n+1-1 D.2n
解析:选C 法一:令x=1得,1+2+22+…+2n==2n+1-1.
法二:令n=1,知各项系数和为3,排除A、B、D选项.
2.在(1+x)n(n为正整数)的二项展开式中奇数项的和为A,偶数项的和为B,则(1-x2)n的值为( )21·cn·jy·com
A.0 B.AB
C.A2-B2 D.A2+B2
解析:选C (1+x)n=A+B,(1-x)n=A-B,所以(1-x2)n=A2-B2.
3.若(1-2x)2 016=a0+a1x+…+a2 016x2 016(x∈R),则++…+的值为( )
A.2 B.0
C.-1 D.-2
解析:选C (1-2x)2 016=a0+a1x+…+a2 016x2 016,令x=,则2 016=a0+++…+=0,其中a0=1,所以++…+=-1.21世纪教育网
4.若(x+y)9按x的降幂排列的展开式中,第二项不大于第三项,且x+y=1,xy<0,则x的取值范围是( )www.21-cn-jy.com
A. B.
C. D.(1,+∞)
解析:选D 二项式(x+y)9的展开式的通项是Tr+1=C·x9-r·yr.
依题意有由此得
由此解得x>1,
即x的取值范围是(1,+∞).
5.若n展开式的二项式系数之和为64,则展开式的常数项为________.
解析:∵n展开式的二项式系数之和为2n,
∴2n=64,∴n=6.
∴Tr+1=Cx6-rr=Cx6-2r.
由6-2r=0得r=3,
∴其常数项为T3+1=C=20.
答案:20
6.若n的展开式中含有x的项为第6项,若(1-3x)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an的值为________.www-2-1-cnjy-com
解析:二项式n展开式的通项为Tr+1
=C(x2)n-r·r=C(-1)rx2n-3r.
因为含x的项为第6项,
所以r=5,2n-3r=1,解得n=8.
令x=1,得a0+a1+…+a8=(1-3)8=28,令x=0,得a0=1,
∴a1+a2+…+a8=28-1=255.
答案:255
7.已知n的展开式中偶数项的二项式系数和比(a+b)2n的展开式中奇数项的二项式系数和小于120,求第一个展开式中的第3项.解:因为n的展开式中的偶数项的二项式系数和为2n-1,而(a+b)2n的展开式中奇数项的二项式系数的和为22n-1,所以有2n-1=22n-1-120,解得n=4,故第一个展开式中第3项为T3=C()22=6.
8.在二项式(axm+bxn)12(a>0,b>0,m,n≠0)中有2m+n=0,如果它的展开式中系数最大的项恰是常数项.2·1·c·n·j·y
(1)求系数最大的项是第几项?
(2)求的范围.
解:(1)设Tr+1=C(axm)12-r·(bxn)r=
Ca12-rbrxm(12-r)+nr为常数项,
则有m(12-r)+nr=0,即m(12-r)-2mr=0,
∴r=4,它是第5项.
(2)∵第5项是系数最大的项,
∴
由①得a8b4≥a9b3,
∵a>0,b>0,
∴b≥a,即≤.
由②得≥,
∴≤≤.
故的取值范围为.
课时跟踪检测(六) 组合的综合应用
层级一 学业水平达标
1.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有( )
A.C·C B.CC+CC
C.C-C D.C-CC
解析:选B 至少2件次品包含两类:(1)2件次品,3件正品,共CC种,(2)3件次品,2件正品,共CC种,由分类加法计数原理得抽法共有CC+CC,故选B.
2.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )www.21-cn-jy.com
A.16种 B.36种
C.42种 D.60种
解析:选D 法一(直接法):若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共CA种方法.由分类加法计数原理知共A+CA=60(种)方法.
法二(间接法):先任意安排3个项目,每个项目各有4种安排方法,共43=64种排法,其中3个项目落入同一城市的排法不符合要求的共4种,所以总投资方案共43-4=64-4=60种.21cnjy.com
3.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( )
A.CC种 B.CA种
C.CACA种 D.AA种
解析:选B 分两步进行:第一步:选出两名男选手,有C种方法;第2步,从6名女生中选出2名且与已选好的男生配对,有A种.故有CA种.2·1·c·n·j·y
4.某微信群中甲,乙,丙,丁,戊五名成员同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个3元(金额相同视为相同红包),则甲乙两人都抢到红包的情况有( )21·世纪*教育网
A.36种 B.24种
C.18种 D.9种
解析:选C 甲乙两人都抢到红包有三种情况:(1)都抢到2元红包,有C=3种;(2)都抢到3元红包,有C=3种;(3)一个抢到2元,一个抢到3元,有CA=12种,故总共有18种情况.21*cnjy*com
5.(四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )【21cnj*y.co*m】
A.144个 B.120个
C.96个 D.72个
解析:选B 当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数.故符合条件的偶数共有2A+CA=120(个).【21教育名师】
6.2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有________种.21-cnjy*com
解析:先分医生有A种,再分护士有C种(因为只要一个学校选2人,剩下的2人一定去另一学校),故共有AC=2×=12种.
答案:12
7.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).
解析:分两类:第一类:3张中奖奖券分给3个人,共A种分法;
第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有CA种分法.总获奖情况共有A+CA=60(种).
答案:60
8.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有________个.
解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有C·C种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有C·C种方法.∴满足条件的三角形共有C·C+C·C=70个.
答案:70
9.(1)以正方体的顶点为顶点,可以确定多少个四面体?
(2)以正方体的顶点为顶点,可以确定多少个四棱锥?
解:(1)正方体8个顶点可构成C个四点组,其中共面的四点组有正方体的6个表面及正方体6组相对棱分别所在的6个平面的四个顶点.故可以确定四面体C-12=58个.
(2)由(1)知,正方体共面的四点组有12个,以这每一个四点组构成的四边形为底面,以其余的四个点中任意一点为顶点都可以确定一个四棱锥,故可以确定四棱锥12C=48个.
10.7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.
解:(1)第一步,将最高的安排在中间只有1种方法;第二步,从剩下的6人中选取3人安排在一侧有C种选法,对于每一种选法只有一种安排方法,第三步,将剩下3人安排在另一侧,只有一种安排方法,∴共有不同安排方案C=20种.21教育网
(2)第一步从7人中选取6人,有C种选法;第二步从6人中选2人排一列有C种排法,第三步,从剩下的4人中选2人排第二列有C种排法,最后将剩下2人排在第三列,只有一种排法,故共有不同排法C·C·C=630种.2-1-c-n-j-y
层级二 应试能力达标
1.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )
A.CA B.CA
C.CA D.CA
解析:选C 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是CA,故选C.21世纪教育网
2.以圆x2+y2-2x-2y-1=0内横坐标与纵坐标均为整数的点为顶点的三角形个数为( )
A.76 B.78
C.81 D.84
解析:选A 如图,首先求出圆内的整数点个数,然后求组合数,圆的方程为(x-1)2+(y-1)2=3,圆内共有9个整数点,组成的三角形的个数为C-8=76.故选A.【21·世纪·教育·网】
3.某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )21*教*育*名*师
A.140种 B.120种
C.35种 D.34种
解析:选D 若选1男3女有CC=4种;若选2男2女有CC=18种;若选3男1女有CC=12种,所以共有4+18+12=34种不同的选法.
4.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为( )
A.120 B.119
C.110 D.109
解析:选D 5个人坐在5个座位上,共有不同坐法A种,其中3个号码一致的坐法有C种,有4个号码一致时必定5个号码全一致,只有1种,故所求种数为A-C-1=109.
5.20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________(用数字作答).www-2-1-cnjy-com
解析:先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C=120种方法.
答案:120
6.已知集合A={4},B={1,2},C={1,3,5},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数为________.
解析:不考虑限定条件确定的不同点的个数为CCCA=36,但集合B,C中有相同元素1,由4,1,1三个数确定的不同点只有3个,故所求的个数为36-3=33.
答案:33
7.某国际旅行社共有9名专业导游,其中6人会英语,4人会日语,若在同一天要接待5个不同的外国旅游团队,其中3个队要安排会英语的导游,2个队要安排会日语的导游,则不同的安排方法共有多少种?
解:依题意,导游中有5人只会英语,3人只会日语,1人既会英语又会日语.按只会英语的导游分类:
①3个英语导游从只会英语人员中选取,则有AA=720(种).
②3个英语导游从只会英语的导游中选2名,另一名由既会英语又会日语的导游担任,则有CA·A=360(种).故不同的安排方法共有A·A+CA·A=1 080(种).所以不同的安排方法共有1 080种.21·cn·jy·com
8.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【21教育】
解:法一:(直接法)从0与1两个特殊值着眼,可分三类:
(1)取0不取1,可先从另四张卡片中选一张作百位,有C种方法;0可在后两位,有C种方法;最后需从剩下的三张中任取一张,有C种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有CCC·22个.
(2)取1不取0,同上分析可得不同的三位数C·22·A个.
(3)0和1都不取,有不同的三位数C·23·A个.
综上所述,共有不同的三位数:C·C·C·22+C·22·A+C·23·A=432(个).
法二:(间接法)任取三张卡片可以组成不同的三位数C·23·A个,其中0在百位的有C·22·A个,这是不合题意的,故共有不同的三位数:C·23·A-C·22·A=432(个).
课时跟踪检测(四) 排列的综合应用
层级一 学业水平达标
1.6名学生排成两排,每排3人,则不同的排法种数为( )
A.36 B.120
C.720 D.240
解析:选C 由于6人排两排,没有什么特殊要求的元素,故排法种数为A=720.
2.用0到9这十个数字,可以组成没有重复数字的三位数共有( )
A.900个 B.720个
C.648个 D.504个
解析:选C 由于百位数字不能是0,所以百位数字的取法有A种,其余两位上的数字取法有A种,所以三位数字有A·A=648(个).www-2-1-cnjy-com
3.数列{an}共有6项,其中4项为1,其余两项各不相同,则满足上述条件的数列{an}共有( )
A.30个 B.31个
C.60个 D.61个
解析:选A 在数列的6项中,只要考虑两个非1的项的位置,即可得不同数列共有A=30个.
4.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )
A.720种 B.360种
C.240种 D.120种
解析:选C (捆绑法)甲、乙看作一个整体,有A种排法,再和其余4人,共5个元素全排列,有A种排法,故共有排法A·A=240种.21·cn·jy·com
5.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法种数为( )21*cnjy*com
A.36 B.42
C.58 D.64
解析:选A 将A,B捆绑在一起,有A种摆法,再将它们与其他3件产品全排列,有A种摆法,故共有AA=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A=12种摆法,故A,B相邻,A,C不相邻的摆法有48-12=36种.【21cnj*y.co*m】
6.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有________种(用数字作答).
解析:根据题意,分2步进行分析:①将5本书进行全排列,有A=120种情况.②其中语文书相邻的情况有AA=48种,数学书相邻的情况有AA=48种,语文书,数学书同时相邻的情况有AAA=24种,则同一科目的书均不相邻的摆法有120-48-48+24=48种.
答案:48
7.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许空袋且红口袋中不能装入红球,则有________种不同的放法.
解析:(排除法)红球放入红口袋中共有A种放法,则满足条件的放法种数为A-A=96(种).
答案:96
8.用0,1,2,3,4这5个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数有______种.www.21-cn-jy.com
解析:0夹在1,3之间有AA种排法,0不夹在1,3之间又不在首位有AAAA种排法.所以一共有AA+AAAA=28种排法.【21教育】
答案:28
9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.
(1)3个舞蹈节目不排在开始和结尾,有多少种排法?
(2)前四个节目要有舞蹈节目,有多少种排法?
解:(1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA=14 400种.
(2)先不考虑排列要求,有A种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节目的排法有(A-AA)=37 440种.
10.从5名短跑运动员中选出4人参加4×100米接力赛,如果A不能跑第一棒,那么有多少种不同的参赛方法?2·1·c·n·j·y
解:法一:当A被选上时,共有AA种方法,其中A表示A从除去第一棒的其他三棒中任选一棒;A表示再从剩下4人中任选3人安排在其他三棒.【21·世纪·教育·网】
当A没有被选上时,其他四人都被选上且没有限制,此时有A种方法.
故共有AA+A=96(种)参赛方法.
法二:接力的一、二、三、四棒相当于有四个框图,第一个框图不能填A,有4种填法,其他三个框图共有A种填法,故共有4×A=96(种)参赛方法.【21教育名师】
法三:先不考虑A是否跑第一棒,共有A=120(种)方法.其中A在第一棒时共有A种方法,故共有A-A=96(种)参赛方法.21*教*育*名*师
层级二 应试能力达标
1.(四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48
C.60 D.72
解析:选D 第一步,先排个位,有A种选择;
第二步,排前4位,有A种选择.
由分步乘法计数原理,知有A·A=72(个).
2.从4名男生和3名女生中选出3人,分别从事三种不同的工作,若这3人中至少有1名女生,则选派方案共有( )2-1-c-n-j-y
A.108种 B.186种
C.216种 D.270种
解析:选B 可选用间接法解决:A-A=186(种),故选B.
3.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有( )
A.288个 B.240个
C.144个 D.126个
解析:选B 个位上是0时,有AA=96(个);个位上不是0时,有AAA=144(个).
∴由分类加法计数原理得,共有96+144=240(个)符合要求的五位偶数.
4.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )21教育网
A.192种 B.216种
C.240种 D.288种
解析:选B 当最左端排甲时,不同的排法共有A种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有4A种.故不同的排法共有A+4A=120+4×24=216种.21·世纪*教育网
5.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________.
解析:(插空法)8名学生的排列方法有A种,隔开了9个空位,在9个空位中排列2位老师,方法数为A,由分步乘法计数原理,总的排法总数为AA=2 903 040.
答案:2 903 040
6.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).
解析:甲、乙不能分在同一个班,则不同的分组有甲单独一组,只有1种;甲和丙或丁两人一组,有2种;甲、丙、丁一组,只有1种.然后再把分成的两组分到不同班级里,则共有(1+2+1)A=8(种).21-cnjy*com
答案:8
7.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?
(1)一个唱歌节目开头,另一个放在最后压台;
(2)2个唱歌节目互不相邻;
(3)2个唱歌节目相邻且3个舞蹈节目不相邻.
解:(1)先排唱歌节目有A种排法,再排其他节目有A种排法,所以共有A·A=1 440(种)排法.21cnjy.com
(2)先排3个舞蹈节目,3个曲艺节目有A种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A种插入方法,所以共有A·A=30 240(种)排法.
(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A种排法,再将3个舞蹈节目插入,共有A种插入方法,最后将2个唱歌节目互换位置,有A种排法,故所求排法共有A·A·A=2 880(种)排法.
8.从1到9这9个数字中取出不同的5个数进行排列.问:
(1)奇数的位置上是奇数的有多少种排法?
(2)取出的奇数必须排在奇数位置上有多少种排法?
解:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A种排法;第二步再排偶数位置,4个偶数和余下的2个奇数可以排,排法为A种,由分步乘法计数原理知,排法种数为A·A=1 800.
(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A种,由分步乘法计数原理知,排法种数为A·A=2 520种.21世纪教育网
课时跟踪检测(九) 随机事件的概率 概率的意义
层级一 学业水平达标
1.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( )www-2-1-cnjy-com
A.必然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
解析:选C 若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.
2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )
A.3件都是正品 B.至少有1件次品
C.3件都是次品 D.至少有1件正品
解析:选C 25件产品中只有2件次品,所以不可能取出3件都是次品.
3.事件A发生的概率接近于0,则( )
A.事件A不可能发生 B.事件A也可能发生
C.事件A一定发生 D.事件A发生的可能性很大
解析:选B 不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.
4.高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话( )21*cnjy*com
A.正确 B.错误
C.不一定 D.无法解释
解析:选B 把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,…甚至12个题都选择正确.
5.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为( )【21cnj*y.co*m】
A.374副 B.224.4副
C.不少于225副 D.不多于225副
解析:选C 根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C.【21教育名师】
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是________.【21教育】
解析:把频率视为概率,故所求概率近似为
P==0.03.
答案:0.03
7.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.21教育网
解析:取了10次有9个白球,则取出白球的频率是,估计其概率约是,那么取出黑球的概率约是,因为取出白球的概率大于取出黑球的概率,所以估计袋中数量多的是白球.21*教*育*名*师
答案:白球
8.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.21-cnjy*com
解析:16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.
答案:0.35
9.某篮球运动员在最近几场大赛中罚球投篮的结果如下:
投篮次数n
8
10
12
9
10
16
进球次数m
6
8
9
7
7
12
(1)计算表中每次投篮的频率值;
(2)该运动员投篮的命中率约为多少.
解:该运动员投篮的频率值依次为,,,,,.
(2)由(1)可知频率总在的附近摆动.可知运动员的进球概率约为,也就是其投篮的命中率约为.
10.设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:21cnjy.com
(1)1个孩子由显性决定特征的概率是多少?
(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?
解:父、母的基因分别为rd,rd,则这孩子从父母身上各得到一个基因的所有可能性为rr,rd,rd,dd,共为4种,故具有dd基因的可能性为,具有rr基因的可能性也为,具有rd基因的可能性为.2-1-c-n-j-y
(1)1个孩子由显性决定特征的概率是.
(2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为.
层级二 应试能力达标
1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( )
A.① B.②
C.③ D.④
解析:选D 三角形的三条边必须满足两边之和大于第三边.
2.在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝下”的次数为( )21世纪教育网
A.0.49 B.49
C.0.51 D.51
解析:选D 正面朝下的频率为1-0.49=0.51,次数为0.51×100=51次.
3.聊城市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而聊城市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?( )
A.甲公司 B.乙公司
C.甲、乙公司均可 D.以上都对
解析:选B 由题意得肇事车是甲公司的概率为,是乙公司的概率为,由极大似然法可知认定肇事车为乙公司的车辆较为合理.21·cn·jy·com
4.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是( )
A. B.
C. D.
解析:选D 抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为.www.21-cn-jy.com
5.下列给出五个事件:
①某地2月3日下雪;
②函数y=ax(a>0,且a≠1)在定义域上是增函数;
③实数的绝对值不小于0;
④在标准大气压下,水在1 ℃结冰;
⑤a,b∈R,则ab=bA.
其中必然事件是________;不可能事件是________;随机事件是________.
解析:由必然事件、不可能事件、随机事件的定义即可得到答案.
答案:③⑤ ④ ①②
6.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为________.
解析:设总体中的个体数为x,则=,所以x=120.
答案:120
7.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513条鱼苗,根据概率的统计定义解答下列问题:2·1·c·n·j·y
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化多少条鱼苗?
(3)要孵化5 000条鱼苗,大约需准备多少个鱼卵(精确到百位)?
解:(1)这种鱼卵的孵化频率为=0.851 3,
把它近似作为孵化的概率.
(2)设能孵化x条鱼苗,则=0.851 3.
所以x=25 539,
即30 000个鱼卵大约能孵化25 539条鱼苗.
(3)设大约需准备y个鱼卵,
则=0.851 3,
所以y≈5 900,
即大约需准备5 900个鱼卵.
8.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次.【21·世纪·教育·网】
(1)估计从袋中任意摸出一个球,恰好是红球的概率;
(2)请你估计袋中红球的个数.
解:(1)因为20×400=8 000,
所以摸到红球的频率为:=0.75,
因为试验次数很大,大量试验时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.21·世纪*教育网
(2)设袋中红球有x个,根据题意得:
=0.75,解得x=15,经检验x=15是原方程的解.
所以估计袋中红球接近15个.
课时跟踪检测(十一) 古典概型
层级一 学业水平达标
1.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是( )
A. B.
C. D.
解析:选D 由题意(m,n)的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种,而满足点P(m,n)在直线x+y=4上的取值情况有(1,3),(2,2),(3,1),共3种.故所求概率为=,故选D.
2.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )21cnjy.com
A. B.
C. D.
解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P==.2·1·c·n·j·y
3.设a是从集合中随机取出的一个数,b是从集合中随机取出的一个数,构成一个基本事件(a,b).记“这些基本事件中,满足logba≥1”为事件E,则E发生的概率是( )【21cnj*y.co*m】
A. B.
C. D.
解析:选B 试验发生包含的事件是分别从两个集合中取1个数字,共有4×3=12种结果,满足条件的事件是满足logba≥1,可以列举出所有的事件,当b=2时,a=2,3,4,当b=3时,a=3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是.
4.同时抛掷两个骰子,则向上的点数之差的绝对值为4的概率是( )
A. B.
C. D.
解析:选C 同时抛掷两个骰子,基本事件总数为36个,记“向上的点数之差的绝对值为4”为事件A,则事件A包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4个,故P(A)==.21*教*育*名*师
5.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A. B.
C. D.
解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C.
6.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是________.
解析:从A,B中任意取一个数,共有C·C=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,
∴P==.
答案:
7.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).21*cnjy*com
解析:6节课的全排列为A种,先排三节艺术课有A种不同方法,同时产生四个空,再利用插空法排文化课共有A种不同方法,故由古典概型概率公式得P==.
答案:
8.现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.
解析:基本事件总数为N=7×9=63,其中m,n都为奇数的事件个数为M=4×5=20,所以所求概率P==.
答案:
9.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为,停车费多于14元的概率为,求甲的停车费为6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.
解:(1)记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.
由已知得P(B)=,P(C+D)=.
又事件A,B,C,D互斥,所以P(A)=1--=.
所以甲的停车费为6元的概率为.
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为.
10.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:21世纪教育网
序号
分组(分数段)
频数(人数)
频率
1
[0,60)
a
0.1
2
[60,75)
15
0.3
3
[75,90)
25
b
4
[90,100]
c
d
合计
50
1
(1)求a,b,c,d的值;
(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.21教育网
解:(1)a=50×0.1=5,b==0.5,c=50-5-15-25=5,d=1-0.1-0.3-0.5=0.1.21·cn·jy·com
(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.
事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.21-cnjy*com
所以,获得一等奖的全部为女生的概率为P=.
层级二 应试能力达标
1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )【21教育名师】
A. B.
C. D.
解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P==.故选B.www.21-cn-jy.com
2.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率( )【21教育】
A.颜色全同 B.颜色不全同
C.颜色全不同 D.无红球
解析:选B 有放回地取球3次,共27种可能结果,其中颜色全相同的结果有3种,其概率为=;颜色不全相同的结果有24种,其概率为=;颜色全不同的结果有3种,其概率为=;无红球的情况有8种,其概率为,故选B.
3.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( )
A. B.
C. D.
解析:选C 当“时”的两位数字的和小于9时,则“分”的那两位数字和要求超过14,这是不可能的.所以只有“时”的和为9(即“09”或“18”),“分”的和为14(“59”);或者“时”的和为10(即“19”),“分”的和为13(“49”或“58”).共计有4种情况.因一天24小时共有24×60分钟,所以概率P==.故选C.
4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )21·世纪*教育网
A. B.
C. D.
解析:选C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为.
5.有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为________.【21·世纪·教育·网】
解析:从四个小球中任取两个,有6种取法,其中两个号码都为偶数只有(2,4)这一种取法,故其对立事件,即至少有一个号码为奇数的概率为1-=.
答案:
6.设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆x2+y2=1有公共点的概率是________.
解析:将a,b的取值记为(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.
当直线与圆有公共点时,可得≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为.
答案:
7.小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.www-2-1-cnjy-com
(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;
(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.
解:将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.
(1)从5道题中任选2道题解答,每一次选1题(不放回),则所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种,而且这些基本事件发生的可能性是相等的.2-1-c-n-j-y
设事件A为“所选的题不是同一种题型”,则事件A包含的基本事件有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12种,
所以P(A)==0.6.
(2)从5道题中任选2道题解答,每一次选1题(有放回),则所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,而且这些基本事件发生的可能性是相等的.
设事件B为“所选的题不是同一种题型”,由(1)知所选题不是同一种题型的基本事件共12种,所以P(B)==0.48.
8.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.
由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.
从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.
所以这两张卡片颜色不同且它们的标号之和小于4的概率为.
(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.
由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.
从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.
所以这两张卡片颜色不同且它们的标号之和小于4的概率为.
课时跟踪检测(十七) 离散型随机变量的均值
层级一 学业水平达标
1.若离散型随机变量X的分布列为
X
0
1
P
则X的数学期望E(X)=( )
A.2 B.2或
C. D.1
解析:选C 因为分布列中概率和为1,所以+=1,即a2+a-2=0,解得a=-2(舍去)或a=1,所以E(X)=.故选C.21世纪教育网
2.若随机变量ξ的分布列如下表所示,则E(ξ)的值为( )
ξ
0
1
2
3
4
5
P
2x
3x
7x
2x
3x
x
A. B.
C. D.
解析:选C 根据概率和为1,可得x=,E(ξ)=0×2x+1×3x+2×7x+3×2x+4×3x+5×x=40x=.21教育网
3.某射击运动员在比赛中每次击中10环得1分,击不中10环得0分.已知他击中10环的概率为0.8,则射击一次得分X的期望是( )21cnjy.com
A.0.2 B.0.8
C.1 D.0
解析:选B 因为P(X=1)=0.8,P(X=0)=0.2,所以E(X)=1×0.8+0×0.2=0.8.
4.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X的均值为( )2·1·c·n·j·y
A.2.44 B.3.376
C.2.376 D.2.4
解析:选C X的所有可能取值为3,2,1,0,其分布列为
X
3
2
1
0
P
0.6
0.24
0.096
0.064
∴E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.
5.有10件产品,其中3件是次品,从中任取2件,用X表示取到次品的个数,则E(X)等于( )
A. B.
C. D.1
解析:选A X的可能取值为0,1,2,P(X=0)==,P(X=1)==,P(X=2)==.所以E(X)=1×+2×=.21*cnjy*com
6.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为________.【21教育】
解析:X的可能取值为3,2,1,0,
P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;
P(X=1)=0.42×0.6=0.096;
P(X=0)=0.43=0.064.
所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064
=2.376.
答案:2.376
7.设离散型随机变量X可能的取值为1,2,3,P(X=k)=ak+b(k=1,2,3).又X的均值E(X)=3,则a+b=________.
解析:∵P(X=1)=a+b,P(X=2)=2a+b,
P(X=3)=3a+b,
∴E(X)=1×(a+b)+2×(2a+b)+3×(3a+b)=3,
∴14a+6b=3.①
又∵(a+b)+(2a+b)+(3a+b)=1,
∴6a+3b=1.②
∴由①②可知a=,b=-,∴a+b=-.
答案:-
8.设p为非负实数,随机变量X的概率分布为:
X
0
1
2
P
-p
p
则E(X)的最大值为________.
解析:由表可得从而得P∈,期望值E(X)=0×+1×p+2×=p+1,当且仅当p=时,E(X)最大值=.
答案:
9.盒中装有5节同品牌的五号电池,其中混有2节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止.
求:(1)抽取次数X的分布列;
(2)平均抽取多少次可取到好电池.
解:(1)由题意知,X取值为1,2,3.
P(X=1)=;
P(X=2)=×=;
P(X=3)=×=.
所以X的分布列为
X
1
2
3
P
(2)E(X)=1×+2×+3×=1.5,
即平均抽取1.5次可取到好电池.
10.某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:【21·世纪·教育·网】
版本
人教A版
人教B版
苏教版
北师大版
人数
20
15
5
10
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为X,求随机变量X的分布列和数学期望.【21cnj*y.co*m】
解:(1)从50名教师中随机选出2名的方法数为C=1 225,选出2人使用版本相同的方法数为C+C+C+C=350,故2人使用版本相同的概率为P==.
(2)X的所有可能取值为0,1,2.
P(X=0)==,
P(X=1)==.
P(X=2)==.
∴X的分布列为
X
0
1
2
P
∴E(X)=0×+1×+2×==.
层级二 应试能力达标
1.已知随机变量ξ的分布列为
ξ
-1
0
1
P
m
若η=aξ+3,E(η)=,则a=( )
A.1 B.2
C.3 D.4
解析:选B 由分布列的性质得++m=1,
∴m=.
∴E(ξ)=-1×+0×+1×=-.
∴E(η)=E(aξ+3)=aE(ξ)+3=-a+3=,∴a=2.
2.设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人三次上班途中遇红灯的次数的期望为( )21·世纪*教育网
A.0.4 B.1.2
C.0.43 D.0.6
解析:选B ∵途中遇红灯的次数X服从二项分布,即X~B(3,0.4),∴E(X)=3×0.4=1.2.【21教育名师】
3.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为,则口袋中白球的个数为( )
A.3 B.4
C.5 D.2
解析:选A 设白球x个,则黑球7-x个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2,
P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==,
∴0×+1×+2×=,解得x=3.
4.甲、乙两台自动车床生产同种标准件,ξ表示甲车床生产1 000件产品中的次品数,η表示乙车床生产1 000件产品中的次品数,经一段时间考察,ξ,η的分布列分别是:
ξ
0
1
2
3
P
0.7
0.1
0.1
0.1
η
0
1
2
3
P
0.5
0.3
0.2
0
据此判定( )
A.甲比乙质量好 B.乙比甲质量好
C.甲与乙质量相同 D.无法判定
解析:选A E(ξ)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,
E(η)=0×0.5+1×0.3+2×0.2+3×0=0.7.
∵E(η)>E(ξ),故甲比乙质量好.
5.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E(ξ)为________.
解析:依题意,知ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为2+2=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P(ξ=2)=,P(ξ=4)=×=,P(ξ=6)=2=,21·cn·jy·com
故E(ξ)=2×+4×+6×=.
答案:
6.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花需求量ξ(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是________元.www.21-cn-jy.com
ξ
200
300
400
500
P
0.20
0.35
0.30
0.15
解析:节日期间这种鲜花需求量的均值为E(ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).21*教*育*名*师
设利润为η,则η=5ξ+1.6×(500-ξ)-500×2.5
=3.4ξ-450,
所以E(η)=3.4E(ξ)-450=3.4×340-450=706(元).
答案:706
7.(重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.
解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.
(2)X的所有可能值为0,1,2,且
P(X=0)==,P(X=1)==,
P(X=2)==.
综上知,X的分布列为
X
0
1
2
P
故E(X)=0×+1×+2×=(个).
8.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.www-2-1-cnjy-com
(1)求一投保人在一年度内出险的概率p;
(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).2-1-c-n-j-y
解:各投保人是否出险相互独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).21-cnjy*com
(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅当ξ=0,P(A)=1-P()=1-P(ξ=0)=1-(1-p)104,
又P(A)=1-0.999104,故p=0.001.
(2)该险种总收入为104a元,支出是赔偿金总额与成本的和.
支出:104ξ+5×104,
盈利:η=104a-(104ξ+5×104),
由ξ~B(104,10-3)知,E(ξ)=10,
E(η)=104a-104E(ξ)-5×104
=104a-105-5×104.
由E(η)≥0?104a-105-5×104≥0?a-10-5≥0?a≥15(元).
故每位投保人应交纳的最低保费为15元.
课时跟踪检测(十三) 离散型随机变量的分布列
层级一 学业水平达标
1.下列问题中的随机变量不服从两点分布的是( )
A.抛掷一枚骰子,所得点数为随机变量X
B.某射手射击一次,击中目标的次数为随机变量X
C.从装有5个红球,3个白球的袋中取1个球,令随机变量X=
D.某医生做一次手术,手术成功的次数为随机变量X
解析:选A A中随机变量X的取值有6个,不服从两点分布,故选A.
2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P(ξ=0)=( )
A.0 B.
C. D.
解析:选C 由题意,“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p,则成功率为2p,则ξ的分布列为2·1·c·n·j·y
ξ
0
1
P
p
2p
∵p+2p=1,∴p=,即P(ξ=0)=.
3.设X是一个离散型随机变量,其分布列为:
X
-1
0
1
P
2-3q
q2
则q等于( )
A.1 B.±
C.- D.+
解析:选C 由分布列的性质知
∴q=-.
4.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10. 现从中任取4个球,有如下几种变量:21cnjy.com
①X表示取出的球的最大号码;②Y表示取出的球的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数.
这四种变量中服从超几何分布的是( )
A.①② B.③④
C.①②④ D.①②③④
解析:选B 依据超几何分布的数学模型及计算公式知③④属超几何分布.
5.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是( )
A. B.
C. D.
解析:选B 取出的红球服从超几何分布,
故P==.
6.随机变量η的分布列如下:
η
1
2
3
4
5
6
P
0.2
x
0.35
0.1
0.15
0.2
则x=________,P(η≤3)=________.
解析:由分布列的性质得0.2+x+0.35+0.1+0.15+0.2=1,解得x=0.故P(η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.www-2-1-cnjy-com
答案:0 0.55
7.从装有3个红球、2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布列为________.21*cnjy*com
解析:P(ξ=0)==0.1,P(ξ=1)==0.6,P(ξ=2)==0.3.
答案:
ξ
0
1
2
P
0.1
0.6
0.3
8.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量ξ,则P(ξ>1)=________.【21cnj*y.co*m】
解析:依题意,P(ξ=1)=2P(ξ=2),P(ξ=3)=P(ξ=2),P(ξ=3)=P(ξ=4),由分布列性质得21*教*育*名*师
P(ξ=1)+P(ξ=2)+P(ξ=3)+P(ξ=4)=1,
则4P(ξ=2)=1,即P(ξ=2)=,P(ξ=3)=P(ξ=4)=.
∴P(ξ>1)=P(ξ=2)+P(ξ=3)+P(ξ=4)=.
答案:
9.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求ξ的分布列;
(2)求“所选3人中女生人数ξ≤1”的概率.
解:由题意知,ξ服从超几何分布,则P(ξ=k)=,k=0,1,2.
(1)ξ可能取的值为0,1,2.
所以ξ的分布列为
ξ
0
1
2
P
(2)由(1)知,“所选3人中女生人数ξ≤1”的概率为P(ξ≤1)=P(ξ=0)+P(ξ=1)=.21·世纪*教育网
10.为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别
北京
上海
天津
八一
人数
4
6
3
5
(1)从这18名队员中随机选出两名,求两人来自同一队的概率;
(2)中国女排奋力拼搏,战胜了韩国队获得冠军,若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列.【21教育名师】
解:(1)“从这18名队员中选出两名,两人来自于同一队”记作事件A,
则P(A)==.
(2)ξ的所有可能取值为0,1,2.
∵P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,
∴ξ的分布列为
ξ
0
1
2
P
层级二 应试能力达标
1.设随机变量ξ等可能取值1,2,3,…,n,如果P(ξ<4)=0.3,那么( )
A.n=3 B.n=4
C.n=10 D.n=9
解析:选C 由ξ<4知ξ=1,2,3,所以P(ξ=1)+P(ξ=2)+P(ξ=3)=0.3=,解得n=10.21·cn·jy·com
2.随机变量ξ的分布列为
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差数列,则P(|ξ|=1)等于( )
A. B.
C. D.
解析:选D ∵a,b,c成等差数列,∴2b=a+C.又a+b+c=1,∴b=.∴P(|ξ|=1)=a+c=.21教育网
3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )
A. B.
C. D.
解析:选D 从袋中任取10个球,其中红球的个数X服从参数为N=100,M=80,n=10的超几何分布,故恰有6个红球的概率为P(X=6)=.【21·世纪·教育·网】
4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=,且该产品的次品率不超过40%,则这10件产品的次品率为( )
A.10% B.20%
C.30% D.40%
解析:选B 设10件产品中有x件次品,则P(ξ=1)===,∴x=2或8.∵次品率不超过40%,∴x=2,∴次品率为=20%.21-cnjy*com
5.设随机变量ξ的分布列为P(ξ=k)=ak(k=1,2,…,n),则常数a=________.
解析:由分布列的性质可得,a(1+2+…+n)=1,
所以a=.
答案:
6.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________.
解析:由题意取出的3个球必为2个旧球1个新球,
故P(X=4)==.
答案:
7.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张中任抽2张,求:21世纪教育网
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的概率分布列.
解:(1)P=1-=1-=,
即该顾客中奖的概率为.
(2)X的所有可能值为:0,10,20,50,60.
且P(X=0)==,P(X=10)==,
P(X=20)==,P(X=50)==,
P(X=60)==.
故X的概率分布列为:
X
0
10
20
50
60
P
8.为了掌握高二年级学生参加《普通高中信息技术学业水平测试》的备考情况,学校信息技术老师准备对报名参加考试的所有学生进行一次模拟测试,模拟测试时学生需要在10道备选试题中随机抽取5道试题作答,答对5道题时测试成绩为A等(即优秀),答对4道题时测试成绩为B等(即良好),答对3道题时测试成绩为C等(即及格),答对3道题以下(不包括答对3道题)时测试成绩为D等(即不及格),成绩为D等的同学必须参加辅导并补考.如果考生张小明只会答这10道备选试题中的6道题,设张小明同学从10道备选试题中随机抽取5道作答时,不会答的题数为随机变量X,求:2-1-c-n-j-y
(1)随机变量X的分布列;
(2)求张小明同学需要参加补考的概率.
解:(1)在10道备选试题中随机抽取5道试题作答时,其中不会答的题数可能是0,1,2,3,4道,即随机变量X的所有取值是0,1,2,3,4,其中N=10,M=4,n=5,根据超几何分布概率公式,得【21教育】
P(X=0)==,
P(X=1)==,P(X=2)==,
P(X=3)==,P(X=4)==.
∴随机变量X的分布列为:
X
0
1
2
3
4
P
(2)需要参加补考,说明张小明同学从10道备选试题中随机抽取5道试题作答时,有3道试题或者4道试题答不出来,所以张小明同学在这次测试中需要参加补考的概率是P(X≥3)=P(X=3)+P(X=4)=+=.www.21-cn-jy.com
课时跟踪检测(十二) 离散型随机变量
层级一 学业水平达标
1.将一颗骰子均匀掷两次,随机变量为( )
A.第一次出现的点数
B.第二次出现的点数
C.两次出现点数之和
D.两次出现相同点的种数
解析:选C A、B中出现的点数虽然是随机的,但它们取值所反映的结果,都不是本题涉及试验的结果.D中出现相同点数的种数就是6种,不是变量.C整体反映两次投掷的结果,可以预见两次出现数字的和是2,3,4,5,6,7,8,9,10,11,12,这11种结果,但每掷一次前,无法预见是11种中的哪一个,故是随机变量,选C.2·1·c·n·j·y
2.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( )21·世纪*教育网
A.X和ξ B.只有Y
C.Y和ξ D.只有ξ
解析:选B 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B.
3.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( )
A.两颗都是2点
B.一颗是3点,另一颗是1点
C.两颗都是4点
D.一颗是3点,一颗是1点或两颗都是2点
解析:选D ξ=4表示两颗骰子的点数和为4.
4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是( )
A.25 B.10
C.9 D.5
解析:选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.故选C.
5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为( )www-2-1-cnjy-com
A.第k-1次检测到正品,而第k次检测到次品
B.第k次检测到正品,而第k+1次检测到次品
C.前k-1次检测到正品,而第k次检测到次品
D.前k次检测到正品,而第k+1次检测到次品
解析:选D ξ就是检测到次品前正品的个数,ξ=k表明前k次检测到的都是正品,第k+1次检测到的是次品.21世纪教育网
6.甲进行3次射击,甲击中目标的概率为,记甲击中目标的次数为X,则X的可能取值为________.21教育网
解析:甲可能在3次射击中,一次未中,也可能中1次,2次,3次.
答案:0,1,2,3
7.在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为ξ,则{ξ<2}表示的试验结果是________.2-1-c-n-j-y
解析:应分ξ=0和ξ=1两类.ξ=0表示取到3件正品;ξ=1表示取到1件次品、2件正品.故{ξ<2}表示的试验结果为取到1件次品、2件正品或取到3件正品.
答案:取到1件次品、2件正品或取到3件正品
8.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的球的最大号码,用(x,y,z)表示取出的三个球编号为x,y,z(x
∴试验结果构成的集合是{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}.
答案:{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}
9.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为ξ,写出ξ的可能取值.
解:ξ的可能取值为0,1,2.
ξ=0表示在两天检查中均发现了次品.
ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.
ξ=2表示在两天检查中没有发现次品.
10.已知在10件产品中有2件不合格品,现从这10件产品中任取3件,这是一个随机现象.
(1)写出该随机现象所有可能出现的结果.
(2)试用随机变量来描述上述结果.
解:(1)从10件产品中任取3件,所有可能出现的结果是:“不含不合格品”“恰有1件不合格品”“恰有2件不合格品”.21*cnjy*com
(2)令X表示取出的3件产品中的不合格品数.则X所有可能的取值为0,1,2,对应着任取3件产品所有可能出现的结果.即“X=0”表示“不含不合格品”;
“X=1”表示“恰有1件不合格品”;
“X=2”表示“恰有2件不合格品”.
层级二 应试能力达标
1.①某电话亭内的一部电话1小时内使用的次数记为X;
②某人射击2次,击中目标的环数之和记为X;
③测量一批电阻,阻值在950 Ω~1 200 Ω之间;
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是( )
A.①② B.①③
C.①④ D.①②④
解析:选A ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量.【21cnj*y.co*m】
2.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是( )【21教育名师】
A.第一枚6点,第二枚2点
B.第一枚5点,第二枚1点
C.第一枚2点,第二枚6点
D.第一枚6点,第二枚1点
解析:选D 只有D中的点数差为6-1=5>4,其余均不是,应选D.
3.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为( )
A.X=4 B.X=5
C.X=6 D.X≤4
解析:选C 第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.21·cn·jy·com
4.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是( )【21教育】
A.25 B.10
C.7 D.6
解析:选C ∵y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故y的所有可能取值为3,4,5,6,7,8,9,共7个.21cnjy.com
5.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.21-cnjy*com
解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.
答案:4
6.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为ξ,则随机变量ξ的所有可能取值的种数为________.
解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A=24种.
答案:24
7.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.
(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;
(2)抛掷甲、乙两枚骰子,所得点数之和Y.
解:(1)ξ可取0,1,2.
ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.
(2)Y的可能取值为2,3,4,…,12.若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).www.21-cn-jy.com
8.写出下列随机变量可能的取值,并说明随机变量所表示的随机试验的结果.
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.21*教*育*名*师
解:因为x,y可能取的值为1,2,3,
所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,
所以ξ可能的取值为0,1,2,3,
用(x,y)表示第一次抽到卡片号码为x,
第二次抽到卡片号码为y,
则随机变量ξ取各值的意义为:
ξ=0表示两次抽到卡片编号都是2,即(2,2).
ξ=1表示(1,1),(2,1),(2,3),(3,3).
ξ=2表示(1,2),(3,2).
ξ=3表示(1,3),(3,1).
课时跟踪检测(十五) 事件的相互独立性
层级一 学业水平达标
1.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是( )21cnjy.com
A.互斥事件 B.相互独立事件
C.对立事件 D.不相互独立事件
解析:选D 根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.故选D.
2.若P(AB)=,P()=,P(B)=,则事件A与B的关系是( )
A.事件A与B互斥 B.事件A与B对立
C.事件A与B相互独立 D.事件A与B既互斥又独立
解析:选C 因为P()=,所以P(A)=,又P(B)=,P(AB)=,所以有P(AB)=P(A)P(B),所以事件A与B相互独立但不一定互斥.www.21-cn-jy.com
3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是( )www-2-1-cnjy-com
A. B.
C. D.
解析:选A 由题意知P甲==,P乙=,所以P=P甲·P乙=.
4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是( )21-cnjy*com
A.0.56 B.0.92 C.0.94 D.0.96
解析:选C 设事件A表示:“甲击中”,事件B表示:“乙击中”.由题意知A,B互相独立.故目标被击中的概率为P=1-P(·)=1-P()P()=1-0.2×0.3=0.94.
5.从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于( )
A.2个球不都是红球的概率
B.2个球都是红球的概率
C.至少有1个红球的概率
D.2个球中恰好有1个红球的概率
解析:选C 至少有1个红球的概率是×+×+×=.
6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________.【21cnj*y.co*m】
解析:所求概率P=0.8×0.1+0.2×0.9=0.26.
答案:0.26
7.已知P(A)=0.3,P(B)=0.5,当事件A,B相互独立时,P(A∪B)=________,P(A|B)=________.21世纪教育网
解析:∵A,B相互独立,∴P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65. P(A|B)=P(A)=0.3.【21教育】
答案:0.65 0.3
8.设两个相互独立的事件A,B都不发生的概率为,A发生B不发生的概率等于B发生A不发生的概率,则事件A发生的概率P(A)=________.
解析:由已知可得
解得P(A)=P(B)=.
答案:
9.在同一时间内,甲、乙两个气象台独立预报天气准确的概率分别为和.求:
(1)甲、乙两个气象台同时预报天气准确的概率.
(2)至少有一个气象台预报准确的概率.
解:记“甲气象台预报天气准确”为事件A,“乙气象台预报天气准确”为事件B.显然事件A,B相互独立且P(A)=,P(B)=.
(1)P(AB)=P(A)P(B)=×=.
(2)至少有一个气象台预报准确的概率为
P=1-P(AB)=1-P()P()=1-×=.
10.已知A,B,C为三个独立事件,若事件A发生的概率是,事件B发生的概率是,事件C发生的概率是,求下列事件的概率:
(1)事件A,B,C只发生两个;
(2)事件A,B,C至多发生两个.
解:(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,A·B·;A··C;·B·C,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(A·B·)+P(A··C)+P(·B·C)=++=,∴事件A,B,C只发生两个的概率为.
(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=++=.
∴事件A,B,C至多发生两个的概率为.
层级二 应试能力达标
1.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为( )
A.0.12 B.0.88
C.0.28 D.0.42
解析:选D P=(1-0.3)(1-0.4)=0.42.
2.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )2-1-c-n-j-y
A. B.
C. D.
解析:选A 设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.21*教*育*名*师
3.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是( )
A. B.
C. D.
解析:选A 按A→B→C→A的顺序的概率为××=,按A→C→B→A的顺序的概率为××=,故跳三次之后停在A叶上的概率为P=+=.
4.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为( )
A. B.
C. D.
解析:选C 记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为:P()P()[1-P(AB)]=××=.∴灯亮的概率为1-=.21·cn·jy·com
5.加工某零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________.【21教育名师】
解析:加工出来的零件的正品率为××=,所以次品率为1-=.
答案:
6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.【21·世纪·教育·网】
解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.
答案:0.128
7.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6,0.4,0.5,0.2.已知各轮问题能否正确回答互不影响.2·1·c·n·j·y
(1)求该选手被淘汰的概率;
(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率.
解:记“该选手能正确回答第i轮的问题”为事件Ai(i=1,2,3,4),
则P(A1)=0.6,P(A2)=0.4,P(A3)=0.5,P(A4)=0.2.
(1)法一:该选手被淘汰的概率:
P=P(1∪A12∪A1A23∪A1A2A34)
=P(1)+P(A1)P(2)+P(A1)P(A2)P(3)+
P(A1)P(A2)P(A3)P(4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.21教育网
法二:P=1-P(A1A2A3A4)=1-P(A1)P(A2)·P(A3)·P(A4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.21·世纪*教育网
(2)法一:P=P(A12∪A1A23∪A1A2A34)=P(A1)P(2)+P(A1)P(A2)P(3)+P(A1)P(A2)P(A3)P(4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.
法二:P=1-P(1)-P(A1A2A3A4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.
8.某学生语、数、英三科竞赛成绩,排名全班第一的概率为:语文为0.9,数学为0.8,英语为0.85,问一次考试中:21*cnjy*com
(1)三科成绩均未获得第一名的概率是多少?
(2)恰有一科成绩未获得第一名的概率是多少?
解:分别记“该生语、数、英竞赛成绩排名全班第一”为事件A,B,C,则P(A)=0.9,P(B)=0.8,P(C)=0.85.
(1)该学生三科成绩均未获得第一名的概率
P1=P( )=P()P()P()
=[1-P(A)][1-P(B)][1-P(C)]
=0.1×0.2×0.15=0.003.
(2)该学生恰有一科成绩未获得第一名的概率
P2=P(BC+A C+AB )
=P( BC)+P(A C)+P(AB )
=P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P()
=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]
=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329.
课时跟踪检测(十八) 离散型随机变量的方差
层级一 学业水平达标
1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计( )21·cn·jy·com
A.甲种水稻比乙种水稻分蘖整齐
B.乙种水稻比甲种水稻分蘖整齐
C.甲、乙两种水稻分蘖整齐程度相同
D.甲、乙两种水稻分蘖整齐程度不能比较
解析:选B ∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻分蘖整齐.
2.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为( )
A.3·2-2 B.2-4
C.3·2-10 D.2-8
解析:选C E(X)=np=6,D(X)=np(1-p)=3,
∴p=,n=12,则P(X=1)=C××11=3·2-10.
3.设随机变量X的概率分布列为P(X=k)=pk·(1-p)1-k(k=0,1),则E(X),D(X)的值分别是( )【21cnj*y.co*m】
A.0和1 B.p和p2
C.p和1-p D.p和(1-p)p
解析:选D 由X的分布列知,P(X=0)=1-p,P(X=1)=p,故E(X)=0×(1-p)+1×p=p,易知X服从两点分布,∴D(X)=p(1-p).21cnjy.com
4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
解析:选B ∵X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)=2.4,
∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.
5.设10≤x1
B.D(ξ1)=D(ξ2)
C.D(ξ1)
解析:选A 由题意可知E(ξ1)=E(ξ2),又由题意可知,ξ1的波动性较大,从而有D(ξ1)>D(ξ2).【21教育名师】
6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.【21教育】
解析:事件在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p=0.5.21*教*育*名*师
答案:0.5
7已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=________.
解析:由E(X)=30,D(X)=20,可得
解得p=.
答案:
8.已知离散型随机变量X的分布列如下表:
X
-1
0
1
2
P
a
b
c
若E(X)=0,D(X)=1,则a=________,b=________.
解析:由题意
解得a=,b=c=.
答案:
9.A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为
X1
5%
10%
P
0.8
0.2
X2
2%
8%
12%
P
0.2
0.5
0.3
在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2).21-cnjy*com
解:由题设可知Y1和Y2的分布列分别为
Y1
5
10
P
0.8
0.2
Y2
2
8
12
P
0.2
0.5
0.3
E(Y1)=5×0.8+10×0.2=6,
D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;
E(Y2)=2×0.2+8×0.5+12×0.3=8,
D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.
10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.www.21-cn-jy.com
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值和方差.
解:设事件A表示“该地的1位车主购买甲种保险”,事件B表示“该地的1位车主购买乙种保险但不购买甲种保险”,事件C表示“该地的1位车主至少购买甲、乙两种保险中的1种”,事件D表示“该地的1位车主甲、乙两种保险都不购买”,则A,B相互独立.
(1)由题意知P(A)=0.5,P(B)=0.3,C=A∪B,
则P(C)=P(A∪B)=P(A)+P(B)=0.8.
(2)D=,P(D)=1-P(C)=1-0.8=0.2.
由题意知X~B(100,0.2),
所以均值E(X)=100×0.2=20,方差D(X)=100×0.2×0.8=16.
层级二 应试能力达标
1.设二项分布X~B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为( )2·1·c·n·j·y
A.n=4,p=0.6 B.n=6,p=0.4
C.n=8,p=0.3 D.n=24,p=0.1
解析:选B 由题意得,np=2.4,np(1-p)=1.44,
∴1-p=0.6,∴p=0.4,n=6.
2.若ξ是离散型随机变量,P(ξ=x1)=,P(ξ=x2)=,且x1
C.3 D.
解析:选C
x1,x2满足
解得或∵x1
A.100,90 B.100,180
C.200,180 D.200,360
解析:选D 由题意可知播种了1 000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1 000,0.1).而每粒需再补种2粒,补种的种子数记为X,故X=2ξ,则E(X)=2E(ξ)=2×1 000×0.1=200,故方差为D(X)=D(2ξ)=22·D(ξ)=4×1 000×0.1×0.9=360.
4.若随机变量ξ的分布列为P(ξ=m)=,P(ξ=n)=a,若E(ξ)=2,则D(ξ)的最小值等于( )【21·世纪·教育·网】
A.0 B.1
C.4 D.2
解析:选A 由分布列的性质,得a+=1,a=.
∵E(ξ)=2,∴+=2.∴m=6-2n.
∴D(ξ)=×(m-2)2+×(n-2)2=×(n-2)2+×(6-2n-2)2=2n2-8n+8=2(n-2)2.21·世纪*教育网
∴n=2时,D(ξ)取最小值0.
5.随机变量ξ的取值为0,1,2.若P(ξ=0)=,E(ξ)=1,则D(ξ)=________.
解析:由题意设P(ξ=1)=p,
则ξ的分布列如下:
ξ
0
1
2
P
p
-p
由E(ξ)=1,可得p=,
所以D(ξ)=12×+02×+12×=.
答案:
6.已知离散型随机变量X的可能取值为x1=-1,x2=0,x3=1,且E(X)=0.1,D(X)=0.89,则对应x1,x2,x3的概率p1,p2,p3分别为________,________,________.
解析:由题意知,-p1+p3=0.1,
1.21p1+0.01p2+0.81p3=0.89.
又p1+p2+p3=1,解得p1=0.4,p2=0.1,p3=0.5.
答案:0.4 0.1 0.5
7.有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样验查,他们从中各取等量的样本检查它们的抗拉强度指数如下:
ξ
110
120
125
130
135
P
0.1
0.2
0.4
0.1
0.2
η
100
115
125
130
145
P
0.1
0.2
0.4
0.1
0.2
其中ξ和η分别表示甲、乙两厂材料的抗拉强度,比较甲、乙两厂材料哪一种稳定性好.
解:E(ξ)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,
E(η)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,
D(ξ)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,21教育网
D(η)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,www-2-1-cnjy-com
由于E(ξ)=E(η),D(ξ)
(1)求X的分布列、均值及方差;
(2)求Y的分布列、均值及方差.
解:(1)X的可能值为0,1,2.
若X=0,表示没有取出次品,
其概率为P(X=0)==,
同理,有P(X=1)==,
P(X=2)==.
∴X的分布列为
X
0
1
2
P
∴E(X)=0×+1×+2×=.
D(X)=2×+2×+2×=.
(2)Y的可能值为1,2,3,显然X+Y=3.
P(Y=1)=P(X=2)=,
P(Y=2)=P(X=1)=,
P(Y=3)=P(X=0)=.
∴Y的分布列为
Y
1
2
3
P
∴Y=-X+3,
∴E(Y)=E(3-X)=3-E(X)=3-=,
D(Y)=(-1)2D(X)=.
课时跟踪检测(十六) 独立重复试验与二项分布
层级一 学业水平达标
1.任意抛掷三枚硬币,恰有两枚正面朝上的概率为( )
A. B.
C. D.
解析:选B 每枚硬币正面朝上的概率为,正面朝上的次数X~B,故所求概率为C2×=.
2.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是( )【21·世纪·教育·网】
A.[0.4,1] B.(0,0.4]
C.(0,0.6] D.[0.6,1)
解析:选A 由题意,C·p(1-p)3≤Cp2(1-p)2,∴4(1-p)≤6p,∴0.4≤p≤1.
3.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是( )
A. B.
C. D.
解析:选B 每种颜色的球被抽取的概率为,从而抽取三次,球的颜色全相同的概率为C3=3×=.21*cnjy*com
4.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于( )
A.C102 B.C102
C.C22 D.C102
解析:选D 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为,所以P(X=12)=C29·=C210.【21教育名师】
5.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在一次试验中发生的概率为( )
A. B.
C. D.
解析:选A 设事件A在一次试验中发生的概率为p,由题意得1-Cp0(1-p)4=,所以1-p=,故p=.
6.下列事件中随机变量ξ服从二项分布的有________(填序号).
①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;
②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;
③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n次抽取中出现次品的件数(M
对于②,ξ的取值是1,2,3,……,P(ξ=k)=0.9×0.1k-1(k=1,2,3,……n),显然不符合二项分布的定义,因此ξ不服从二项分布.
③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.
答案:①③
7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).
解析:至少3人被治愈的概率为C×(0.9)3×0.1+(0.9)4=0.947 7.
答案:0.947 7
8.设X~B(4,p),且P(X=2)=,那么一次试验成功的概率p等于________.
解析:P(X=2)=Cp2(1-p)2=,即p2(1-p)2=2·2,
解得p=或p=.
答案:或
9.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),求一天内至少3人同时上网的概率.21cnjy.com
解:记Ar(r=0,1,2,…,6)为“r个人同时上网”这个事件,则其概率为P(Ar)=C0.5r(1-0.5)6-r=C0.56=C,“一天内至少有3人同时上网”即为事件A3∪A4∪A5∪A6,因为A3,A4,A5,A6为彼此互斥事件,所以可应用概率加法公式,得“一天内至少有3人同时上网”的概率为P=P(A3∪A4∪A5∪A6)=P(A3)+P(A4)+P(A5)+P(A6)=(C+C+C+C)=×(20+15+6+1)=.21*教*育*名*师
10.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2分钟.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列.
解:(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为
P(A)=××=.
(2)由题意,可得ξ可以取的值为0,2,4,6,8(单位:分钟),
事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),
∴P(ξ=2k)=Ck4-k(k=0,1,2,3,4),
即P(ξ=0)=C×0×4=;
P(ξ=2)=C××3=;
P(ξ=4)=C×2×2=;
P(ξ=6)=C×3×=;
P(ξ=8)=C×4×0=.
∴ξ的分布列是
ξ
0
2
4
6
8
P
层级二 应试能力达标
1.在某次试验中,事件A出现的概率为p,则在n次独立重复试验中出现k次的概率为( )
A.1-pk B.(1-p)kpn-k
C.1-(1-p)k D.C(1-p)kpn-k
解析:选D 出现1次的概率为1-p,由二项分布概率公式可得出现k次的概率为C(1-p)kpn-k.21·cn·jy·com
2.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )2·1·c·n·j·y
A.0.85 B.0.819 2
C.0.8 D.0.75
解析:选B P=C×0.83×0.2+C×0.84=0.819 2,故选B.
3.若随机变量ξ~B,则P(ξ=k)最大时,k的值为( )
A.1或2 B.2或3
C.3或4 D.5
解析:选A 依题意P(ξ=k)=C×k×5-k,k=0,1,2,3,4,5.
可以求得P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=,P(ξ=5)=.故当k=2或1时P(ξ=k)最大.21世纪教育网
4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是.则质点P移动5次后位于点(2,3)的概率为( )21·世纪*教育网
A.5 B.C5
C.C3 D.CC5
解析:选B 质点每次只能向上或向右移动,且概率均为,所以移动5次可看成做了5次独立重复试验.质点P移动5次后位于点(2,3)(即质点在移动过程中向右移动2次,向上移动3次)的概率为C23=C5.2-1-c-n-j-y
5.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=,则P(Y≥2)的值为________.
解析:由条件知,P(X=0)=1-P(X≥1)==Cp0(1-p)2,∴p=,∴P(Y≥2)=1-P(Y=0)-P(Y=1)=1-Cp0(1-p)4-Cp(1-p)3=1--=.【21cnj*y.co*m】
答案:
6.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{an}:an=如果Sn为数列{an}的前n项和,那么S5=3的概率为________.
解析:由题意知有放回地摸球为独立重复试验,且试验次数为5,这5次中有1次摸得红球.每次摸取红球的概率为,所以S5=3时,概率为C·1·4=.
答案:
7.经统计,某大型商场一个结算窗口每天排队结算的人数及相应的概率如下:
排队人数
0~5
6~10
11~15
概率
0.1
0.15
0.25
排队人数
16~20
21~25
25人以上
概率
0.25
0.2
0.05
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口.请问:该商场是否需要增加结算窗口?21教育网
解:(1)每天不超过20人排队结算的概率P=0.1+0.15+0.25+0.25=0.75.即不超过20人排队结算的概率是0.75.www-2-1-cnjy-com
(2)因为每天超过15人排队结算的概率为0.25+0.2+0.05=,
所以一周7天中,没有出现超过15人排队结算的概率为P0=C7;
一周7天中,有一天出现超过15人排队结算的概率为
P1=C6;
一周7天中,有两天出现超过15人排队结算的概率为
P2=C25,
所以有3天或3天以上出现超过15人排队结算的概率为P=1-P0-P1-P2=1-C7+C6+C25=>0.75.www.21-cn-jy.com
所以,该商场需要增加结算窗口.
8.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7,0.6,0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的2倍.【21教育】
(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;
(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X,求X的分布列.21-cnjy*com
解:(1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A,B,C,
则P(A)=0.7,P(B)=0.6,P(C)=0.8.
所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为
P=1-P()P()P()=1-0.3×0.4×0.2=0.976.
(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为
P==0.7.
(3)依题意抽取的4件样品中一等品的个数X的可能取值为0,1,2,3,4,则
P(X=0)=C×0.34=0.008 1.
P(X=1)=C×0.7×0.33=0.075 6,
P(X=2)=C×0.72×0.32=0.264 6,
P(X=3)=C×0.73×0.3=0.411 6,
P(X=4)=C×0.74=0.240 1,
∴X的分布列为
X
0
1
2
3
4
P
0.008 1
0.075 6
0.264 6
0.411 6
0.240 1
课时跟踪检测(十四) 条件概率
层级一 学业水平达标
1.已知P(B|A)=,P(A)=,则P(AB)等于( )
A. B.
C. D.
解析:选C P(AB)=P(B|A)·P(A)=×=.
2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )21世纪教育网
A. B.
C. D.1
解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是.21·世纪*教育网
3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,B为“甲独自去一个景点”,则概率P(A|B)等于( )
A. B.
C. D.
解析:选C 由题意可知,n(B)=C22=12,n(AB)=A=6.
∴P(A|B)===.
4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)和P(B|A)分别等于( )2·1·c·n·j·y
A., B. ,
C., D. ,
解析:选C P(A|B)===,P(B|A)===.
5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )21cnjy.com
A.0.8 B.0.75
C.0.6 D.0.45
解析:选A 记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)=0.75,P(AB)=0.6,由条件概率,得P(B|A)===0.8.
6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________.
解析:设A=“投掷两颗骰子,其点数不同”,B=“ξ≤6”,则P(A)==,P(AB)=,∴P(B|A)==.21·cn·jy·com
答案:
7.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.www-2-1-cnjy-com
解析:设A=“其中一个是女孩”,B=“其中一个是男孩”,则P(A)=,P(AB)=,∴P(B|A)==.21*cnjy*com
答案:
8.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.
解析:令第二次取得一等品为事件A,第一次取得二等品为事件B,则P(AB)==,P(A)==.21-cnjy*com
所以P(B|A)==×=.
答案:
9.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求:
(1)第一次取到新球的概率;
(2)第二次取到新球的概率;
(3)在第一次取到新球的条件下,第二次取到新球的概率.
解:设第一次取到新球为事件A,第二次取到新球为事件B.
(1)P(A)==.
(2)P(B)===.
(3)法一:P(AB)==,
P(B|A)===.
法二:n(A)=3×4=12,n(AB)=3×2=6,
P(B|A)===.
10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.
(1)求选到的是第一组的学生的概率;
(2)已知选到的是共青团员,求他是第一组学生的概率.
解:设事件A表示“选到第一组学生”,
事件B表示“选到共青团员”.
(1)由题意,P(A)==.
(2)法一:要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=.【21教育名师】
法二:P(B)==,P(AB)==,
∴P(A|B)==.
层级二 应试能力达标
1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )
A. B.
C. D.
解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P==.【21cnj*y.co*m】
2.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A. B.
C. D.
解析:选B ∵P(A)==,P(AB)==,
∴P(B|A)==.
3.某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则使用寿命超过1年的元件还能继续使用的概率为( )21*教*育*名*师
A.0.3 B.0.5
C.0.6 D.1
解析:选B 设事件A为“该元件的使用寿命超过1年”,B为“该元件的使用寿命超过2年”,则P(A)=0.6,P(B)=0.3.
因为B?A,所以P(AB)=P(B)=0.3,
于是P(B|A)===0.5.
4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )
A. B.
C. D.
解析:选D 设事件A表示“抽到2张都是假钞”,事件B为“2张中至少有一张假钞”,所以为P(A|B). 而P(AB)==,P(B)==.∴P(A|B)==.
5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.
解析:设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)==,P(AB)==,21教育网
所以P(B|A)==.
答案:
6.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.【21·世纪·教育·网】
解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为.【21教育】
法二:设A=“取出的球不大于50”,B=“取出的数是2或3的倍数”,则P(A)==,P(AB)=,
∴P(B|A)==.
答案:
7.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:
(1)第1次抽到舞蹈节目的概率;
(2)第1次和第2次都抽到舞蹈节目的概率;
(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.
解:设“第1次抽到舞蹈节目”为事件A,“第2次抽到舞蹈节目”为事件B,则“第1次和第2次都抽到舞蹈节目”为事件AB.2-1-c-n-j-y
(1)从6个节目中不放回地依次抽取2次的事件数为n(Ω)=A=30,
根据分步计数原理n(A)=AA=20,
于是P(A)===.
(2)因为n(AB)=A=12,于是
P(AB)===.
(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)===.www.21-cn-jy.com
法二:因为n(AB)=12,n(A)=20,
所以P(B|A)===.
8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.
解:设A={从第一个盒子中取得标有字母A的球},
B={从第一个盒子中取得标有字母B的球},
R={第二次取出的球是红球},
则容易求得P(A)=,P(B)=,
P(R|A)=,P(R|B)=.
事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,
故由概率的加法公式,得
P(RA∪RB)=P(RA)+P(RB)
=P(R|A)P(A)+P(R|B)P(B)
=×+×=0.59.
课时跟踪检测(十) 概率的基本性质
层级一 学业水平达标
1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( )21·世纪*教育网
A.A与C互斥 B.B与C互斥
C.任何两个都互斥 D.任何两个都不互斥
解析:选D 由题意知事件A、B、C两两不可能同时发生,因此两两互斥.
2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为( )
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至少有2件正品
解析:选B 至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.21*cnjy*com
3.已知盒中有5个红球,3个白球,从盒中任取2个球,下列说法中正确的是( )
A.全是白球与全是红球是对立事件
B.没有白球与至少有一个白球是对立事件
C.只有一个白球与只有一个红球是互斥关系
D.全是红球与有一个红球是包含关系
解析:选B 从盒中任取2球,出现球的颜色情况是,全是红球,有一个红球且有一个白球,全是白球,至少有一个的对立面是没有一个,所以选B.【21·世纪·教育·网】
4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )
A.至少有一个红球与都是红球
B.至少有一个红球与都是白球
C.至少有一个红球与至少有一个白球
D.恰有一个红球与恰有二个红球
解析:选D 对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.2-1-c-n-j-y
5.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( )
A.0.665 B.0.56
C.0.24 D.0.285
解析:选A ∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665,故选A.【21cnj*y.co*m】
6.掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.21*教*育*名*师
解析:A,B既是互斥事件,也是对立事件.
答案:A,B A,B
7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.
解析:摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率是1-0.42-0.28=0.3.
答案:0.3
8.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率为________.21世纪教育网
解析:因为事件A与事件B是互斥事件,
所以P(A∪B)=P(A)+P(B)=+=.
答案:
9.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,求:
(1)甲获胜的概率;
(2)甲不输的概率.
解:(1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率P=1--=.
即甲获胜的概率是.
(2)法一:设事件A为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(A)=+=.
法二:设事件A为“甲不输”,可看成是“乙获胜”的对立事件,所以P(A)=1-=.
即甲不输的概率是.
10.在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.
解:记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件A,B,C,D,这四个事件彼此互斥.www-2-1-cnjy-com
(1)小明成绩在80分以上的概率是P(A∪B)=P(A)+P(B)=0.18+0.51=0.69.
(2)法一:小明及格的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.21cnjy.com
法二:小明不及格的概率为0.07,则小明及格的概率为1-0.07=0.93.
层级二 应试能力达标
1.如果事件A,B互斥,记,分别为事件A,B的对立事件,那么( )
A.A∪B是必然事件 B.∪是必然事件
C.与一定互斥 D.与一定不互斥
解析:选B 用Venn图解决此类问题较为直观.如图所示,∪是必然事件,故选B.
2.根据湖北某医疗所的调查,某地区居民血型的分布为:O型52%,A型15%,AB型5%,B型28%.现有一血型为A型的病人需要输血,若在该地区任选一人,则此人能为病人输血的概率为( )
A.67% B.85%
C.48% D.15%
解析:选A O型血与A型血的人能为A型血的人输血,故所求的概率为52%+15%=67%.故选A.
3.下列各组事件中,不是互斥事件的是( )
A.一个射手进行一次射击,命中环数大于8与命中环数小于6
B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分
C.播种100粒菜籽,发芽90粒与发芽80粒
D.检验某种产品,合格率高于70%与合格率低于70%
解析:选B 对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件.
4.把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )21·cn·jy·com
A.对立事件 B.不可能事件
C.互斥但不对立事件 D.以上答案都不对
解析:选C “甲分得4排1号”与“乙分得4排1号”是互斥事件但不对立.
5.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.
解析:设A={摸出红球},B={摸出白球},C={摸出黑球},则A,B,C两两互斥,A与为对立事件,www.21-cn-jy.com
因为P(A+B)=P(A)+P(B)=0.58,P(A+C)=P(A)+P(C)=0.62,
P(A+B+C)=P(A)+P(B)+P(C)=1,所以P(C)=0.42,P(B)=0.38,P(A)=0.20,所以P()=1-P(A)=1-0.20=0.80.【21教育名师】
答案:0.80
6.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球单打冠军的概率为+=.21教育网
答案:
7.在大小相同的5个球中,只有红色和白色两种球,若从中任取2个,全是白球的概率为0.3,求所取出的2个球中至少有1个红球的概率.【21教育】
解:记事件A表示“取出的2个球中至少有1个红球”,事件B表示“取出的2个球全是白球”,则事件A与事件B互为对立事件,而事件B发生的概率为P(B)=0.3,所以事件A发生的概率为P(A)=1-P(B)=1-0.3=0.7.21-cnjy*com
8.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:2·1·c·n·j·y
(1)P(A),P(B),P(C);
(2)抽取1张奖券中奖概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=,P(B)==,P(C)==.
(2)设“抽取1张奖券中奖”为事件D,则
P(D)=P(A)+P(B)+P(C)=++=.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则
P(E)=1-P(A)-P(B)=1--=.
阶段质量检测(一) 计数原理
(时间120分钟 满分150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )
A.7 B.64
C.12 D.81
解析:选C 根据分步乘法计数原理,共有4×3=12种.
2.(1-x)10展开式中x3项的系数为( )
A.-720 B.720
C.120 D.-120
解析:选D 由Tr+1=C(-x)r=(-1)rCxr,因为r=3,所以系数为(-1)3C=-120.
3.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有( )
A.8种 B.10种
C.12种 D.32种
解析:选B 此人从A到B,路程最短的走法应走两纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C=10种.
4.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )
A.300 B.216
C.180 D.162
解析:选C 由题意知可分为两类,(1)选“0”,共有CCCA=108,(2)不选“0”,共有CA=72,∴由分类加法计数原理得72+108=180,故选C.
5.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有( )www-2-1-cnjy-com
A.12 B.24
C.36 D.48
解析:选B 第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A种排法,故总的排法有2×2×A=24种.
6.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个
C.12个 D.9个
解析:选B 依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2、2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15个.
7.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有( )
A.66条 B.72条
C.74条 D.78条
解析:选B 先考虑x≥0,y≥0时,圆上横、纵坐标均为整数的点有(1,7)(5,5)(7,1),依圆的对称性知,圆上共有3×4=12个点的横、纵坐标均为整数,经过其中任意两点的割线有C=66(条),过每一点的切线共有12条,又考虑到直线ax+by-1=0不经过原点,而上述直线中经过原点的有6条,所以满足题意的直线共有66+12-6=72(条).
8.将二项式8的展开式中所有项重新排成一列,有理式不相邻的排法种数为( )
A.A B.AA
C.AA D.AA
解析:选C 8展开式的通项公式Tr+1=C·()8-r·r=·x,r=0,1,2,…,8.当为整数时,r=0,4,8. ∴展开式共有9项,其中有有理项3项,先排其余6项有A种排法,再将有理项插入形成的7个空档中,有A种方法.∴共有AA种排法.【21教育】
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
9.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.21·cn·jy·com
解析:设女生有x人,则C·C=30,即·x=30,解得x=2或3.
答案:2或3
10.若(1+)4=a+b(a,b为有理数),则a=________,b=________.
解析:∵(1+)4=C()0+C()1+C()2+C()3+C()4
=1+4+12+8+4
=17+12,
由已知,得17+12=a+b,
∴a=17,b=12.
答案:17 12
11.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,则n=________,a3=________.21·世纪*教育网
解析:令x=1,得2n=16,则n=4.a3=C=4.
答案:4 4
12.若n的展开式中含有常数项,则最小的正整数n等于________,此时常数项为________.21-cnjy*com
解析:二项式的通项为Tr+1=C(2x3)n-r·r=C2n-r·x3n-,令3n-r=0,即r=n,而r∈N*.∴n为7的整数倍,即最小的正数n等于7,此时常数项为T7=C·2=14.
答案:7 14
13.已知8展开式中常数项为1 120,则实数a=________,展开式中各项系数的和是________.
解析:Tr+1=(-a)rCx8-2r,令8-2r=0?r=4.
∴T5=C(-a)4=1 120,∴a=±2.当a=2时,各项系数的和为(1-2)8=1;当a=-2时,各项系数的和为(1+2)8=38.
答案:±2 1或38
14.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)
解析:因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以适合题意的四位数有24-2=14个.
答案:14
15.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有________种.(用数字作答)2·1·c·n·j·y
解析:先分组,再把三组分配乘以A得:·A=90种.
答案:90
三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)已知(1+2)n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的,试求展开式中二项式系数最大的项.
解:二项式的通项为Tk+1=C(2k)x由题意知展开式中第k+1项系数是第k项系数的2倍,是第k+2项系数的,∴解得n=7.21教育网
∴展开式中二项式系数最大两项是:
T4=C(2)3=280x与T5=C(2)4=560x2.
17.(本小题满分15分)10件不同厂生产的同类产品:
(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?【21·世纪·教育·网】
(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?【21cnj*y.co*m】
解:(1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A=1 680(或C·A)(种).21*教*育*名*师
(2)分步完成.先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A种方法,共有A·A=50 400(或C·A)(种).
18.(本小题满分15分)已知n的展开式中,前三项系数成等差数列.
(1)求n;
(2)求第三项的二项式系数及项的系数;
(3)求含x项的系数.
解:(1)∵前三项系数1,C,C成等差数列.
∴2·C=1+C,即n2-9n+8=0.
∴n=8或n=1(舍).
(2)由n=8知其通项公式Tr+1=C·()8-r·r=r·C·x4-r,r=0,1,…,8.【21教育名师】
∴第三项的二项式系数为C=28.
第三项的系数为2·C=7.
(3)令4-r=1,得r=4,
∴含x项的系数为4·C=.
19.(本小题满分15分)如图有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?www.21-cn-jy.com
解:分为两类:
第一类:若1,3同色,则1有5种涂法,2有4种涂法,
3有1种涂法(与1相同),4有4种涂法.
故N1=5×4×1×4=80.
第二类:若1,3不同色,则1有5种涂法,2有4种涂法,3有3种涂法,4有3种涂法.
故N2=5×4×3×3=180种.
综上可知不同的涂法共有N=N1+N2=80+180=260种.
20.(本小题满分15分)7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?21世纪教育网
(1)两名女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从高到低的顺序站;
(4)老师不站中间,女生不站两端.
解:(1)两名女生站在一起有站法A种,视为一种元素与其余5人全排,有A种排法.故有不同站法有A·A=1 440种.21cnjy.com
(2)先站老师和女生,有站法A种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,有插入方法A种.故共有不同站法A·A=144种.2-1-c-n-j-y
(3)7人全排列中,4名男生不考虑身高顺序的站法有A种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2×=420种.21*cnjy*com
(4)中间和两端是特殊位置,可如下分类求解:①老师站两端之一,另一端由男生站,有A·A·A种站法,②两端全由男生站,老师站除两端和正中间的另外4个位置之一,有A·A·A种站法.故共有不同站法共有A·A·A+A·A·A=2 112种.
阶段质量检测(二) 概率
(时间:120分钟 满分:150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)21·cn·jy·com
1.下列事件中是随机事件的个数为( )
①连续两次抛掷一枚质地均匀的骰子,两次都出现2点;
②在地球上,树上掉下的雪梨不抓住就往下掉;
③某人买彩票中奖;
④已知一对夫妇有一个女儿,第二次生男孩;
⑤在标准大气压下,水加热到90 ℃会沸腾.
A.1 B.2
C.3 D.4
解析:选C ①③④都有可能发生,也可能不发生,故是随机事件;对于②,在地球上,树上掉下的雪梨不抓住就往下掉,这是一定会发生的事件,属于必然事件.对于⑤,在标准大气压下,水加热到90 ℃会沸腾,是不可能事件.故选C.www.21-cn-jy.com
2.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次.若每一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )
A. B.
C. D.
解析:选B 法一:记事件A={第一次取到的是合格高尔夫球},事件B={第二次取到的是合格高尔夫球}.2·1·c·n·j·y
由题意可得P(A∩B)==,P(A)==,
所以P(B|A)===.
法二:记事件A={第一次取到的是合格高尔夫球},
事件B={第二次取到的是合格高尔夫球}.
由题意可得事件B发生所包含的基本事件数n(A∩B)=3×2=6,事件A发生所包含的基本事件数n(A)=3×3=9,【21·世纪·教育·网】
所以P(B|A)===.
3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )【21cnj*y.co*m】
A. B.
C. D.
解析:选B 试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A,B),(B,C),(C,D),(D,E)4种,故P==.www-2-1-cnjy-com
4.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为( )【21教育名师】
A.2.5 B.3
C.3.5 D.4
解析:选C P(ξ=k)=(k=1,2,3,…,6),∴E(ξ)=1×+2×+…+6×=(1+2+…+6)=×=3.5.21*教*育*名*师
5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为( )
A.恰有1只是坏的 B.4只全是好的
C.恰有2只是好的 D.至多有2只是坏的
解析:选C X=k表示取出的螺丝钉恰有k只为好的,则P(X=k)=(k=1,2,3,4).∴P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,故表示恰好有2个是好的.
6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A. B.
C. D.
解析:选A 记3个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为:甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有:甲1,乙1;甲2,乙2;甲3,乙3,共3个基本事件.因此P(A)==.
7.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是( )
A. B.
C. D.
解析:选B 设A与B中至少有一个不闭合的事件为T,E与F至少有一个不闭合的事件为R,则P(T)=P(R)=1-×=,所以灯亮的概率为P=1-P(T)·P(R)·P()·P()=.
8.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为( )
A. B.
C. D.
解析:选D 由已知,得3a+2b+0·c=2,得3a+2b=2,所以ab=×3a×2b≤2=.
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
9.一台机器生产某种产品,如果生产一件甲等品可获得50元,生产一件乙等品可获得30元,生产一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期获利________元.
解析:设生产一件该产品可获利钱数为X,则随机变量X的取值可以是-20,30,50. 依题意,X的分布列为
X
-20
30
50
P
0.1
0.3
0.6
故E(X)=-20×0.1+0.3×30+50×0.6=37(元).
答案:37
10.从甲、乙等5名学生中随机选出2人,则基本事件总数为________种,甲被选中的概率为________.21·世纪*教育网
解析:把5名同学依次编号为甲、乙、丙、丁、戊,基本事件空间Ω={甲乙,甲丙,甲丁,甲戊,乙丙,乙丁,乙戊,丙丁,丙戊,丁戊},包含基本事件总数n=10.设A表示事件“甲被选中”,则A={甲乙,甲丙,甲丁,甲戊},包含基本事件数m=4.所以概率为P==.21-cnjy*com
答案:10
11.某射手射击所得环数ξ的分布列如下:
ξ
7
8
9
10
P
x
0.1
0.3
y
则x+y=________,若ξ的期望E(ξ)=8.9,则y的值为________.
解析:由分布列的性质知x+y=1-0.1-0.3=0.6,所以x=0.6-y且7x+0.8+2.7+10y=8.9,解得y=0.4.
答案:0.6 0.4
12.由于电脑故障,使得随机变量X的分布列中部分数据丢失(以“x”,“y”代替),其表如下:
X
1
2
3
4
5
6
P
0.20
0.10
0.x5
0.10
0.1y
0.20
则丢失的两个数据x=________,y=________.
解析:由分布列的性质得:0.2+0.1+0.x5+0.1+0.1y+0.2=1,
可得0.x5+0.1y=0.4,∴0.x+0.05+0.1+0.0y=0.4,
∴0.xy=0.25,∴x=2,y=5.
答案:2 5
13.甲乙两人各射击一次,如果两人击中目标的概率都为0.6,则两人都击中目标的概率为________,目标被击中的概率为________.21cnjy.com
解析:由题意,得两人都击中目标的概率P1=0.6×0.6=0.36;目标被击中的概率P2=0.36+0.6×0.4×2=0.36+0.48=0.84.2-1-c-n-j-y
答案:0.36 0.84
14.某处有供水龙头5个,调查表示每个水龙头被打开的可能性均为, 3个水龙头同时被打开的概率为________.
解析:对5个水龙头的处理可视为做5次独立试验,每次试验有2种可能结果:打开或不打开,相应的概率为0.1或1-0.1=0.9,根据题意得3个水龙头同时被打开的概率为C×0.13×0.92=0.008 1.
答案:0.008 1
15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________________(写出所有正确结论的序号).
①P(B)=;②P(B|A1)=;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.
解析:从甲罐中取出一球放入乙罐,则A1,A2,A3中任意两个事件不可能同时发生,即A1,A2,A3两两互斥,故④正确,易知P(A1)=,P(A2)=,P(A3)=,则P(B|A1)=,P(B|A2)=,P(B|A3)=,
故②对③错;∴P(B)=P(A1B)+P(A2B)+P(A3B)
=P(A1)·P(B|A1)+P(A2)P(B|A2)+P(A3)·P(B|A3)=×+×+×=,故①⑤错误.综上知,正确结论的序号为②④.
答案:②④
三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的2道题都是甲类题的概率;
(2)所取的2道题不是同一类题的概率.
解:法一:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.
(1)用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)==.
(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=.
法二:(1)所取的2道题都是甲类题的事件数有C=6.
任取2道题的事件总数有C=15.
故所取的2道题都是甲类题的概率为=.
(2)所取的2道题不是同一类题的事件数有CC=8.
任取2道题的事件总数有C=15.
故所取的2道题不是同一类题的概率为.
17.(本小题满分15分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
解:(1)由题意知必须从1号通道走出迷宫,ξ的所有可能取值为:1,3,4,6.
P(ξ=1)=,P(ξ=3)=×=,P(ξ=4)=×=,P(ξ=6)=A×××1=,
所以ξ的分布列为:
ξ
1
3
4
6
P
(2)E(ξ)=1×+3×+4×+6×=(小时).
18.(本小题满分15分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
解:(1)ξ的所有可能取值为0,1,2,依题意得P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.21*cnjy*com
∴ξ的分布列为
ξ
0
1
2
P
(2)设“甲、乙都不被选中”为事件C,
则P(C)===.
∴所求概率为P()=1-P(C)=1-=.
(3)P(B)===;P(B|A)===.
19.(本小题满分15分)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有来该市的3名工人相互独立地从60个项目中任选一个项目参与建设.【21教育】
(1)求这3人选择的项目所属类别互异的概率;
(2)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X,求X的分布列和数学期望.
解:记第i名工人选择的项目属于基础设施类、民生类、产业建设类分别为事件Ai,Bi,Ci(i=1,2,3).21教育网
由题意知,P(Ai)==,P(Bi)==,
P(Ci)==.
(1)3人选择的项目所属类别互异的概率
P=AP(A1B2C3)=6×××=.
(2)任一名工人选择的项目属于基础设施类或产业建设类工程的概率P=+=.
由X~B,
∴P(X=k)=Ck3-k(k=0,1,2,3),
∴X的分布列为
X
0
1
2
3
P
其数学期望为E(X)=3×=2.
20.(本小题满分15分)(山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有
一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:21世纪教育网
(1)“星队”至少猜对3个成语的概率;
(2)“星队”两轮得分之和X的分布列和数学期望E(X).
解:(1)记事件A:“甲第一轮猜对”,
记事件B:“乙第一轮猜对”,
记事件C:“甲第二轮猜对”,
记事件D:“乙第二轮猜对”,
记事件E:“‘星队’至少猜对3个成语”.
由题意,E=ABCD+BCD+ACD+ABD+ABC,由事件的独立性与互斥性,
得P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()P(C)P(D)+P(A)·P(B)P()P(D)+P(A)P(B)P(C)P()=×××+2×=,
所以“星队”至少猜对3个成语的概率为.
(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得
P(X=0)=×××=,
P(X=1)=2×==,
P(X=2)=×××+×××+×××+×××=,
P(X=3)=×××+×××==,
P(X=4)=2×==,
P(X=6)=×××==.
可得随机变量X的分布列为
X
0
1
2
3
4
6
P
所以数学期望E(X)=0×+1×+2×+3×+4×+6×=.