人教新版八下20章数据的分析中考专题训练
一.选择题(共10小题)(每小题3分,共30分)
1.一组数据7,8,10,12,13的平均数是( )
A.7 B.9 C.10 D.12
2.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是( )
A.5.2 B.4.6 C.4 D.3.6
3.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )www.21-cn-jy.com
A.80分 B.82分 C.84分 D.86分
4.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )
A.2 B.2.8 C.3 D.3.3
5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )
A.14.15 B.14.16 C.14.17 D.14.20
6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的这组数据的平均数与实际平均数的差是( )
A.3.5 B.3 C.0.5 D.﹣3
7.某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:
金额/元
5
10
20
50
100
人数
4
16
15
9
6
则他们捐款金额的中位数和平均数分别是( )
A.10,20.6 B.20,20.6 C.10,30.6 D.20,30.6
8.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( )21cnjy.com
A.众数 B.方差 C.平均数 D.中位数
9.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩/m
1.50
1.60
1.65
1.70
1.75
1.80
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为( )
A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70
10.一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是( )21·cn·jy·com
A.3.6 B.3.8 C.3.6或3.8 D.4.2
二.填空题(共10小题)(每小题3分,共30分)
11.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是 .21·世纪*教育网
12.一组数据2,3,6,8,11的平均数是 .
13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
时间(小时)
5
6
7
8
人数
10
15
20
5
则这50名学生这一周在校的平均体育锻炼时间是 小时.
14.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况下表所示:
评分(分)
80
85
90
95
评委人数
1
2
5
2
则这10位评委评分的平均数是 分.
15.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 岁.
16.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:
年龄(岁)
11
12
13
14
15
人数
5
5
16
15
12
那么“科技创新社团”成员年龄的中位数是 岁.
17.数据1,2,3,5,5的众数是 ,平均数是 .
18.一组数据10,13,9,16,13,10,13的众数与平均数的和是 .
19.下表是我市某一天在不同时段测得的气温情况
0:00
4:00
8:00
12:00
16:00
20:00
25℃
27℃
29℃
32℃
34℃
30℃
则这一天气温的极差是 ℃.
若一组数据1,7,8,a,4的平均数是5、中位数是m、极差是n,则m+n= .
三.解答题(共8小题)(每小题5分,共40分)
21.2010年5月1日至20日的20天里,每天参观上海世博会的人数统计如下:(单位:万人次)
20,22,13,15,11,11,14,20,14,16
18,18,22,24,34,24,24,26,29,30
(1)写出以上20个数据的众数、中位数、平均数;
(2)若按照前20天参观人数的平均数计算,估计上海世博会期间(2010年5月1日至2010年10月31日)参观的总人数约是多少万人次?
(3)要达到组委会预计的参观上海世博会的总人数约为7000万人次,2010年5月21日至2010年10月31日期间,平均每天参观人数约为多少万人次?(结果精确到0.01万人次)21世纪教育网
22.甲、乙两名运动员在6次百米跑训练中的成绩如下表:(单位:秒)
甲
10.8
10.9
11.0
10.7
11.2
10.8
乙
10.9
10.9
10.8
10.8
10.5
10.9
请你比较这两组数据的众数、平均数、中位数,并利用这些数据对甲、乙两名运动员进行评价?
23.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.
应聘者
面试
笔试
甲
87
90
乙
91
82
若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
24.某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:21教育网
测试项目
测试成绩/分
甲
乙
丙
笔试
75
80
90
面试
93
70
68
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.【21·世纪·教育·网】
(1)分别计算三人民主评议的得分;
(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?www-2-1-cnjy-com
25.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
数与代数
空间与图形
统计与概率
综合与实践
学生甲
90
93
89
90
学生乙
94
92
94
86
(1)分别计算甲、乙成绩的中位数;
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?2·1·c·n·j·y
26.2010年4月14日,青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表:
捐款金额(元)
5
10
15
20
50
捐款人数(人)
7
18
12
3
由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题:
(1)九年级二班共有多少人?
(2)学生捐款金额的众数和中位数分别为多少元?
(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?2-1-c-n-j-y
27.某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是 ;
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
28.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):21*cnjy*com
(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
人教新版八下20章数据的分析中考专题训练答案
一.选择题(共10小题)
1.C.2.D.3.D.4.C.5.B.6.D.7.D.8.D.9.C.10.C.
二.填空题(共10小题)
11.5. 12.6. 13.6.4. 14.89. 15.15.
16.14. 17.5;. 18.25. 19.9. 20.12.
三.解答题(共8小题)
21.解:(1)这组数据的众数是24万人次,中位数是20万人次,平均数是20.25万人次.(3分)
(2)世博会期间共有184天,
由184×20.25=3726,
按照前20天的平均数计算,世博会期间参观的总人数约是3726万人次(6分)
(3)2010年5月21日至2010年10月31日期间共有164天,
由.
2010年5月21日至2010年10月31日期间,平均每天参观上海世博会的人数约为40.21万人次(8分)【21cnj*y.co*m】
22.解:甲:数据10.8出现2次,次数最多,所以众数是10.8;
平均数=(10.8+10.9+11.0+10.7+11.2+10.8)÷6=10.9;
中位数=(10.8+10.9)÷2=10.85;
乙:数据10.9出现3次,次数最多,所以众数为10.9;
平均数=(10.9+10.9+10.8+10.8+10.5+10.9)÷6=10.8;
中位数=(10.8+10.9)÷2=10.85;
所以从众数上看,乙的整体成绩大于甲的整体成绩;
从平均数上看,乙的平均成绩优于甲的平均成绩;
从中位数看,甲、乙的成绩一样好.
23.解:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),
乙的平均成绩为:(91×6+82×4)÷10=87.4(分),
因为甲的平均分数较高,
所以甲将被录取.
24.解:(1)甲民主评议的得分是:
200×25%=50(分);
乙民主评议的得分是:
200×40%=80(分);
丙民主评议的得分是:
200×35%=70(分).
(2)甲的成绩是:
(75×4+93×3+50×3)÷(4+3+3)
=729÷10
=72.9(分)
乙的成绩是:
(80×4+70×3+80×3)÷(4+3+3)
=770÷10
=77(分)
丙的成绩是:
(90×4+68×3+70×3)÷(4+3+3)
=774÷10
=77.4(分)
∵77.4>77>72.9,
∴丙的得分最高.
25.解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;
乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.
答:甲成绩的中位数是90,乙成绩的中位数是93;
(2)3+3+2+2=10
甲90×+93×+89×+90×
=27+27.9+17.8+18
=90.7(分)
乙94×+92×+94×+86×
=28.2+27.6+18.8+17.2
=91.8(分)
答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.
26.解:(1)∵18÷36%=50,
∴九年级二班共有50人;
(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,
∴学生捐款的众数为10元,
又∵第25个数为10,第26个数为15,
∴中位数为=12.5元;
(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为.
27.解:(1)由题意可得,
调查的学生有:30÷25%=120(人),
选B的学生有:120﹣18﹣30﹣6=66(人),
B所占的百分比是:66÷120×100%=55%,
D所占的百分比是:6÷120×100%=5%,
故补全的条形统计图与扇形统计图如右图所示,
(2)由(1)中补全的条形统计图可知,
所抽取学生对数学学习喜欢程度的众数是:比较喜欢,
故答案为:比较喜欢;
(3)由(1)中补全的扇形统计图可得,
该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),
即该年级学生中对数学学习“不太喜欢”的有240人.
28.解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,
∴其所占的百分比为=,
∵课外阅读时间为2小时的有15人,
∴m=15÷=60;
②依题意得:×360°=30°;
③第三小组的频数为:60﹣10﹣15﹣10﹣5=20,
补全条形统计图为:
(2)∵课外阅读时间为3小时的20人,最多,
∴众数为 3小时;
∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,
∴中位数为3小时;
平均数为:=2.75小时.