课件22张PPT。课件19张PPT。2.1.1 综合法和分析法
预习课本P85~89,思考并完成下列问题
(1)综合法的定义是什么?有什么特点?
(2)综合法的推证过程是什么?
(3)分析法的定义是什么?有什么特点?
(4)分析法与综合法有什么区别和联系?
1.综合法
定义
推证过程
特点
利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法
→→→…→(P表示已知条件,已有的定义、公理、定理等,Q表示所要证明的结论).
顺推证法或由因导果法
2.分析法
定义
框图表示
特点
从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法
→
→→…→
逆推
证法
或执
果索
因法
3.综合法、分析法的区别
综合法
分析法
推理方向
顺推,由因导果
倒溯,执果索因
解题思路
探路较难,易生枝节
容易探路,利于思考
表述形式
形式简洁,条理清晰
叙述繁琐,易出错
思考的侧重点
侧重于已知条件提供的信息
侧重于结论提供的信息
[点睛] 一般来说,分析法解题方向明确,利于寻求解题思路;而综合法解题条理清晰,宜于表述.因此在解决问题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.21教育网
1.判断(正确的打“√”,错误的打“×”)
(1)综合法是执果索因的逆推证法.( )
(2)分析法就是从结论推向已知.( )
(3)所有证明的题目均可使用分析法证明.( )
答案:(1)× (2)× (3)×
2.若a>b>0,则下列不等式中不正确的是( )
A.a2>ab B.ab>b2
C.> D.a2>b2
答案:C
3.欲证-<-成立,只需证( )
A.(-)2<(-)2
B.(-)2<(-)2
C.(+)2<(+)2
D.(--)2<(-)2
答案:C
4.如果a>b,则实数a,b应满足的条件是________.
答案:a>b>0
综合法的应用
[典例] 在△ABC中,三边a,b,c成等比数列.求证:acos2 +ccos2 ≥b.
[证明] ∵a,b,c成等比数列,∴b2=ac.
∵左边=+
=(a+c)+(acos C+ccos A)
=(a+c)+
=(a+c)+b≥+=b+=b=右边,
∴acos2+ccos2 ≥b.
当且仅当a=c时等号成立.
综合法的解题步骤
[活学活用]
1.已知a,b,c,d∈R,求证:(ac+bd)2≤(a2+b2)(c2+d2).
证明:∵左边=a2c2+2abcd+b2d2
≤a2c2+(a2d2+b2c2)+b2d2
=(a2+b2)(c2+d2)=右边,
∴(ac+bd)2≤(a2+b2)(c2+d2).
2.设数列{an}满足a1=0,-=1.
(1)求{an}的通项公式;
(2)设bn=,Sn=b1+b2+…+bn,证明:Sn<1.
解:(1)∵-=1,
∴是公差为1的等差数列.
又∵=1,∴=n,an=1-.
(2)证明:由(1)得
bn===-,
∴Sn=b1+b2+…+bn=1-+-+…+-=1-<1.
∴Sn<1.
分析法的应用
[典例] 设a,b为实数,求证: ≥(a+b).
[证明] 当a+b≤0时,∵ ≥0,
∴≥(a+b)成立.
当a+b>0时,
用分析法证明如下:要证 ≥(a+b),
只需证()2≥2.
即证a2+b2≥(a2+b2+2ab),即证a2+b2≥2ab.
∵a2+b2≥2ab对一切实数恒成立,
∴ ≥(a+b)成立.综上所述,不等式得证.
分析法证明不等式的依据、方法与技巧
(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;
(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;21世纪教育网
(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;21·cn·jy·com
(4)应用技巧:用分析法证明
数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.
[活学活用]
已知a,b,c都为正实数,求证: ≥.
证明:要证 ≥,
只需证≥2,
只需证3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac,
只需证2(a2+b2+c2)≥2ab+2bc+2ac,
只需证(a-b)2+(b-c)2+(c-a)2≥0,而这是显然成立的,所以 ≥成立.
分析法与综合法的综合应用
[典例] 已知a,b,c是不全相等的正数,且0<x<1.
求证:logx+logx+logx<logxa+logxb+logxc.
[证明] 要证明logx+logx+logx
<logxa+logxb+logxc,
只需要证明logx<logx(abc),
由已知0<x<1,只需证明··>abc,
由公式≥>0,≥>0,
≥>0.又∵a,b,c是不全相等的正数,
∴··> =abc.
即··>abc成立.
∴logx+logx+logx<logxa+logxb+logxc成立.
分析综合法的应用
综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.
[活学活用]
已知△ABC的三个内角A,B,C成等差数列,a,b,c为三个内角对应的边长,求证:+=.
证明:要证+=,
即证+=3,即证+=1.
即证c(b+c)+a(a+b)=(a+b)(b+c),
即证c2+a2=ac+b2.
∵△ABC三个内角A,B,C成等差数列.
∴B=60°.
由余弦定理,有b2=c2+a2-2cacos 60°,
即b2=c2+a2-ac.
∴c2+a2=ac+b2成立,命题得证.
层级一 学业水平达标
1.若a>b>1,x=a+,y=b+,则x与y的大小关系是( )
A.x>y B.x<y
C.x≥y D.x≤y
解析:选A 因为函数y=x+在[1,+∞)上是增函数,又因为a>b>1,∴x>y.
2.已知a,b,x,y均为正实数,且>,x>y,则与的大小关系为( )
A.> B.≥
C.< D.≤
解析:选A ∵a,b均为正数,
∴由>得0<a<b,
又∵x>y>0,
∴xb>ay.
∴xy+xb>xy+ay.
即x(y+b)>y(x+a).
两边同除正数(y+b)(x+a),
得>,故选A.
3.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足什么条件( )
A.a2<b2+c2 B.a2=b2+c2
C.a2>b2+c2 D.a2≤b2+c2
解析:选C 由cos A=<0,得b2+c2<a2.
4.若a=,b=,c=,则( )
A.a<b<c B.c<b<a
C.c<a<b D.b<a<c
解析:选C 利用函数单调性.设f(x)=,则f′(x)=,∴0<x<e时,f′(x)>0,f(x)单调递增;x>e时,f′(x)<0,f(x)单调递减.又a=,∴b>a>c.
5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值( )www.21-cn-jy.com
A.恒为负值 B.恒等于零
C.恒为正值 D.无法确定正负
解析:选A 由f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
可知f(x)是R上的单调递减函数,
由x1+x2>0,可知x1>-x2,f(x1)6.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x取导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.2·1·c·n·j·y
解析:该证明过程符合综合法的特点.
答案:综合法
7.如果a+b>a+b,则正数a,b应满足的条件是________.
解析:∵a+b-(a+b)
=a(-)+b(-)=(-)(a-b)
=(-)2(+).
∴只要a≠b,就有a+b>a+b.
答案:a≠b
8.若不等式(-1)na<2+对任意正整数n恒成立,则实数a的取值范围是________.
解析:当n为偶数时,a<2-,而2-≥2-=,所以a<,当n为奇数时,a>-2-,而-2-<-2,所以a≥-2.综上可得,-2≤a<.【21·世纪·教育·网】
答案:
9.已知a>0,->1.
(1)求证:0<b<1;
(2)求证:>.
证明:(1)由a>0,->1可得>+1>1,
所以0<b<1.
(2)因为a>0,0<b<1,要证>,
只需证·>1,
即证1+a-b-ab>1,
即证a-b-ab>0,即>1,
又->1,这是已知条件,所以原不等式得证.
10.已知数列{an}的首项a1=5,Sn+1=2Sn+n+5,(n∈N*).
(1)证明数列{an+1}是等比数列.
(2)求an.
解:(1)证明:由条件得Sn=2Sn-1+(n-1)+5(n≥2)①
又Sn+1=2Sn+n+5,②
②-①得an+1=2an+1(n≥2),
所以===2.
又n=1时,S2=2S1+1+5,且a1=5,
所以a2=11,所以==2,
所以数列{an+1}是以2为公比的等比数列.
(2)因为a1+1=6,所以an+1=6×2n-1=3×2n,
所以an=3×2n-1.
层级二 应试能力达标
1.使不等式<成立的条件是( )
A.a>b B.a<b
C.a>b且ab<0 D.a>b且ab>0
解析:选D 要使<,须使-<0,即<0.
若a>b,则b-a<0,ab>0;若a<b,则b-a>0,ab<0.
2.对任意的锐角α,β,下列不等式中正确的是( )
A.sin(α+β)>sin α+sin β
B.sin(α+β)>cos α+cos β
C.cos(α+β)>sin α+sin β
D.cos(α+β)<cos α+cos β
解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).21cnjy.com
3.若两个正实数x,y满足+=1,且不等式x+<m2-3m有解,则实数m的取值范围是( )
A.(-1,4) B.(-∞,-1)∪(4,+∞)
C.(-4,1) D.(-∞,0)∪(3,+∞)
解析:选B ∵x>0,y>0,+=1,∴x+==2++≥2+2=4,等号在y=4x,即x=2,y=8时成立,∴x+的最小值为4,要使不等式m2-3m>x+有解,应有m2-3m>4,∴m<-1或m>4,故选B.21·世纪*教育网
4.下列不等式不成立的是( )
A.a2+b2+c2≥ab+bc+ca
B.+>(a>0,b>0)
C.-<-(a≥3)
D.+>2
解析:选D 对A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab+bc+ca;对B,∵(+)2=a+b+2,()2=a+b,∴+>;对C,要证 -<-(a≥3)成立,只需证明+<+,两边平方得2a-3+2<2a-3+2,即<,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(+)2-(2)2=12+4-24=4(-3)<0,∴+<2,故D错误.www-2-1-cnjy-com
5.已知函数f(x)=2x,a,b为正实数,A=f,B=f(),C=f,则A,B,C的大小关系是________.2-1-c-n-j-y
解析:∵≥(a,b为正实数),≤,且f(x)=2x是增函数,∴f≤f()≤f,即C≤B≤A.21*cnjy*com
答案:C≤B≤A
6.如图所示,四棱柱ABCD- A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).【21cnj*y.co*m】
解析:要证BD⊥A1C,只需证BD⊥平面AA1C.
因为AA1⊥BD,只要再添加条件AC⊥BD,
即可证明BD⊥平面AA1C,从而有BD⊥A1C.
答案:AC⊥BD(答案不唯一)
7.在锐角三角形ABC中,求证:sin A+sin B+sin C>cos A+cos B+cos C.
证明:在锐角三角形ABC中,∵A+B>,∴A>-B.
∴0<-B<A<,
又∵在内正弦函数y=sin x是单调递增函数,
∴sin A>sin=cos B,
即sin A>cos B.①
同理sin B>cos C,②
sin C>cos A.③
由①+②+③,得:
sin A+sin B+sin C>cos A+cos B+cos C.
8.设a,b,c,d均为正数,且a+b=c+d.证明:
(1)若ab>cd,则+>+;
(2)+>+是|a-b|<|c-d|的充要条件.
证明:(1)因为(+)2=a+b+2,(+)2=c+d+2,
由题知a+b=c+d,ab>cd,得(+)2>(+)2,
因此+>+.
(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,
即(a+b)2-4ab<(c+d)2-4cd.
因为a+b=c+d,所以ab>cd,
所以由(1)得+>+.
②若+>+,则2>2,
即a+b+2>c+d+2.
因为a+b=c+d,所以ab>cd,
于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2,
因此|a-b|<|c-d|.
综上,+>+是|a-b|<|c-d|的充要条件.
2.1.2 反证法
预习课本P89~91,思考并完成下列问题
(1)反证法的定义是什么?有什么特点?
(2)利用反证法证题的关键是什么?步骤是什么?
1.反证法的定义及证题的关键
[点睛] 对反证法概念的理解
(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.21·世纪*教育网
(2)反证法属“间接解题方法”.
2.“反证法”和“证逆否命题”的区别与联系
(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.www.21-cn-jy.com
(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.2-1-c-n-j-y
1.判断(正确的打“√”,错误的打“×”)
(1)反证法属于间接证明问题的方法.( )
(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.( )
(3)反证法的实质是否定结论导出矛盾.( )
答案:(1)√ (2)× (3)√
2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用( )
①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论
A.①② B.①②④
C.①②③ D.②③
答案:C
3.如果两个实数之和为正数,则这两个数( )
A.一个是正数,一个是负数
B.两个都是正数
C.至少有一个正数
D.两个都是负数
答案:C
4.用反证法证明“如果a>b,那么> ”,假设的内容应是________.
答案:≤
用反证法证明否定性命题
[典例] 已知三个正数a,b,c成等比数列,但不成等差数列.求证:,,不成等差数列.
[证明] 假设,,成等差数列,则+=2,
即a+c+2=4b.
∵a,b,c成等比数列,∴b2=ac,即b=,
∴a+c+2=4,∴(-)2=0,即=.
从而a=b=c,与a,b,c不成等差数列矛盾,
故,,不成等差数列.
1.用反证法证明否定性命题的适用类型
结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.21*cnjy*com
2.用反证法证明数学命题的步骤
[活学活用]
已知f(x)=ax+(a>1),证明方程f(x)=0没有负数根.
证明:假设x0是f(x)=0的负数根,
则x0<0且x0≠-1,且ax0=-,
由0<ax0<1?0<-<1,
解得<x0<2,这与x0<0矛盾,所以假设不成立,
故方程f(x)=0没有负数根.
用反证法证明“至多”“至少”问题
[典例] 已知a≥-1,求证三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数解.【21教育名师】
[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:
?
这与已知a≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.
[一题多变]
1.[变条件,变设问]将本题改为:已知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,如何求实数a的取值范围?
解:若方程没有一个有实根,则
解得
故三个方程至少有一个方程有实根,实数a的取值范围是.
2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围.
解:假设三个方程都有实数根,则
即
解得
即a∈?.
所以实数a的取值范围为实数R.
3.[变条件,变设问]已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
证明:假设a≥0,b≥0,c≥0,d≥0.
∵a+b=c+d=1,
∴(a+b)(c+d)=1,
∴ac+bd+bc+ad=1.
而ac+bd+bc+ad>ac+bd>1,与上式矛盾,
∴假设不成立,
∴a,b,c,d中至少有一个是负数.
用反证法证明“至多”“至少”等问题的两个关注点
(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.21*教*育*名*师
(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.
用反证法证明唯一性命题
[典例] 求证:两条相交直线有且只有一个交点.
[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.
若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.
若直线a,b不只有一个交点,则至少有两个交点A和B,
这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.
综上所述,两条相交直线有且只有一个交点.
巧用反证法证明唯一性命题
(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.
(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.
(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.
[活学活用]
求证:过直线外一点只有一条直线与它平行.
证明:已知:直线b∥a,A?a,A∈b,
求证:直线b唯一.
假设过点A还有一条直线b′∥a.
根据平行公理,∵b∥a,∴b∥b′,
与b∩b′=A矛盾,∴假设不成立,原命题成立.
层级一 学业水平达标
1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:【21教育】
①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.
则正确的序号顺序为( )
A.①②③ B.③①②
C.①③② D.②③①
解析:选B 根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.
2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )21cnjy.com
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不都能被5整除
D.a不能被5整除
解析:选B “至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.
3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( )
A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角
解析:选B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.
4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.21·cn·jy·com
5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a>b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.www-2-1-cnjy-com
6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.
答案:自然数a,b,c中至少有两个偶数或都是奇数
7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.【21cnj*y.co*m】
解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.
答案:a≠1或b≠1
8.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.
解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB?α,CD?α,这与AB,CD异面相矛盾,故AC与BD异面.21-cnjy*com
答案:异面
9.求证:1,,2不能为同一等差数列的三项.
证明:假设1,,2是某一等差数列的三项,设这一等差数列的公差为d,
则1=-md,2=+nd,其中m,n为两个正整数,
由上面两式消去d,得n+2m=(n+m).
因为n+2m为有理数,而(n+m)为无理数,
所以n+2m≠(n+m),矛盾,因此假设不成立,
即1,,2不能为同一等差数列的三项.
10.已知函数f(x)在R上是增函数,a,b∈R.
(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.
解:(1)证明:当a+b≥0时,a≥-b且b≥-a.
∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a),
∴f(a)+f(b)≥f(-a)+f(-b).
(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.21教育网
用反证法证明如下:
假设a+b<0,则a<-b,∴f(a)<f(-b).
同理可得f(b)<f(-a).
∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,
∴a+b≥0成立,即(1)中命题的逆命题成立.
层级二 应试能力达标
1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x的方程ax=b(a≠0)( )
A.无解 B.有两解
C.至少有两解 D.无解或至少有两解
解析:选D “唯一”的否定是“至少两解或无解”.
2.下列四个命题中错误的是( )
A.在△ABC中,若∠A=90°,则∠B一定是锐角
B.,,不可能成等差数列
C.在△ABC中,若a>b>c,则∠C>60°
D.若n为整数且n2为偶数,则n是偶数
解析:选C 显然A、B、D命题均真,C项中若a>b>c,则∠A>∠B>∠C,若∠C>60°,则∠A>60°,∠B>60°,∴∠A+∠B+∠C>180°与∠A+∠B+∠C=180°矛盾,故选C.
3.设a,b,c∈(-∞,0),则a+,b+,c+( )
A.都不大于-2
B.都不小于-2
C.至少有一个不大于-2
D.至少有一个不小于-2
解析:选C 假设都大于-2,则a++b++c+>-6,但++=++≤-2+(-2)+(-2)=-6,矛盾.2·1·c·n·j·y
4.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )
A.钝角三角形 B.直角三角形
C.锐角三角形 D.不能确定
解析:选B 分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,若∠ADB为钝角,则∠ADC为锐角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,只有当∠ADB=∠ADC=∠BAC=时,才符合题意.
5.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是________________.
解析:至少有一个实根的否定是没有实根,
故要做的假设是“方程x3+ax+b=0没有实根”.
答案:方程x3+ax+b=0没有实根
6.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有
奇数=________=________=0.
但0≠奇数,这一矛盾说明p为偶数.
解析:据题目要求及解题步骤,
∵a1-1,a2-2,…,a7-7均为奇数,
∴(a1-1)+(a2-2)+…+(a7-7)也为奇数.
即(a1+a2+…+a7)-(1+2+…+7)为奇数.
又∵a1,a2,…,a7是1,2,…,7的一个排列,
∴a1+a2+…+a7=1+2+…+7,故上式为0,
所以奇数=(a1-1)+(a2-2)+…+(a7-7)
=(a1+a2+…+a7)-(1+2+…+7)=0.
答案:(a1-1)+(a2-2)+…+(a7-7)
(a1+a2+…+a7)-(1+2+…+7)
7.设x,y都是正数,且x+y>2,试用反证法证明:<2和<2中至少有一个成立.
证明:假设<2和<2都不成立,
即≥2,≥2.
又∵x,y都是正数,∴1+x≥2y,1+y≥2x.
两式相加得到2+(x+y)≥2(x+y),
∴x+y≤2.与已知x+y>2矛盾,所以假设不成立,
所以<2和<2中至少有一个成立.
8.已知数列{an}满足:a1=,=,anan+1<0(n≥1);数列{bn}满足:bn=a-a(n≥1).21世纪教育网
(1)求数列{an},{bn}的通项公式;
(2)证明:数列{bn}中的任意三项不可能成等差数列.
解:(1)由题意可知,1-a=(1-a).
令cn=1-a,则cn+1=cn.
又c1=1-a=,则数列{cn}是首项为c1=,公比为的等比数列,即cn=·n-1,
故1-a=·n-1?a=1-·n-1.
又a1=>0,anan+1<0,
故an=(-1)n-1 .
bn=a-a=-1-·n-1=·n-1.
(2)用反证法证明.
假设数列{bn}存在三项br,bs,bt(r<s<t)按某种顺序成等差数列,由于数列{bn}是首项为,公比为的等比数列,于是有br>bs>bt,则只可能有2bs=br+bt成立.
∴2··s-1=·r-1+·t-1,
两边同乘以3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.
由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{bn}中任意三项不可能成等差数列.【21·世纪·教育·网】
2.2
预习课本P92~95,思考并完成下列问题
(1)数学归纳法的概念是什么?适用范围是什么?
(2)数学归纳法的证题步骤是什么?
1.数学归纳法的定义
一般地,证明一个与正整数n有关的命题,可按下列步骤进行
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.
2.数学归纳法的框图表示
[点睛] 数学归纳法证题的三个关键点
(1)验证是基础
数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点.21·cn·jy·com
(2)递推是关键
数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
(3)利用假设是核心
在第二步证明n=k+1成立时,一定要利用归纳假设,即必须把归纳假设“n=k时命题成立”作为条件来导出“n=k+1”,在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法.
1.判断(正确的打“√”,错误的打“×”)
(1)与正整数n有关的数学命题的证明只能用数学归纳法.( )
(2)数学归纳法的第一步n0的初始值一定为1.( )
(3)数学归纳法的两个步骤缺一不可.( )
答案:(1)× (2)× (3)√
2.如果命题p(n)对所有正偶数n都成立,则用数学归纳法证明时须先证n=________成立.
答案:2
3.已知f(n)=1+++…+(n∈N*),计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,由此推测,当n>2时,有______________.
答案:f(2n)>
用数学归纳法证明等式
[典例] 用数学归纳法证明:
++…+=(n∈N*).
[证明] (1)当n=1时,=成立.
(2)假设当n=k(n∈N*)时等式成立,即有
++…+=,
则当n=k+1时,++…++
=+
=,
即当n=k+1时等式也成立.
由(1)(2)可得对于任意的n∈N*等式都成立.
用数学归纳法证明恒等式应注意的三点
用数学归纳法证明恒等式时,一是弄清n取第一个值n0时等式两端项的情况;二是弄清从n=k到n=k+1等式两端增加了哪些项,减少了哪些项;三是证明n=k+1时结论也成立,要设法将待证式与归纳假设建立联系,并朝n=k+1证明目标的表达式变形.
[活学活用]
求证:1-+-+…+-=++…+(n∈N*).
证明:(1)当n=1时,左边=1-=,
右边==,左边=右边.
(2)假设n=k(k∈N*)时等式成立,即1-+-+…+-=++…+,
则当n=k+1时,
+
=+
=++…++.
即当n=k+1时,等式也成立.
综合(1),(2)可知,对一切n∈N*,等式成立.
用数学归纳法证明不等式
[典例] 已知n∈N*,n>2,
求证:1+++…+ >.
[证明] (1)当n=3时,左边=1++,右边==2,左边>右边,不等式成立.
(2)假设当n=k(k∈N*,k≥3)时,不等式成立,
即1+++…+>.
当n=k+1时,
1+++…++ >+
== .
因为 >==,
所以1+++…++ >.
所以当n=k+1时,不等式也成立.
由(1),(2)知对一切n∈N*,n>2,不等式恒成立.
[一题多变]
1.[变条件,变设问]将本题中所要证明的不等式改为:
+++…+>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,+++>,不等式成立.
(2)假设当n=k(k≥2,k∈N*)时,命题成立.
即++…+>.
则当n=k+1时,++…++++=++…++++->+++->+3×-=.2-1-c-n-j-y
所以当n=k+1时,不等式也成立.
由(1),(2)可知,原不等式对一切n≥2,n∈N*都成立.
2.[变条件,变设问]将本题中所要证明的不等式改为:
…>(n≥2,n∈N*),如何证明?
证明:(1)当n=2时,左边=1+=,右边=.
左边>右边,所以原不等式成立.
(2)假设当n=k(k≥2,k∈N*)时不等式成立,
即…>.
则当n=k+1时,
左边=…
>·
==>
==.
所以,当n=k+1时不等式也成立.
由(1)和(2)可知,对一切n≥2,n∈N*不等式都成立.
用数学归纳法证明不等式的四个关键
(1)验证第一个n的值时,要注意n0不一定为1,若n>k(k为正整数),则n0=k+1.
(2)证明不等式的第二步中,从n=k到n=k+1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设.【21教育】
(3)用数学归纳法证明与n有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n取前n个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n值开始都成立的结论,常用数学归纳法证明.
(4)用数学归纳法证明不等式的关键是由n=k时成立得n=k+1时成立,主要方法有比较法、分析法、综合法、放缩法等.
归纳—猜想—证明
[典例] 考察下列各式
2=2×1
3×4=4×1×3
4×5×6=8×1×3×5
5×6×7×8=16×1×3×5×7
你能做出什么一般性的猜想?能证明你的猜想吗?
[解] 由题意得,2=2×1,3×4=4×1×3,4×5×6=8×1×3×5,5×6×7×8=16×1×3×5×7,…
猜想:(n+1)(n+2)(n+3)…2n=2n·1·3·5·…·(2n-1),
下面利用数学归纳法进行证明:
证明:(1)当n=1时,显然成立;
(2)假设当n=k时等式成立,即(k+1)(k+2)(k+3)…2k=2k·1·3·5·…·(2k-1),
那么当n=k+1时,
(k+1+1)(k+1+2)(k+1+3)·…·2(k+1)
=(k+1)(k+2)·…·2k·(2k+1)·2
=2k·1·3·5·…·(2k-1)(2k+1)·2
=2k+1·1·3·5·…·(2k+1)
=2k+1·1·3·5·…·[2(k+1)-1]
所以当n=k+1时等式成立.
根据(1)(2)可知对任意正整数等式均成立.
(1)“归纳—猜想—证明”的一般环节
(2)“归纳—猜想—证明”的主要题型
①已知数列的递推公式,求通项或前n项和.
②由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.
③给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n都成立的一般性命题.
[活学活用]
数列{an}中,a1=1,a2=,且an+1=(n≥2),求a3,a4,猜想an的表达式,并加以证明.
解:∵a2=,且an+1=(n≥2),
∴a3===,a4===.
猜想:an=(n∈N*).
下面用数学归纳法证明猜想正确.
(1)当n=1,2易知猜想正确.
(2)假设当n=k(k≥2,k∈N*)时猜想正确,
即ak=.
当n=k+1时,
ak+1=
=
=
=
=
=
=
∴n=k+1时猜想也正确.
由(1)(2)可知,猜想对任意n∈N*都正确.
层级一 学业水平达标
1.设Sk=+++…+,则Sk+1为( )
A.Sk+ B.Sk++
C.Sk+- D.Sk+-
解析:选C 因式子右边各分数的分母是连续正整数,则由Sk=++…+,①
得Sk+1=++…+++.②
由②-①,得Sk+1-Sk=+-
=-.故Sk+1=Sk+-.
2.利用数学归纳法证明不等式1+++…+<n(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了( )www.21-cn-jy.com
A.1项 B.k项
C.2k-1项 D.2k项
解析:选D 当n=k时,不等式左边的最后一项为,而当n=k+1时,最后一项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.
3.一个与正整数n有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则( )
A.该命题对于n>2的自然数n都成立
B.该命题对于所有的正偶数都成立
C.该命题何时成立与k取值无关
D.以上答案都不对
解析:选B 由n=k时命题成立可推出n=k+2时命题也成立,又n=2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B.
4.对于不等式 <n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时, <1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即 <k+1,则当n=k+1时,=<==(k+1)+1,
∴n=k+1时,不等式成立,则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D.
5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为( )
A.2 B.4
C.8 D.16
解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8.
6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.
解析:∵210=1 024>103,29=512<93,∴n0最小应为10.
答案:10
7.用数学归纳法证明++…+>-,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是____________________________________.
解析:观察不等式中分母的变化便知.
答案:++…++>-
8.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.
解析:当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.
答案:5
9.已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求a2,a3,a4,a5;
(2)归纳猜想出通项公式an,并且用数学归纳法证明.
解:(1)a2=3,a3=7,a4=15,a5=31.
(2)归纳猜想出通项公式an=2n-1,
①当n=1时,a1=1=21-1,成立
②假设n=k时成立,即ak=2k-1,
则当n=k+1时,由an+1=2an+1(n∈N*),
得:ak+1=2ak+1=2(2k-1)+1=2k+1-2+1=2k+1-1,
所以n=k+1时也成立;
综合①②,对n∈N*等式都成立,从而得证.
10.用数学归纳法证明1+≤1+++…+≤+n(n∈N*).
证明:(1)当n=1时,≤1+≤,命题成立.
(2)假设当n=k(k∈N*)时命题成立,即1+≤1+++…+≤+k,
则当n=k+1时,
1+++…++++…+>1++2k·=1+.
又1+++…++++…+<+k+2k·=+(k+1),
即n=k+1时,命题成立.
由(1)和(2)可知,命题对所有n∈N*都成立.
层级二 应试能力达标
1.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为( )
A.f(n)+n+1 B.f(n)+n
C.f(n)+n-1 D.f(n)+n-2
解析:选C 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.21cnjy.com
2.设f(n)=1+++…+(n∈N*),那么f(n+1)-f(n)等于( )
A. B.+
C.+ D.++
解析:选D f(n+1)-f(n)=++.
3.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k+1)与f(k)的关系是( )21*cnjy*com
A.f(k+1)=f(k)+k+1
B.f(k+1)=f(k)+k-1
C.f(k+1)=f(k)+k
D.f(k+1)=f(k)+k+2
解析:选C 当n=k+1时,任取其中1条直线记为l,则除l外的其他k条直线的交点的个数为f(k),因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交(有k个交点);又因为任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的f(k)个交点也两两不相同,从而n=k+1时交点的个数是f(k)+k=f(k+1).
4.若命题A(n)(n∈N*)n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有( )
A.命题对所有正整数都成立
B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立
C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立
D.以上说法都不正确
解析:选C 由题意知n=n0时命题成立能推出n=n0+1时命题成立,由n=n0+1时命题成立,又推出n=n0+2时命题也成立…,所以对大于或等于n0的正整数命题都成立,而对小于n0的正整数命题是否成立不确定.
5.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1成立时,左边所得的项为____________.
解析:当n=1时,n+1=2,所以左边=1+a+a2.
答案:1+a+a2
6.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:
①当n=1时,左边=20=1,右边=21-1=1,等式成立.
②假设n=k(k≥1,且k∈N*)时,等式成立,即
1+2+22+…+2k-1=2k-1.
则当n=k+1时,1+2+22+…+2k-1+2k==2k+1-1,
所以当n=k+1时,等式也成立.
由①②知,对任意n∈N*,等式成立.
上述证明中的错误是________.
解析:由证明过程知,在证从n=k到n=k+1时,直接用的等比数列前n项和公式,没有用上归纳假设,因此证明是错误的.
答案:没有用归纳假设
7.平面内有n(n∈N*)个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2-n+2部分.
证明:(1)当n=1时,n2-n+2=2,即一个圆把平面分成两部分,故结论成立.
(2)假设当n=k(k≥1,k∈N*)时命题成立,即k个圆把平面分成k2-k+2部分.
则当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,这2k条弧中的每一条把它所在的平面部分都分成两部分,这样共增加2k个部分,故k+1个圆把平面分成k2-k+2+2k=(k+1)2-(k+1)+2部分,
即n=k+1时命题也成立.综上所述,对一切n∈N*,命题都成立.
8.已知某数列的第一项为1,并且对所有的自然数n≥2,数列的前n项之积为n2.
(1)写出这个数列的前5项;
(2)写出这个数列的通项公式并加以证明.
解:(1)已知a1=1,由题意,得a1·a2=22,∴a2=22.
∵a1·a2·a3=32,∴a3=.
同理,可得a4=,a5=.
因此这个数列的前5项分别为1,4,,,.
(2)观察这个数列的前5项,猜测数列的通项公式应为:
an=
下面用数学归纳法证明当n≥2时,an=.
①当n=2时,a2==22,结论成立.
②假设当n=k(k≥2,k∈N*)时,结论成立,
即ak=.
∵a1·a2·…·ak-1=(k-1)2,
a1·a2·…·ak-1·ak·ak+1=(k+1)2,
∴ak+1==·==.
这就是说当n=k+1时,结论也成立.
根据①②可知,当n≥2时,这个数列的通项公式是
an=.
∴这个数列的通项公式为an=
(时间: 120分钟 满分:150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)21世纪教育网
1.设a=-,b=-,c=-,则a,b,c的大小顺序是( )
A.a>b>c B.b>c>a
C.c>a>b D.a>c>b
解析:选A ∵a=-=,
b=-=,c=-=,
又∵+>+>+>0,
∴a>b>c.
2.若a,b,c为实数,且a<b<0,则下列命题正确的是( )
A.ac2<bc2 B.a2>ab>b2
C.< D.>
解析:选B a2-ab=a(a-b),
∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.①
又ab-b2=b(a-b)>0,∴ab>b2,②
由①②得a2>ab>b2.
3.若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是( )21·世纪*教育网
A.0 B.1
C.2 D.3
解析:选C 由于a,b,c不全相等,则a-b,b-c,c-a中至少有一个不为0,故①正确;②显然成立;令a=2,b=3,c=5,满足a≠c,b≠c,a≠b,故③错.
4.已知a+b+c>0,ab+bc+ac>0,abc>0,用反证法求证a>0,b>0,c>0时的反设为( )
A.a<0,b<0,c<0 B.a≤0,b>0,c>0
C.a,b,c不全是正数 D.abc<0
解析:选C a>0,b>0,c>0的否定是:a,b,c不全是正数.
5.求证:+>.
证明:因为+和都是正数,
所以为了证明+>,
只需证明(+)2>()2,展开得5+2>5,
即2>0,此式显然成立,所以不等式+>成立.
上述证明过程应用了( )
A.综合法
B.分析法
C.综合法、分析法配合使用
D.间接证法
解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.www-2-1-cnjy-com
6.设x,y,z>0,则三个数+,+,+( )
A.都大于2 B.至少有一个大于2
C.至少有一个不小于2 D.至少有一个不大于2
解析:选C 因为x>0,y>0,z>0,
所以++
=++≥6,
当且仅当x=y=z时等号成立,则三个数中至少有一个不小于2.
7.若数列{an}是等比数列,则数列{an+an+1}( )
A.一定是等比数列
B.一定是等差数列
C.可能是等比数列也可能是等差数列
D.一定不是等比数列
解析:选C 设等比数列{an}的公比为q,则an+an+1=an(1+q).∴当q≠-1时,{an+an+1}一定是等比数列;21教育网
当q=-1时,an+an+1=0,此时为等差数列.
8.用数学归纳法证明“1-+-+…+-=++…+”时,由n=k的假设证明n=k+1时,如果从等式左边证明右边,则必须证得右边为( )
A.+…++
B.+…+++
C.+…++
D.+…++
解析:选D 当n=k+1时,右边应为
++…+
=++…+++.故D正确.
二、填空题(本大题共7小题,多空题6分,单空题4分,共36分.请把正确答案填在题中横线上)
9.已知x,y∈R,且x+y<2,则x,y中至多有一个大于1,在用反证法证明时,假设应为________.【21cnj*y.co*m】
解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x,y都大于1”.
答案:x,y都大于1
10.若P=+,Q=+(a≥0),则P,Q的大小关系是________.
解析:假设P<Q,∵要证P<Q,只需证P2<Q2,
即证:2a+7+2<2a+7+2,
即证:a2+7a<a2+7a+12,
即证:0<12,
∵0<12成立,∴P<Q成立.
答案:P<Q
11.已知a,b是不相等的正数,x=,y=,则x,y的大小关系是________.
解析:x2-y2=-(a+b)
==.
∵a,b是不相等的正数,∴≠,
∴(-)2>0,∴<0.∴x2<y2.
又∵x>0,y>0,∴x<y.
答案:x<y
12.已知数列{an}的前n项和Sn,且a1=1,Sn=n2an(n∈N*),则S4=________;可归纳猜想出Sn的表达式为________.【21教育名师】
解析:由a1=1,得a1+a2=22a2,∴a2=,S2=;又1++a3=32a3,∴a3=,S3==;21*教*育*名*师
又1+++a4=16a4,得a4=,S4=.
由S1=,S2=,S3=,S4=可以猜想Sn=.
答案:
13.设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意的自然数均有xn+1=f(xn),则x2 016=________;x2017=________.21-cnjy*com
x
1
2
3
4
5
f(x)
4
1
3
5
2
解析:x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{xn}是周期为4的数列,所以x2 016=x4=5,x2017=x5=2.2·1·c·n·j·y
答案:5 2
14.已知a1=,an+1=,则a2,a3,a4的值分别为______________,由此猜想an=________.
解析:a2====,
同理,a3===,
a4==,
a5==,
猜想an=.
答案:,,
15.用数学归纳法证明:1+2+3+…+n2=,其初始值为______,当n=k+1时,其式子的左端应在n=k时的左端再加上________________.
解析:代入验证可知n的初始值为1.n=k时的左端为1+2+3+…+k2,n=k+1时的左端为1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2.故增加的式子为(k2+1)+(k2+2)+…+(k+1)2.
答案:1 (k2+1)+(k2+2)+…+(k+1)2
三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分14分)用综合法或分析法证明:
(1)如果a,b>0,则lg ≥;
(2)6+>2+2.
证明:(1)当a,b>0时,有≥,
∴lg≥lg,
∴lg≥lg ab=.
(2)要证 +>2+2,
只要证(+)2>(2+2)2,
即2>2,这是显然成立的,
所以,原不等式成立.
17.(本小题满分15分)已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.【21·世纪·教育·网】
证明:假设三式同时大于,
即(1-a)b>,(1-b)c>,(1-c)a>,
三式同向相乘,得(1-a)a(1-b)b(1-c)c>.①
又(1-a)a≤2=,当且仅当a=时取“=”号,
同理(1-b)b≤,(1-c)c≤.
所以(1-a)a(1-b)b(1-c)c≤,
与①式矛盾,即假设不成立,故结论正确.
18.(本小题满分15分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),
求证:数列{bn}中任意不同的三项都不可能成为等比数列.
解:(1)由已知得
∴d=2.
故an=2n-1+,Sn=n(n+).
(2)由(1)得bn==n+.
假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,
即(q+)2=(p+)(r+),
∴(q2-pr)+(2q-p-r)=0,
∵p,q,r∈N*,∴
∴2=pr,(p-r)2=0.
∴p=r,与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成等比数列.
19.(本小题满分15分)设f(n)=1+++…+(n∈N*).
求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
证明:当n=2时,左边=f(1)=1,
右边=2=1,左边=右边,等式成立.
假设n=k(k≥2,k∈N*)时,结论成立,即
f(1)+f(2)+…+f(k-1)=k[f(k)-1],
那么,当n=k+1时,
f(1)+f(2)+…+f(k-1)+f(k)
=k[f(k)-1]+f(k)
=(k+1)f(k)-k
=(k+1)-k
=(k+1)f(k+1)-(k+1)
=(k+1)[f(k+1)-1],
∴当n=k+1时结论仍然成立.
∴f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
20.(本小题满分15分)已知f(x)=,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)已知数列{xn}的项满足xn=(1-f(1))(1-f(2))…(1-f(n)),试求x1,x2,x3,x4;
(3)猜想{xn}的通项公式,并用数学归纳法证明.
解:(1)把f(1)=log162=,f(-2)=1,代入函数表达式得
即
解得(舍去a=-),
∴f(x)=(x≠-1).
(2)x1=1-f(1)=1-=,
x2=(1-f(2))=×=,
x3=(1-f(3))=×=,
x4=×=.
(3)由(2)知,x1=,x2==,x3=,x4==,…,由此可以猜想xn=.
证明:①当n=1时,∵x1=,而=,
∴猜想成立.
②假设当n=k(k∈N*)时,xn=成立,
即xk=,
则n=k+1时,
xk+1=(1-f(1))(1-f(2))…(1-f(k))·(1-f(k+1))
=xk·(1-f(k+1))=·
=·=·
=.
∴当n=k+1时,猜想也成立,根据①②可知,对一切n∈N*,猜想xn=都成立.
课件26张PPT。