(浙江专版)2018年高中数学新人教A版选修2-2第一章导数及其应用(课件+学案)(16份)

文档属性

名称 (浙江专版)2018年高中数学新人教A版选修2-2第一章导数及其应用(课件+学案)(16份)
格式 zip
文件大小 7.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2018-06-05 08:58:01

文档简介

1.1.1&1.1.2 变化率问题 导数的概念
预习课本P2~6,思考并完成下列问题
(1)平均变化率的定义是什么?平均变化率的几何意义是什么?
 

 
(2)瞬时变化率的定义是怎样的?如何求瞬时变化率?
 
 
 
(3)如何用定义求函数在某一点处的导数?
 
 
    
1.函数y=f(x)从x1到x2的平均变化率
(1)定义式:=.
(2)实质:函数值的改变量与自变量的改变量之比.
(3)意义:刻画函数值在区间[x1,x2]上变化的快慢.
(4)平均变化率的几何意义:
设A(x1,f(x1)),B(x2,f(x2))是曲线y=f(x)上任意不同的两点,函数y=f(x)的平均变化率==为割线AB的斜率,如图所示.21教育网
[点睛] Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点,即Δx=x2-x1≠0,但Δx可以为正,也可以为负.2·1·c·n·j·y
2.函数y=f(x)在x=x0处的瞬时变化率
定义式

实质
瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值
作用
刻画函数在某一点处变化的快慢
[点睛] “Δx无限趋近于0”的含义
Δx趋于0的距离要多近有多近,即|Δx-0|可以小于给定的任意小的正数,且始终Δx≠0.
3.导数的概念
定义式

记法
f′(x0)或y′|x=x0
实质
函数y=f(x)在x=x0处的导数就是y=f(x)在x=x0处的瞬时变化率
1.判断(正确的打“√”,错误的打“×”)
(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.(  )
(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.(  )
(3)在导数的定义中,Δx,Δy都不可能为零.(  )
答案:(1)√ (2)× (3)×
2.质点运动规律为s(t)=t2+3,则从3到3+Δt的平均速度为(  )
A.6+Δt         B.6+Δt+
C.3+Δt D.9+Δt
答案:A
3.已知函数f(x)=2x2-4的图象上两点A,B,且xA=1,xB=1.1,则函数f(x)从A点到B点的平均变化率为(  )【21·世纪·教育·网】
A.4 B.4x
C.4.2 D.4.02
答案:C
4.在f′(x0)= 中,Δx不可能为(  )
A.大于0 B.小于0
C.等于0 D.大于0或小于0
答案:C
求函数的平均变化率
[典例] 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为,哪一点附近的平均变化率最大?21·世纪*教育网
[解] 在x=1附近的平均变化率为
k1===2+Δx;
在x=2附近的平均变化率为
k2===4+Δx;
在x=3附近的平均变化率为
k3===6+Δx;
若Δx=,则k1=2+=,k2=4+=,
k3=6+=,
由于k1<k2<k3,
故在x=3附近的平均变化率最大.
求平均变化率的步骤
(1)先计算函数值的改变量Δy=f(x1)-f(x0).
(2)再计算自变量的改变量Δx=x1-x0.
(3)求平均变化率=.      
[活学活用]
求函数y=x3从x0到x0+Δx之间的平均变化率,并计算当x0=1,Δx=时平均变化率的值.
解:当自变量从x0变化到x0+Δx时,函数的平均变化率为==
=3x+3x0Δx+(Δx)2,
当x0=1,Δx=时平均变化率的值为
3×12+3×1×+2=.
求瞬时速度
[典例] 一做直线运动的物体,其位移s与时间t的关系是s(t)=3t-t2.
(1)求此物体的初速度;
(2)求此物体在t=2时的瞬时速度.
[解] (1)当t=0时的速度为初速度.在0时刻取一时间段[0,0+Δt],即[0,Δt],
∴Δs=s(Δt)-s(0)=[3Δt-(Δt)2]-(3×0-02)=3Δt-(Δt)2,
==3-Δt,li =li (3-Δt)=3.
∴物体的初速度为3.
(2)取一时间段[2,2+Δt],
∴Δs=s(2+Δt)-s(2)
=[3(2+Δt)-(2+Δt)2]-(3×2-22)
=-Δt-(Δt)2,
==-1-Δt,
= (-1-Δt)=-1,
∴当t=2时,物体的瞬时速度为-1.
1.求运动物体瞬时速度的三个步骤
(1)求时间改变量Δt和位移改变量Δs=s(t0+Δt)-s(t0).
(2)求平均速度=;
(3)求瞬时速度,当Δt无限趋近于0时,无限趋近于常数v,即为瞬时速度.
2.求(当Δx无限趋近于0时)的极限的方法
(1)在极限表达式中,可把Δx作为一个数来参与运算;
(2)求出的表达式后,Δx无限趋近于0就是令Δx=0,求出结果即可.    
  [活学活用]
一木块沿某一斜面自由滑下,测得下滑的水平距离s与时间t之间的函数关系为s=t2,则t=2时,此木块在水平方向的瞬时速度为(  )21cnjy.com
A.2           B.1
C. D.
解析:选A ∵==Δt+2,
∴ = =2,故选A.
求函数在某点处的导数
[典例] (1)函数y=在x=1处的导数为________.
(2)如果一个质点由定点A开始运动,在时间t的位移函数为y=f(t)=t3+3,
①当t1=4,Δt=0.01时,求Δy和比值;
②求t1=4时的导数.
[解析] (1)Δy=-1,
==,
li =,所以y′|x=1=.
答案:(1)
(2)解:①Δy=f(t1+Δt)-f(t1)=3t·Δt+3t1·(Δt)2+(Δt)3,故当t1=4,Δt=0.01时,Δy=0.481 201,=48.120 1.21·cn·jy·com
② = [3t+3t1·Δt+(Δt)2]=3t=48,
故函数y=t3+3在t1=4处的导数是48,
即y′|t1=4=48.
1.用导数定义求函数在某一点处的导数的步骤
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
(2)求平均变化率=;
(3)求极限 .
2.瞬时变化率的变形形式




=f′(x0).    
[活学活用]
求函数y=x-在x=1处的导数.
解:因为Δy=(1+Δx)--=Δx+,所以==1+.
当Δx→0时,→2,
所以函数y=x-在x=1处的导数为2.
层级一 学业水平达标
1.如果一个函数的瞬时变化率处处为0,则这个函数的图象是(  )
A.圆           B.抛物线
C.椭圆 D.直线
解析:选D 当f(x)=b时,瞬时变化率 = =0,所以f(x)的图象为一条直线.
2.设函数y=f(x)=x2-1,当自变量x由1变为1.1时,函数的平均变化率为(  )
A.2.1 B.1.1
C.2 D.0
解析:选A ===2.1.
3.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(  )www.21-cn-jy.com
A.f′(x)=a B.f′(x)=b
C.f′(x0)=a D.f′(x0)=b
解析:选C f′(x0)=
= (a+b·Δx)=a.
4.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为(  )
A.6    B.18    
C.54     D.81
解析:选B ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3·32=18Δt+3(Δt)2.∴=18+3Δt.∴ = (18+3Δt)=18,故应选B.21*cnjy*com
5.已知f(x)=x2-3x,则f′(0)=(  )
A.Δx-3 B.(Δx)2-3Δx
C.-3 D.0
解析:选C f′(0)=
=li = (Δx-3)=-3.故选C.
6.设f(x)=ax+4,若f′(1)=2,则a=________.
解析:∵f′(1)=
= =a,∴a=2.
答案:2
7.汽车行驶的路程s和时间t之间的函数图象如图,在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为1,2,3,则三者的大小关系为________.【21cnj*y.co*m】
解析:1=kOA,2=kAB,3=kBC,
由图象知kOA<kAB<kBC.
答案:1<2<3
8.球的半径从1增加到2时,球的体积平均膨胀率为______.
解析:∵Δy=π×23-π×13=,
∴==.
答案:
9.质点按规律s(t)=at2+1做直线运动(s单位:m,t单位:s).若质点在t=2时的瞬时速度为8 m/s,求常数a的值.21世纪教育网
解:∵Δs=s(2+Δt)-s(2)=[a(2+Δt)2+1]-(a×22+1)=4aΔt+a(Δt)2,∴=4a+aΔt,www-2-1-cnjy-com
∴在t=2时,瞬时速度为 =4a,4a=8,∴a=2.
10.已知函数f(x)=求f′(4)·f′(-1)的值.
解:当x=4时,Δy=-+
=-=
=.
∴=.
∴ =
==.
∴f′(4)=.
当x=-1时,=
==Δx-2,
由导数的定义,得f′(-1)=li (Δx-2)=-2,
∴f′(4)·f′(-1)=×(-2)=-.
层级二 应试能力达标
1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则等于(  )【21教育名师】
A.4            B.4x
C.4+2Δx D.4+2(Δx)2
解析:选C ====2Δx+4.
2.甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图,则在[0,t0]这个时间段内,甲、乙两人的平均速度v甲,v乙的关系是(  )
A.v甲>v乙
B.v甲<v乙
C.v甲=v乙
D.大小关系不确定
解析:选B 设直线AC,BC的斜率分别为kAC,kBC,由平均变化率的几何意义知,s1(t)在[0,t0]上的平均变化率v甲=kAC,s2(t)在[0,t0]上的平均变化率v乙=kBC.因为kAC<kBC,所以v甲<v乙.2-1-c-n-j-y
3.若可导函数f(x)的图象过原点,且满足 =-1,则f′(0)=(  )
A.-2 B.-1
C.1 D.2
解析:选B ∵f(x)图象过原点,∴f(0)=0,
∴f′(0)= = =-1,
∴选B.
4.已知f(x)=,且f′(m)=-,则m的值等于(  )
A.-4 B.2
C.-2 D.±2
解析:选D f′(x)= =-,于是有-=-,m2=4,解得m=±2.
5.已知函数f(x)=-x2+x在区间[t,1]上的平均变化率为2,则t=________.
解析:∵Δy=f(1)-f(t)=(-12+1)-(-t2+t)=t2-t,
∴==-t. 又∵=2,∴t=-2.
答案:-2
6.一物体的运动方程为s=7t2+8,则其在t=________时的瞬时速度为1.
解析:==7Δt+14t0,
当 (7Δt+14t0)=1时,t=t0=.
答案:
7.枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度是5.0×105 m/s2,枪弹从枪口射出时所用时间为1.6×10-3 s,求枪弹射出枪口时的瞬时速度.
解:位移公式为s=at2,
∵Δs=a(t0+Δt)2-at=at0Δt+a(Δt)2,
∴=at0+aΔt,∴ = =at0,
已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800 m/s.
所以枪弹射出枪口时的瞬时速度为800 m/s.
8.设函数f(x)在x0处可导,求下列各式的值.
(1) ;
(2) .
解:(1)
=-m =-mf′(x0).
(2)原式

= -
=4 -5
=4f′(x0)-5f′(x0)=-f′(x0).
课件22张PPT。课件17张PPT。第一课时 几个常用函数的导数和基本初等函数的导数公式
预习课本P12~14,思考并完成下列问题
(1)函数y=c,y=x,y=x-1,y=x2,y=的导数分别是什么?能否得出y=xn的导数公式?21cnjy.com
 
 
(2)正余弦函数的导数公式、指数函数、对数函数的导数公式是什么?
 
 
    
1.几种常用函数的导数
函数
导数
f(x)=c(c为常数)
f′(x)=0
f(x)=x
f′(x)=1
f(x)=x2
f′(x)=2x
f(x)=
f′(x)=-
f(x)=
f′(x)=
[点睛] 对几种常用函数的导数的两点说明
(1)以上几个常用函数的导数是求解其他函数的导数的基础,都是通过导数的定义求得的,都属于幂函数的导数.21·世纪*教育网
(2)以上几个常见的导数公式需记牢,在求导数时,可直接应用,不必再用定义去求导.
2.基本初等函数的导数公式
原函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈Q*)
f′(x)=αxα-1
原函数
导函数
f(x)=sin x
f′(x)=cos_x
f(x)=cos x
f′(x)=-sin_x
f(x)=ax(a>0且a≠1)
f′(x)=axln_a
f(x)=ex
f′(x)=ex
f(x)=logax(a>0且a≠1)
f′(x)=
f(x)=ln x
f′(x)=
1.判断(正确的打“√”,错误的打“×”)
(1)若y=,则y′=×2=1.(  )
(2)若f′(x)=sin x,则f(x)=cos x.(  )
(3)f(x)=,则f′(x)=-.(  )
答案:(1)× (2)× (3)√
2.下列结论不正确的是(  )
A.若y=0,则y′=0     B.若y=5x,则y′=5
C.若y=x-1,则y′=-x-2 D.若y=x,则y′=x
答案:D
3.若y=cos,则y′=(  )
A.- B.-
C.0 D.
答案:C
4.函数y=在点处切线的倾斜角为(  )
A. B.
C. D.
答案:B

利用导数公式求函数导数
[典例] 求下列函数的导数.
(1)y=x12;(2)y=;(3)y=;(4)y=3x;
(5)y=log5x.
[解] (1)y′=(x12)′=12x11.
(2)y′=′=(x-4)′=-4x-5=-.
(3)y′=()′=(x)′=x-.
(4)y′=(3x)′=3xln 3.
(5)y′=(log5x)′=.
求简单函数的导函数有两种基本方法
(1)用导数的定义求导,但运算比较繁杂;
(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.      
[活学活用]
求下列函数的导数:
(1)y=lg x;(2)y=x;(3)y=x;(4)y=logx.
解:(1)y′=(lg x)′=′=.
(2)y′=′=xln =-xln 2.
(3)y′=(x)′=(x)′=x=.
(4)y′=′==-.
利用导数公式求切线方程
[典例]  已知曲线y=.
(1)求曲线在点P(1,1)处的切线方程;
(2)求曲线过点Q(1,0)处的切线方程.
[解] ∵y=,∴y′=-.
(1)显然P(1,1)是曲线上的点,所以P为切点,所求切线斜率为函数y=在点P(1,1)的导数,即k=f′(1)=-1.21教育网
所以曲线在P(1,1)处的切线方程为y-1=-(x-1),即为y=-x+2.
(2)显然Q(1,0)不在曲线y=上,
则可设过该点的切线的切点为A,
那么该切线斜率为k=f′(a)=-.
则切线方程为y-=-(x-a).①
将Q(1,0)代入方程:0-=-(1-a).
将得a=,代入方程①整理可得切线方程为y=-4x+4.
利用导数的几何意义解决切线问题的两种情况
(1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.
(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.      
[活学活用]
当常数k为何值时,直线y=x与曲线y=x2+k相切?请求出切点.
解:设切点为A(x0,x+k).∵y′=2x,∴
∴故当k=时,直线y=x与曲线y=x2+k相切,且切点坐标为.
导数的简单综合应用
[典例] (1)质点的运动方程是S=sin t,则质点在t=时的速度为________;质点运动的加速度为________.21·cn·jy·com
(2)已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.www-2-1-cnjy-com
[解析] (1)v(t)=S′(t)=cos t,
∴v=cos =.
即质点在t=时的速度为.
∵v(t)=cos t,
∴加速度a(t)
=v′(t)=(cos t)′=-sin t.
答案:  -sin t
(2)解:由于y=sin x,y=cos x,设这两条曲线的一个公共点为P(x0,y0).∴两条曲线在P(x0,y0)处的斜率分别为k1=cos x0,k2=-sin x0.2-1-c-n-j-y
若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,
即sin x0·cos x0=1,也就是sin 2x0=2,这是不可能的.
∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
导数的综合应用的解题技巧
(1)导数的几何意义为导数和解析几何的沟通搭建了桥梁,很多综合问题我们可以数形结合,巧妙利用导数的几何意义,即切线的斜率建立相应的未知参数的方程来解决,往往这是解决问题的关键所在.【21cnj*y.co*m】
(2)导数作为重要的解题工具,常与函数、数列、解析几何、不等式等知识结合出现综合大题.遇到解决一些与距离、面积相关的最值、不等式恒成立等问题.可以结合导数的几何意义分析.     【21教育名师】
[活学活用]
曲线y=x在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为(  )
A.    B.   C.   D.
解析:选C 可求得y′=x-,即y′|x=1=,切线方程为2x-3y+1=0,与x轴的交点坐标为,与x=2的交点坐标为,围成三角形面积为××=.
层级一 学业水平达标
1.已知函数f(x)=x3的切线的斜率等于3,则切线有(  )
A.1条           B.2条
C.3条 D.不确定
解析:选B ∵f′(x)=3x2=3,解得x=±1.切点有两个,即可得切线有2条.
2.若f(x)=sin α-cos x(α是常数),则f′(α)=(  )
A.sin α B.cos α
C.-sin α D.-cos α
解析:选A f′(x)=(sin α-cos x)′=sin′α-cos′x=sin x,
∴f′(α)=sin α.
3.已知f(x)=-3x,则f′(2)=(  )
A.10 B.-5x
C.5 D.-10
解析:选D ∵f′(x)=-5x,∴f′(2)=-5×2×=-10,故选D.
4.已知f(x)=xα,若f′(-1)=-2,则α的值等于(  )
A.2 B.-2
C.3 D.-3
解析:选A  若α=2,则f(x)=x2,∴f′(x)=2x,
∴f′(-1)=2×(-1)=-2适合条件.故应选A.
5. 曲线y=x3在x=1处切线的倾斜角为(  )
A.1 B.-
C. D.
解析:选C ∵y′=x2,∴y′|x=1=1,
∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=.
6.曲线y=ln x在点M(e,1)处的切线的斜率是________,切线方程为____________.
解析:∵y′=(ln x)′=,∴y′|x=e=.
∴切线方程为y-1=(x-e),即x-ey=0.
答案: x-ey=0
7.已知f(x)=a2(a为常数),g(x)=ln x,若2x[f′(x)+1]-g′(x)=1,则x=________.21世纪教育网
解析:因为f′(x)=0,g′(x)=,
所以2x[f′(x)+1]-g′(x)=2x-=1.
解得x=1或x=-,因为x>0,所以x=1.
答案:1
8.设坐标平面上的抛物线C:y=x2,过第一象限的点(a,a2)作抛物线C的切线l,则直线l与y轴的交点Q的坐标为________.【21教育】
解析:显然点(a,a2)为抛物线C:y=x2上的点,∵y′=2x,∴直线l的方程为y-a2=2a(x-a).21*教*育*名*师
令x=0,得y=-a2,∴直线l与y轴的交点的坐标为(0,-a2).
答案:(0,-a2)
9.求下列函数的导数:
(1)y=x8;(2)y=4x;(3)y=log3x;
(4)y=sin;(5)y=e2.
解:(1)y′=(x8)′=8x8-1=8x7.
(2)y′=(4x)′=4xln 4.
(3)y′=(log3x)′=.
(4)y′=(cos x)′=-sin x.
(5)y′=(e2)′=0.
10.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,
(1)求过点P,Q的曲线y=x2的切线方程.
(2)求与直线PQ平行的曲线y=x2的切线方程.
解:(1)因为y′=2x,P(-1,1),Q(2,4)都是曲线y=x2上的点.
过P点的切线的斜率k1=y′|x=-1=-2,
过Q点的切线的斜率k2=y′|x=2=4,
过P点的切线方程:y-1=-2(x+1),即2x+y+1=0.
过Q点的切线方程:y-4=4(x-2),即4x-y-4=0.
(2)因为y′=2x,直线PQ的斜率k==1,
切线的斜率k=y′|x=x0=2x0=1,
所以x0=,所以切点M,
与PQ平行的切线方程为:
y-=x-,即4x-4y-1=0.
层级二 应试能力达标
1.质点沿直线运动的路程s与时间t的关系是s=,则质点在t=4时的速度为(  )
A.          B.
C. D.
解析:选B ∵s′=t-.∴当t=4时,
s′=·= .
2.直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值为(  )
A.2 B.ln 2+1
C.ln 2-1 D.ln 2
解析:选C ∵y=ln x的导数y′=,
∴令=,得x=2,∴切点为(2,ln 2).
代入直线y=x+b,得b=ln 2-1.
3.在曲线f(x)=上切线的倾斜角为π的点的坐标为(  )
A.(1,1) B.(-1,-1)
C.(-1,1) D.(1,1)或(-1,-1)
解析:选D 因为f(x)=,所以f′(x)=-,因为切线的倾斜角为π,所以切线斜率为-1,
即f′(x)=-=-1,所以x=±1,
则当x=1时,f(1)=1;
当x=-1时,f(1)=-1,则点坐标为(1,1)或(-1,-1).
4.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1·x2·…·xn的值为(  )www.21-cn-jy.com
A. B.
C. D.1
解析:选B 对y=xn+1(n∈N*)求导得y′=(n+1)xn. 令x=1,得在点(1,1)处的切线的斜率k=n+1,∴在点(1,1)处的切线方程为y-1=(n+1)(xn-1).令y=0,得xn=,∴x1·x2·…·xn=×××…××=, 故选B.21*cnjy*com
5.与直线2x-y-4=0平行且与曲线y=ln x相切的直线方程是________.
解析:∵直线2x-y-4=0的斜率为k=2,
又∵y′=(ln x)′=,∴=2,解得x=.
∴切点的坐标为.
故切线方程为y+ln 2=2.
即2x-y-1-ln 2=0.
答案:2x-y-1-ln 2=0
6.若曲线y=在点P(a,)处的切线与两坐标轴围成的三角形的面积为2,则实数a的值是________________.2·1·c·n·j·y
解析:∵y′=,∴切线方程为y-=(x-a),令x=0,得y=,令y=0,得x=-a,由题意知··a=2,∴a=4.【21·世纪·教育·网】
答案:4
7.已知曲线方程为y=f(x)=x2,求过点B(3,5)且与曲线相切的直线方程.
解:设切点P的坐标为(x0,x).
∵y=x2,∴y′=2x,∴k=f′(x0)=2x0,
∴切线方程为y-x=2x0(x-x0).
将点B(3,5)代入上式,得5-x=2x0(3-x0),
即x-6x0+5=0,∴(x0-1)(x0-5)=0,
∴x0=1或x0=5,
∴切点坐标为(1,1)或(5,25),
故所求切线方程为y-1=2(x-1)或y-25=10(x-5),
即2x-y-1=0或10x-y-25=0.
8.求证:双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数.
证明:设P(x0,y0)为双曲线xy=a2上任一点.
∵y′=′=-.
∴过点P的切线方程为y-y0=-(x-x0).
令x=0,得y=;令y=0,
得x=2x0.
则切线与两坐标轴围成的三角形的面积为
S=··|2x0|=2a2.
即双曲线xy=a2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a2.
课件21张PPT。0αxα-1cos x-sin xaxln aex 第二课时 导数的运算法则
 预习课本P15~18,思考并完成下列问题
(1)导数的四则运算法则是什么?在使用运算法则时的前提条件是什么?
 
(2)复合函数的定义是什么,它的求导法则又是什么?
 
 
   
1.导数的四则运算法则
(1)条件:f(x),g(x)是可导的.
(2)结论:①[f(x)±g(x)]′=f′(x)±g′(x).
②[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x).
③′=(g(x)≠0).
[点睛] 应用导数公式的注意事项
(1)两个导数的和差运算只可推广到有限个函数的和差的导数运算.
(2)两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导.
(3)若两个函数不可导,则它们的和、差、积、商不一定不可导.
(4)对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.
2.复合函数的求导公式
(1)复合函数的定义:①一般形式是y=f(g(x)).
②可分解为y=f(u)与u=g(x),其中u称为中间变量.
(2)求导法则:复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为:yx′=yu′·ux′.21cnjy.com
1.判断(正确的打“√”,错误的打“×”)
(1)f′(x)=2x,则f(x)=x2.(  )
(2)函数f(x)=xex的导数是f′(x)=ex(x+1).(  )
(3)函数f(x)=sin(-x)的导数为f′(x)=cos x.(  )
答案:(1)× (2)√ (3)×
2.函数y=sin x·cos x的导数是(  )
A.y′=cos 2x+sin 2x    B.y′=cos 2x
C.y′=2cos x·sin x D.y′=cos x·sin x
答案:B
3.函数y=xcos x-sin x的导数为________.
答案:-xsin x
4.若f(x)=(2x+a)2,且f′(2)=20,则a=________.
答案:1
利用导数四则运算法则求导
[典例] 求下列函数的导数:
(1)y=x2+log3x;(2)y=x3·ex;(3)y=.
[解]  (1)y′=(x2+log3x)′=(x2)′+(log3x)′
=2x+.
(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′
=3x2·ex+x3·ex=ex(x3+3x2).
(3)y′=′=
==-.
求函数的导数的策略
(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数.
(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.      
[活学活用]
求下列函数的导数:
(1)y=sin x-2x2;(2)y=cos x·ln x;(3)y=.
解:(1)y′=(sin x-2x2)′=(sin x)′-(2x2)′=cos x-4x.
(2)y′=(cos x·ln x)′=(cos x)′·ln x+cos x·(ln x)′
=-sin x·ln x+.
(3)y′=′=
==.
复合函数的导数运算
[典例] 求下列函数的导数:
(1)y=;(2)y=esin(ax+b);
(3)y=sin2;(4)y=5log2(2x+1).
[解] (1)设y=u,u=1-2x2,
则y′=(u)′(1-2x2)′=·(-4x)
=-(1-2x2) (-4x)=2x(1-2x2) .
(2)设y=eu,u=sin v,v=ax+b,
则yx′=yu′·uv′·vx′=eu·cos v·a
=acos(ax+b)·esin(ax+b).
(3)设y=u2,u=sin v,v=2x+,
则yx′=yu′·uv′·vx′=2u·cos v·2
=4sin vcos v=2sin 2v=2sin.
(4)设y=5log2u,u=2x+1,
则y′=5(log2u)′·(2x+1)′
==.
1.求复合函数的导数的步骤
2.求复合函数的导数的注意点
(1)内、外层函数通常为基本初等函数.
(2)求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点.      
[活学活用]
求下列函数的导数:
(1)y=(3x-2)2; (2)y=ln(6x+4);
(3)y=e2x+1; (4)y=;
(5)y=sin;(6)y=cos2x.
解:(1)y′=2(3x-2)·(3x-2)′=18x-12;
(2)y′=·(6x+4)′=;
(3)y′=e2x+1·(2x+1)′=2e2x+1;
(4)y′=·(2x-1)′= .
(5)y′=cos·′=3cos.
(6)y′=2cos x·(cos x)′=-2cos x·sin x=-sin 2x.
与切线有关的综合问题
[典例] (1)函数y=2cos2x在x=处的切线斜率为________.
(2)已知函数f(x)=ax2+ln x的导数为f′(x),
①求f(1)+f′(1).
②若曲线y=f(x)存在垂直于y轴的切线,求实数a的取值范围.
[解析] (1)由函数y=2cos2x=1+cos 2x,得y′=(1+cos 2x)′=-2sin 2x,所以函数在x=处的切线斜率为-2sin=-1.21世纪教育网
答案:-1
(2)解:①由题意,函数的定义域为(0,+∞),
由f(x)=ax2+ln x,得f′(x)=2ax+,
所以f(1)+f′(1)=3a+1.
②因为曲线y=f(x)存在垂直于y轴的切线,故此时切线斜率为0,问题转化为在x∈(0,+∞)内导函数f′(x)=2ax+存在零点,21·cn·jy·com
即f′(x)=0?2ax+=0有正实数解,
即2ax2=-1有正实数解,故有a<0,所以实数a的取值范围是(-∞,0).
关于函数导数的应用及其解决方法
(1)应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.www.21-cn-jy.com
(2)方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.      2·1·c·n·j·y
[活学活用]
若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a的值为(  )
A.-1或-       B.-1或
C.-或- D.-或7
解析:选A 设过点(1,0)的直线与曲线y=x3相切于点(x0,x),
则切线方程为y-x=3x(x-x0),即y=3xx-2x.
又点(1,0)在切线上,代入以上方程得x0=0或x0=.
当x0=0时,直线方程为y=0.
由y=0与y=ax2+x-9相切可得a=-.
当x0=时,直线方程为y=x-.
由y=x-与y=ax2+x-9相切可得a=-1.
层级一 学业水平达标
1.已知函数f(x)=ax2+c,且f′(1)=2,则a的值为(  )
A.1            B.
C.-1 D.0
解析:选A ∵f(x)=ax2+c,∴f′(x)=2ax,
又∵f′(1)=2a,∴2a=2,∴a=1.
2.函数y=(x+1)2(x-1)在x=1处的导数等于(  )
A.1 B.2
C.3 D.4
解析:选D y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)·(x-1)+(x+1)2=3x2+2x-1,∴y′|x=1=4.【21·世纪·教育·网】
3.曲线f(x)=xln x在点x=1处的切线方程为(  )
A.y=2x+2 B.y=2x-2
C.y=x-1 D.y=x+1
解析:选C ∵f′(x)=ln x+1,∴f′(1)=1,又f(1)=0,∴在点x=1处曲线f(x)的切线方程为y=x-1.www-2-1-cnjy-com
4. 已知物体的运动方程为s=t2+(t是时间,s是位移),则物体在时刻t=2时的速度为(  )
A. B.
C. D.
解析:选D ∵s′=2t-,∴s′|t=2=4-=.
5.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=(  )
A.0 B.1
C.2 D.3
解析:选D y′=a-,由题意得y′|x=0=2,即a-1=2,所以a=3.
6.曲线y=x3-x+3在点(1,3)处的切线方程为________.
解析:∵y′=3x2-1,∴y′|x=1=3×12-1=2.
∴切线方程为y-3=2(x-1),即2x-y+1=0.
答案:2x-y+1=0
7.已知曲线y1=2-与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0=________.21·世纪*教育网
解析:由题知y′1=,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为,3x-2x0+2,所以=3,所以x0=1.2-1-c-n-j-y
答案:1
8.已知函数f(x)=f′cos x+sin x,则f的值为________.
解析:∵f′(x)=-f′sin x+cos x,
∴f′=-f′×+,
得f′=-1.
∴f(x)=(-1)cos x+sin x.
∴f=1.
答案:1
9.求下列函数的导数:
(1)y=xsin2x;(2)y=;
(3)y=;(4)y=cos x·sin 3x.
解:(1)y′=(x)′sin2x+x(sin2x)′
=sin2x+x·2sin x·(sin x)′=sin2x+xsin 2x.
(2)y′=
= .
(3)y′=

=.
(4)y′=(cos x·sin 3x)′
=(cos x)′sin 3x+cos x(sin 3x)′
=-sin xsin 3x+3cos xcos 3x
=3cos xcos 3x-sin xsin 3x.
10.偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求f(x)的解析式.21*cnjy*com
解:∵f(x)的图象过点P(0,1),∴e=1.
又∵f(x)为偶函数,∴f(-x)=f(x).
故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.
∴b=0,d=0.∴f(x)=ax4+cx2+1.
∵函数f(x)在x=1处的切线方程为y=x-2,
∴切点为(1,-1).∴a+c+1=-1.
∵f′(x)|x=1=4a+2c,∴4a+2c=1.
∴a=,c=-.
∴函数f(x)的解析式为f(x)=x4-x2+1.
层级二 应试能力达标
1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于(  )
A.-1           B.-2
C.2 D.0
解析:选B ∵f′(x)=4ax3+2bx为奇函数,∴f′(-1)=-f′(1)=-2.
2.曲线y=xex-1在点(1,1)处切线的斜率等于(  )
A.2e B.e
C.2 D.1
解析:选C 函数的导数为f′(x)=ex-1+xex-1=(1+x)ex-1,
当x=1时,f′(1)=2,即曲线y=xex-1在点(1,1)处切线的斜率k=f′(1)=2,故选C.【21cnj*y.co*m】
3.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=(  )【21教育名师】
A.e-1 B.-1
C.-e-1 D.-e
解析:选C ∵f(x)=2xf′(e)+ln x,
∴f′(x)=2f′(e)+,
∴f′(e)=2f′(e)+,解得f′(e)=-,故选C.
4.若曲线f(x)=x4-x在点P处的切线平行于直线3x-y=0,则点P的坐标为(  )
A.(-1,2) B.(1,-3)
C.(1,0) D.(1,5)
解析:选C 设点P的坐标为(x0,y0),因为f′(x)=4x3-1,所以f′(x0)=4x-1=3,即x0=1,把x0=1代入函数f(x)=x4-x得y0=0,所以点P的坐标为(1,0).
5.已知直线y=2x-1与曲线y=ln(x+a)相切,则a的值为________________.
解析:∵y=ln(x+a),∴y′=,设切点为(x0,y0),
则y0=2x0-1,y0=ln(x0+a),且=2,
解之得a=ln 2.
答案:ln 2
6.曲线y=在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是____________.21教育网
解析:y′=-,则y′=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=2,圆的半径r=1,∴所求最近距离为2-1.
答案:2-1
7.已知曲线f(x)=x3+ax+b在点P(2,-6)处的切线方程是13x-y-32=0.
(1)求a,b的值;
(2)如果曲线y=f(x)的某一切线与直线l:y=-x+3垂直,求切点坐标与切线的方程.
解:(1)∵f(x)=x3+ax+b的导数f′(x)=3x2+a,
由题意可得f′(2)=12+a=13,f(2)=8+2a+b=-6,
解得a=1,b=-16.
(2)∵切线与直线y=-x+3垂直,
∴切线的斜率k=4.
设切点的坐标为(x0,y0),
则f′(x0)=3x+1=4,∴x0=±1.
由f(x)=x3+x-16,可得y0=1+1-16=-14,
或y0=-1-1-16=-18.
则切线方程为y=4(x-1)-14或y=4(x+1)-18.
即y=4x-18或y=4x-14.
8.设fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(1)求fn′(2);
(2)证明:fn(x)在内有且仅有一个零点(记为an),且0<an-<.
解:(1)由题设fn′(x)=1+2x+…+nxn-1.
所以fn′(2)=1+2×2+…+(n-1)2n-2+n·2n-1,①
则2fn′(2)=2+2×22+…+(n-1)2n-1+n·2n,②
①-②得,-fn′(2)=1+2+22+…+2n-1-n·2n
=-n·2n=(1-n)·2n-1,
所以fn′(2)=(n-1)·2n+1.
(2)因为f(0)=-1<0,
fn=-1=1-2×n≥1-2×2>0,
因为x≥0,n≥2.
所以fn(x)=x+x2+…+xn-1为增函数,
所以fn(x)在内单调递增,
因此fn(x)在内有且仅有一个零点an.
由于fn(x)=-1,
所以0=fn(an)=-1,
由此可得an=+a>,
故<an<.
所以0<an-=a<×n+1=.
课件22张PPT。课件25张PPT。课件25张PPT。课件26张PPT。1.3.1 函数的单调性与导数
预习课本P22~26,思考并完成下列问题
(1)函数的单调性与导数的正负有什么关系?
 
 
(2)利用导数判断函数单调性的步骤是什么?
 
(3)怎样求函数的单调区间?
 
    
1.函数的单调性与其导数正负的关系
在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减;如果恒有f′(x)=0,那么函数y=f(x)在这个区间内是常数函数.【21·世纪·教育·网】
[点睛] 对函数的单调性与其导数正负的关系的两点说明
(1)若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).21*教*育*名*师
(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为0.
2.函数图象的变化趋势与导数值大小的关系
如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f′(x)|越大,则函数f(x)的切线的斜率越大,函数f(x)的变化率就越大.
1.判断(正确的打“√”,错误的打“×”)
(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.(  )
(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.(  )
(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.(  )
答案:(1)× (2)× (3)√
2.函数f(x)=(x-3)ex的单调递增区间是(  )
A.(-∞,2)           B.(0,3)
C.(1,4) D.(2,+∞)
答案:D
3.函数f(x)=2x-sin x在(-∞,+∞)上(  )
A.是增函数
B.是减函数
C.在(0,+∞)上单调递增,在(-∞,0)上单调递减
D.在(0,+∞)上单调递减,在(-∞,0)上单调递增
答案:A
4. 函数y=x3+x在(-∞,+∞)上的图象是________(填“上升”或“下降”)的.
答案:上升
判断或讨论函数的单调性
[典例] 已知函数f(x)=ax3-3x2+1-,讨论函数f(x)的单调性.
[解]  由题设知a≠0.
f′(x)=3ax2-6x=3ax,
令f′(x)=0,得x1=0,x2=.
当a>0时,若x∈(-∞,0),则f′(x)>0.
∴f(x)在区间(-∞,0)上为增函数.
若x∈,则f′(x)<0,
∴f(x)在区间上为减函数.
若x∈,则f′(x)>0,
∴f(x)在区间上是增函数.
当a<0时,若x∈,则f′(x)<0.
∴f(x)在上是减函数.
若x∈,则f′(x)>0.
∴f(x)在区间上为增函数.
若x∈(0,+∞),则f′(x)<0.
∴f(x)在区间(0,+∞)上为减函数.
  
利用导数证明或判断函数单调性的思路
[活学活用]
判断函数y=ax3-1(a∈R)在(-∞,+∞)上的单调性.
解:∵y′=(ax3-1)′=3ax2.
①当a>0时,y′≥0,函数在R上单调递增;
②当a<0时,y′≤0,函数在R上单调递减;
③当a=0时,y′=0,函数在R上不具备单调性.
求函数的单调区间
[典例] 求下列函数的单调区间:
(1)f(x)=x3-3x+1;
(2)f(x)=x+(b>0).
[解] (1)函数f(x)的定义域为R,
f′(x)=3x2-3,令f′(x)>0,则3x2-3>0.
即3(x+1)(x-1)>0,解得x>1或x<-1.
∴函数f(x)的单调递增区间为(-∞,-1)和(1,+∞),
令f′(x)<0,则3(x+1)(x-1)<0,解得-1<x<1.
∴函数f(x)的单调递减区间为(-1,1).
(2)函数f(x)的定义域为(-∞,0)∪(0,+∞),
f′(x)=′=1-,
令f′(x)>0,则(x+)(x-)>0,
∴x>,或x<-.
∴函数的单调递增区间为(-∞,-)和(,+∞).
令f′(x)<0,则(x+)(x-)<0,
∴-<x<,且x≠0.
∴函数的单调递减区间为(-,0)和(0,).
(1)利用导数求函数f(x)的单调区间的一般步骤为:
①确定函数f(x)的定义域;
②求导数f′(x);
③在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;
④根据(3)的结果确定函数f(x)的单调区间.
(2)如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.      21教育网
[活学活用]
1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是(  )
A.b2-4ac>0        B.b>0,c>0
C.b=0,c>0 D.b2-3ac<0
解析:选D ∵a>0,f(x)为增函数,
∴f′(x)=3ax2+2bx+c>0恒成立,
∴Δ=(2b)2-4×3a×c=4b2-12ac<0,
∴b2-3ac<0.
2.已知函数f(x)=x3+ax2+bx(a、b∈R)的图象过点P(1,2),且在点P处的切线斜率为8.21·cn·jy·com
(1)求a,b的值;
(2)求函数f(x)的单调区间.
解:(1)∵函数f(x)的图象过点P(1,2),∴f(1)=2.
∴a+b=1.①
又函数图象在点P处的切线斜率为8,
∴f′(1)=8,又f′(x)=3x2+2ax+b,
∴2a+b=5.②
解由①②组成的方程组,可得a=4,b=-3.
(2)由(1)得f′(x)=3x2+8x-3=(3x-1)(x+3),
令f′(x)>0,可得x<-3或x>;
令f′(x)<0,可得-3∴函数f(x)的单调增区间为(-∞,-3),,
单调减区间为.
利用导数求参数的取值范围
[典例] 若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)内单调递减,在(6,+∞)上单调递增,求实数a的取值范围.21世纪教育网
[解] [法一 直接法]
f′(x)=x2-ax+a-1,
令f′(x)=0得x=1或x=a-1.
当a-1≤1,即a≤2时,函数f(x)在(1,+∞)内单调递增,不合题意.
当a-1>1,即a>2时,f(x)在(-∞,1)和(a-1,+∞)上单调递增,在(1,a-1)上单调递减,2·1·c·n·j·y
由题意知(1,4)?(1,a-1)且(6,+∞)?(a-1,+∞),所以4≤a-1≤6,即5≤a≤7.
故实数a的取值范围为[5,7].
[法二 数形结合法]
如图所示,f′(x)=(x-1)[x-(a-1)].
∵在(1,4)内f′(x)≤0,
在(6,+∞)内f′(x)≥0,
且f′(x)=0有一根为1,
∴另一根在[4,6]上.

即∴5≤a≤7.
故实数a的取值范围为[5,7]
[法三 转化为不等式的恒成立问题]
f′(x)=x2-ax+a-1.
因为f(x)在(1,4)内单调递减,所以f′(x)≤0在(1,4)上恒成立.
即a(x-1)≥x2-1在(1, 4)上恒成立,所以a≥x+1,因为2所以a≤x+1,因为x+1>7,所以a≤7时,f′(x)≥0在(6,+∞)上恒成立.综上知5≤a≤7.21*cnjy*com
故实数a的取值范围为[5,7].
1.利用导数法解决取值范围问题的两个基本思路
(1)将问题转化为不等式在某区间上的恒成立问题,即f′(x)≥0(或f′(x)≤0)恒成立,利用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意.
(2)先令f′(x)>0(或f′(x)<0),求出参数的取值范围后,再验证参数取“=”时f(x)是否满足题意.【21cnj*y.co*m】
2.恒成立问题的重要思路
(1)m≥f(x)恒成立?m≥f(x)max.
(2)m≤f(x)恒成立?m≤f(x)min.      
[活学活用]
若f(x)=(x∈R)在区间[-1,1]上是增函数,则a∈________.
解析:f′(x)=2·,
∵f(x)在[-1,1]上是增函数,
∴f′(x)=2·≥0.
∵(x2+2)2>0,
∴x2-ax-2≤0对x∈[-1,1]恒成立.
令g(x)=x2-ax-2,

即 
∴-1≤a≤1.
即a的取值范围是[-1,1].
答案:[-1,1]
层级一 学业水平达标
1.下列函数中,在(0,+∞)内为增函数的是(  )
A.y=sin x         B.y=xex
C.y=x3-x D.y=ln x-x
解析:选B B中,y′=(xex)′=ex+xex=ex(x+1)>0在(0,+∞)上恒成立,∴y=xex在(0,+∞)上为增函数.对于A、C、D都存在x>0,使y′<0的情况.
2.若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是(  )
A. B.
C. D.
解析:选C y′=3x2+2x+m,由条件知y′≥0在R上恒成立,∴Δ=4-12m≤0,∴m≥.
3.函数f(x)=(x-3)ex的单调递增区间是(  )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
解析:选D f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2,故选D.【21教育】
4.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是(  )
解析:选C 当0<x<1时,xf′(x)<0,∴f′(x)<0,故y=f(x)在(0,1)上为减函数,排除A,B.当x>1时,xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,排除D,故选C.
5.若函数y=a(x3-x)的单调减区间为,则a的取值范围是(  )
A.(0,+∞) B.(-1,0)
C.(1,+∞) D.(0,1)
解析:选A y′=a(3x2-1)=3a.
当-<x<时,<0,
要使y=a(x3-x)在上单调递减,
只需y′<0,即a>0.
6.函数f(x)=cos x+x的单调递增区间是________.
解析:因为f′(x)=-sin x+>0,所以f(x)在R上为增函数.
答案:(-∞,+∞)
7.若函数y=ax3-ax2-2ax(a≠0)在[-1,2]上为增函数,则a∈________.
解析:y′=ax2-ax-2a=a(x+1)(x-2)>0,
∵当x∈(-1,2)时,(x+1)(x-2)<0,∴a<0.
答案:(-∞,0)
8.若函数y=-x3+ax有三个单调区间,则a的取值范围是    .
解析:∵y′=-4x2+a,且y有三个单调区间,
∴方程y′=-4x2+a=0有两个不等的实根,
∴Δ=02-4×(-4)×a>0,∴a>0.
答案:(0,+∞)
9.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a,b的值;
(2)讨论函数f(x)的单调性.
解:(1)求导得f′(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),
所以f(1)=-11,f′(1)=-12,
即解得a=1,b=-3.
(2)由a=1,b=-3得f′(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3).
令f′(x)>0,解得x<-1或x>3;
又令f′(x)<0,解得-1<x<3.
所以当x∈(-∞,-1)时,f(x)是增函数;
当x∈(-1,3)时,f(x)是减函数;
当x∈(3,+∞)时,f(x)也是增函数.
10.已知a≥0,函数f(x)=(x2-2ax)ex.设f(x)在区间[-1,1]上是单调函数,求a的取值范围.21cnjy.com
解:f′(x)=(2x-2a)ex+(x2-2ax)ex
=ex[x2+2(1-a)x-2a].
令f′(x)=0,即x2+2(1-a)x-2a=0.
解得x1=a-1-,x2=a-1+,
令f′(x)>0,得x>x2或x<x1,
令f′(x)<0,得x1<x<x2.
∵a≥0,∴x1<-1,x2≥0.
由此可得f(x)在[-1,1]上是单调函数的充要条件为x2≥1,即a-1+≥1,解得a≥.
故所求a的取值范围为.
层级二 应试能力达标
1.已知函数f(x)=+ln x,则有(  )
A.f(2)C.f(3)解析:选A 在(0,+∞)内,f′(x)=+>0,所以f(x)在(0,+∞)内是增函数,所以有f(2)2.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是(  )www-2-1-cnjy-com
解析:选C 由f′(x)的图象知,x∈(-∞,0)时,f′(x)>0,f(x)为增函数,x∈(0,2)时,f′(x)<0,f(x)为减函数,x∈(2,+∞)时,f′(x)>0,f(x)为增函数.只有C符合题意,故选C.【21教育名师】
3.函数y=xsin x+cos x,x∈(-π,π)的单调增区间是(  )
A.和 B.和
C.和 D.和
解析:选A y′=xcos x,当-π<x<-时,cos x<0,∴y′=xcos x>0,当0<x<时,cos x>0,∴y′=xcos x>0.21-cnjy*com
4.设函数F(x)=是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)A.f(2)>e2f(0),f(2 016)>e2 016f(0)
B.f(2)e2 016f(0)
C.f(2)D.f(2)>e2f(0),f(2 016)解析:选C ∵函数F(x)=的导数F′(x)==<0,
∴函数F(x)=是定义在R上的减函数,
∴F(2)同理可得f(2 016)5.已知y=x3+bx2+(b+2)x+3在R上不是单调增函数,则实数b的取值范围为________________.
解析:若y′=x2+2bx+b+2≥0恒成立,则Δ=4b2-4(b+2)≤0,∴-1≤b≤2,由题意知,b<-1或b>2.
答案:(-∞,-1)∪(2,+∞)
6.若f(x)=-x2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是_____________.
解析:∵f(x)在(-1,+∞)上为减函数,
∴f′(x)≤0在(-1,+∞)上恒成立,
∵f′(x)=-x+,∴-x+≤0,
∵b≤x(x+2)在(-1,+∞)上恒成立,
g(x)=x(x+2)=(x+1)2-1,
∴g(x)min=-1,∴b≤-1.
答案:(-∞,-1]
7.设函数f(x)=x(ex-1)-ax2.
(1)若a=,求f(x)的单调区间;
(2)若当x≥0时,f(x)≥0,求a的取值范围.
解:(1)a=时,f(x)=x(ex-1)-x2,
f′(x)=ex-1+xex-x=(ex-1)(x+1).
当x∈(-∞,-1)时,f′(x)>0;
当x∈(-1,0)时,f′(x)<0;
当x∈(0,+∞)时,f′(x)>0.
故f(x)的单调增区间为(-∞,-1),(0,+∞);单调减区间为(-1,0).
(2)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g′(x)=ex-a.
①若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,
而g(0)=0,从而当x≥0时,g(x)≥0,即f(x)≥0.
②当a>1,则当x∈(0,ln a)时,g′(x)<0,g(x)为减函数,
而g(0)=0,从而当x∈(0,ln a)时,g(x)<0,即f(x)<0,不符合题意,
综上得a的取值范围为(-∞,1].
8.已知函数f(x)=x3-ax-1.
(1)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.21·世纪*教育网
(2)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
解:(1)已知函数f(x)=x3-ax-1,
∴f′(x)=3x2-a,
由题意知3x2-a≤0在(-1,1)上恒成立,
∴a≥3x2在x∈(-1,1)上恒成立.
但当x∈(-1,1)时,0<3x2<3,∴a≥3,
即当a≥3时,f(x)在(-1,1)上单调递减.
(2)证明:取x=-1,得f(-1)=a-2<a,
即存在点(-1,a-2)在f(x)=x3-ax-1的图象上,且在直线y=a的下方.
即f(x)的图象不可能总在直线y=a的上方.
1.3.2 函数的极值与导数
 预习课本P26~29,思考并完成下列问题
(1)函数极值点、极值的定义是什么?
 
 
(2)函数取得极值的必要条件是什么?
 
 
(3)求可导函数极值的步骤有哪些?
 
 
   
1.函数极值的概念
(1)函数的极大值
一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数y=f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点.
(2)函数的极小值
一般地,设函数y=f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数y=f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.极大值与极小值统称为极值.2·1·c·n·j·y
[点睛] 如何理解函数极值的概念
(1)极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值.
(2)一个函数在某区间上或定义域内的极大值或极小值可以不止一个.
(3)函数的极大值与极小值之间无确定的大小关系.
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.
(5)单调函数一定没有极值.
2.求函数y=f(x)极值的方法
一般地,求函数y=f(x)的极值的方法是:
解方程f′(x)=0. 当f′(x0)=0时:
(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;
(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.
[点睛] 一般来说,“f′(x0)=0”是“函数y=f(x)在点x0处取得极值”的必要不充分条件.若可导函数y=f(x)在点x0处可导,且在点x0处取得极值,那么f′(x0)=0;反之,若f′(x0)=0,则点x0不一定是函数y=f(x)的极值点.【21·世纪·教育·网】
1.判断(正确的打“√”,错误的打“×”)
(1)函数f(x)=x3+ax2-x+1必有2个极值.(  )
(2)在可导函数的极值点处,切线与x轴平行或重合.(  )
(3)函数f(x)=有极值.(  )
答案:(1)√ (2)√ (3)×
2.下列四个函数:①y=x3;②y=x2+1;③y=|x|;④y=2x,其中在x=0处取得极小值的是(  )
A.①②   B.②③   C.③④   D.①③
答案:B
3.已知函数y=|x2-1|,则(  )
A.y无极小值,且无极大值
B.y有极小值-1,但无极大值
C.y有极小值0,极大值1
D.y有极小值0,极大值-1
答案:C
4. 函数f(x)=x+2cos x在上的极大值点为(  )
A.0            B.
C. D.
答案:B
运用导数解决函数的极值问题
题点一:知图判断函数的极值
1.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)(  )
A.在(-∞,0)上为减函数   B.在x=0处取极小值
C.在(4,+∞)上为减函数 D.在x=2处取极大值
解析:选C 由导函数的图象可知:x∈(-∞,0)∪(2,4)时,f′(x)>0,x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x=0取得极大值,x=2取得极小值,x=4取得极大值,因此选C.
题点二:已知函数求极值
2.求函数f(x)=x2e-x的极值.
解:函数的定义域为R,
f′(x)=2xe-x+x2·e-x·(-x)′
=2xe-x-x2·e-x
=x(2-x)e-x.
令f′(x)=0,得x(2-x)·e-x=0,
解得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0)
0
(0,2)
2
(2,+∞)
f′(x)

0

0

f(x)
?
极小值0
?
极大值4e-2
?
因此当x=0时,f(x)有极小值,
并且极小值为f(0)=0;
当x=2时,f(x)有极大值,并且极大值为f(2)=4e-2=.
题点三 已知函数的极值求参数
3.已知函数f(x)的导数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )【21cnj*y.co*m】
A.(-∞,-1)        B.(0,+∞)
C.(0,1) D.(-1,0)
解析:选D 若a<-1,∵f′(x)=a(x+1)(x-a),
∴f(x)在(-∞,a)上单调递减,在(a,-1)上单调递增,∴f(x)在x=a处取得极小值,与题意不符;【21教育名师】
若-1若a>0,则f(x)在(-1,a)上单调递减,在(a,+∞)上单调递增,与题意矛盾,∴选D.
4.已知f(x)=ax5-bx3+c在x=±1处的极大值为4,极小值为0,试确定a,b,c的值.
解:f′(x)=5ax4-3bx2=x2(5ax2-3b).
由题意,f′(x)=0应有根x=±1,故5a=3b,
于是f′(x)=5ax2(x2-1)
(1)当a>0,x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)
f′(x)

0

0

0

f(x)
?
极大值
?
无极值
?
极小值
?
由表可知:
又5a=3b,解之得:a=3,b=5,c=2.
(2)当a<0时,同理可得a=-3,b=-5,c=2.
1.求函数极值的步骤
(1)确定函数的定义域.
(2)求导数f′(x).
(3)解方程f′(x)=0得方程的根.
(4)利用方程f′(x)=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号.
(5)确定函数的极值,如果f′(x)的符号在x0处由正(负)变负(正),则f(x)在x0处取得极大(小)值.21·cn·jy·com
2.已知函数极值,确定函数解析式中的参数时,注意两点
(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.
(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.     21*cnjy*com
函数极值的综合应用
[典例] 已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.21*教*育*名*师
[解] 因为f(x)在x=-1处取得极值且f′(x)=3x2-3a,
所以f′(-1)=3×(-1)2-3a=0,所以a=1.
所以f(x)=x3-3x-1,f′(x)=3x2-3,
由f′(x)=0,解得x1=-1,x2=1.
当x<-1时,f′(x)>0;
当-1当x>1时,f′(x)>0.
所以由f(x)的单调性可知,
f(x)在x=-1处取得极大值f(-1)=1,
在x=1处取得极小值f(1)=-3.
作出f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的图象可知,m的取值范围是(-3,1).
[一题多变]
1.[变条件]若本例中条件改为“已知函数f(x)=-x3+ax2-4”在x=处取得极值,其他条件不变,求m的取值范围.
解:由题意可得f′(x)=-3x2+2ax,由f′=0,
可得a=2,所以f(x)=-x3+2x2-4,
则f′(x)=-3x2+4x.
令f′(x)=0,得x=0或x=,
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0)
0
f′(x)

0

0

f(x)
?
-4
?

?
作出函数f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点,所以m的取值范围是.
2.[变条件]若本例“三个不同的交点”改为“两个不同的交点”结果如何?改为“一个交点”呢?
解:由例题解析可知:当m=-3或m=1时,直线y=m与y=f(x)的图象有两个不同的交点;当m<-3或m>1时,直线y=m与y=f(x)的图象只有一个交点.
(1)研究方程根的问题可以转化为研究相应函数的图象问题,一般地,方程f(x)=0的根就是函数f(x)的图象与x轴交点的横坐标,方程f(x)=g(x)的根就是函数f(x)与g(x)的图象的交点的横坐标.21教育网
(2)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.    
层级一 学业水平达标
1.当函数y=x·2x取极小值时,x=(  )
A.          B.-
C.-ln 2 D.ln 2
解析:选B 由y′=2x+x·2xln 2=0,得x=-.
2.设函数f(x)=+ln x,则(  )
A.x=为f(x)的极大值点
B.x=为f(x)的极小值点
C.x=2为f(x)的极大值点
D.x=2为f(x)的极小值点
解析:选D 由f′(x)=-+==0可得x=2.当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增.故x=2为f(x)的极小值点.
3.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是(  )www-2-1-cnjy-com
A.(2,3) B.(3,+∞)
C.(2,+∞) D.(-∞,3)
解析:选B 因为函数f(x)=2x3+ax2+36x-24在x=2处有极值,又f′(x)=6x2+2ax+36,所以f′(2)=0解得a=-15.令f′(x)>0,解得x>3或x<2,所以函数的一个递增区间是(3,+∞).
4.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )
解析:选C 由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B、D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.
5.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为(  )21·世纪*教育网
A.,0 B.0,
C.-,0 D.0,-
解析:选A f′(x)=3x2-2px-q,
由f′(1)=0,f(1)=0得,
解得∴f(x)=x3-2x2+x.
由f′(x)=3x2-4x+1=0得x=或x=1,易得当x=时f(x)取极大值.当x=1时f(x)取极小值0.
6.函数y=的极大值为________,极小值为_______.
解析:y′=,令y′>0得-1<x<1,令y′<0得x>1或x<-1,∴当x=-1时,取极小值-1,当x=1时,取极大值1.
答案:1 -1
7.已知函数f(x)=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.
解析:令f′(x)=3x2-3=0,得x=±1,可得极大值为f(-1)=2,极小值为f(1)=-2,y=f(x)的大致图象如图,观察图象得-2<a<2时恰有三个不同的公共点.
答案:(-2,2)
8.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________.(填序号)
①当x=时,函数f(x)取得最小值;
②f(x)有两个极值点;
③当x=2时函数值取得极小值;
④当x=1时函数取得极大值.
解析:由图象可知,x=1,2是函数的两极值点,∴②正确;又x∈(-∞,1)∪(2,+∞)时,y>0;x∈(1,2)时,y<0,∴x=1是极大值点,x=2是极小值点,故③④正确.
答案:①
9.设a为实数,函数f(x)=ex-2x+2a,x∈R,求f(x)的单调区间与极值.
解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln 2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)

0

f(x)
单调递减↘
2(1-ln 2+a)
单调递增↗
故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞);
且f(x)在x=ln 2处取得极小值.
极小值为f(ln 2)=2(1-ln 2+a),无极大值.
10.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(1)试求常数a,b,c的值;
(2)试判断x=±1时函数取得极小值还是极大值,并说明理由.
解:(1)由已知,f′(x)=3ax2+2bx+c,
且f′(-1)=f′(1)=0,得3a+2b+c=0,3a-2b+c=0.
又f(1)=-1,∴a+b+c=-1.
∴a=,b=0,c=-.
(2)由(1)知f(x)=x3-x,
∴f′(x)=x2-=(x-1)(x+1).
当x<-1或x>1时,f′(x)>0;当-1∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.
∴当x=-1时,函数取得极大值f(-1)=1;
当x=1时,函数取得极小值f(1)=-1.
层级二 应试能力达标
1.下列函数中,x=0是极值点的是(  )
A.y=-x3         B.y=cos2x
C.y=tan x-x D.y=
解析:选B y=cos2x=,y′=-sin 2x,x=0是y′=0的根且在x=0附近,y′左正右负,∴x=0是函数的极大值点.21cnjy.com
2.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围是(  )
A.(-1,2) B.(-3,6)
C.(-∞,-3)∪(6,+∞) D.(-∞,-1)∪(2,+∞)
解析:选C f′(x)=3x2+2ax+a+6,
∵f(x)有极大值与极小值,∴f′(x)=0有两不等实根,∴Δ=4a2-12(a+6)>0,∴a<-3或a>6.www.21-cn-jy.com
3.对于函数f(x)=x3-3x2,给出命题:
①f(x)是增函数,无极值;
②f(x)是减函数,无极值;
③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);
④f(0)=0是极大值,f(2)=-4是极小值.
其中正确的命题有(  )
A.1个 B.2个
C.3个 D.4个
解析:选B f′(x)=3x2-6x=3x(x-2),令f′(x)>0,得x>2或x<0,令f′(x)<0,得0<x<2,所以f(x)的极大值为f(0)=0,极小值为f(2)=-4,故①②错误,③④正确.2-1-c-n-j-y
4.已知函数f(x)=ex(sin x-cos x),x∈(0,2 017π),则函数f(x)的极大值之和为(  )21-cnjy*com
A. B.
C. D.
解析:选B f′(x)=2exsin x,令f′(x)=0得sin x=0,∴x=kπ,k∈Z,当2kπ0,f(x)单调递增,当(2k-1)π5.若函数y=-x3+6x2+m的极大值为13,则实数m等于______.
解析:y′=-3x2+12x=-3x(x-4).由y′=0,得x=0或4.且x∈(-∞,0)∪(4,+∞)时,y′<0;x∈(0,4)时,y′>0,∴x=4时取到极大值.故-64+96+m=13,解得m=-19.
答案:-19
6.若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个极值点,则实数a的取值范围为______.
解析:由题意,f′(x)=3x2+2x-a,
则f′(-1)f′(1)<0,即(1-a)(5-a)<0,解得1答案:[1,5)
7.设函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.
解:由f(x)=x3+bx2+cx+d得f′(x)=ax2+2bx+c,
∵f′(x)-9x=ax2+2bx+c-9x=0的两根为1,4.
则(*)
(1)当a=3时,由(*)式得
解得b=-3,c=12.
又∵曲线y=f(x)过原点,∴d=0.
故f(x)=x3-3x2+12x.
(2)由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”.21世纪教育网
由(*)式得2b=9-5a,c=4a.
又∵Δ=(2b)2-4ac=9(a-1)(a-9),
∴解得1≤a≤9.
即a的取值范围是[1,9].
8.已知f(x)=2ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值.
(2)若关于x的方程f(x)+b=0的区间[-1,1]上恰有两个不同的实数根,求实数b的取值范围.
解:(1)f′(x)=-2x-1,当x=0时,f(x)取得极值,
所以f′(0)=0,解得a=2,检验知a=2符合题意.
(2)令g(x)=f(x)+b=2ln(x+2)-x2-x+b,
则g′(x)=-2x-1=-(x>-2).
g(x),g′(x)在(-2,+∞)上的变化状态如下表:
x
(-2,0)
0
(0,+∞)
g′(x)

0

g(x)
?
2ln 2+b
?
由上表可知函数在x=0处取得极大值,极大值为2ln 2+b.
要使f(x)+b=0在区间[-1,1]上恰有两个不同的实数根,
只需

所以-2ln 2<b≤2-2ln 3.
故实数b的取值范围是(-2ln 2,2-2ln 3].
1.3.3 函数的最大(小)值与导数
预习课本P29~31,思考并完成下列问题
(1)什么是函数的最值?函数在闭区间上取得最值的条件是什么?
 
(2)函数的最值与极值有什么关系?
 
(3)求函数最值的方法和步骤是什么?
 
 
    
1.函数y=f(x)在闭区间[a,b]上取得最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
[点睛] 对函数最值的三点说明
(1)闭区间上的连续函数一定有最值,开区间内的连续函数不一定有最值. 若有唯一的极值,则此极值必是函数的最值.
(2)函数的最大值和最小值是一个整体性概念.
(3)函数y=f(x)在[a,b]上连续,是函数y=f(x)在[a,b]上有最大值或最小值的充分而非必要条件.
2.求函数y=f(x)在[a,b]上的最大值与最小值的步骤
(1)求函数y=f(x)在(a,_b)内的极值.
(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
[点睛] 函数极值与最值的关系
(1)函数的极值是函数在某一点附近的局部概念,函数的最大值和最小值是一个整体性概念.
(2)函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个.
(3)极值只能在区间内取得,最值则可以在端点处取得.有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值不在端点处取得时必定是极值.
1.判断(正确的打“√”,错误的打“×”)
(1)函数的最大值一定是函数的极大值.(  )
(2)开区间上的单调连续函数无最值.(  )
(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.(  )
答案:(1)× (2)√ (3)×
2.若函数f(x)=-x4+2x2+3,则f(x)(  )
A.最大值为4,最小值为-4
B.最大值为4,无最小值
C.最小值为-4,无最大值
D.既无最大值,也无最小值
答案:B
3.函数f(x)=3x+sin x在x∈[0,π]上的最小值为________.
答案:1
4.已知f(x)=-x2+mx+1在区间[-2,-1]上的最大值就是函数f(x)的极大值,则m的取值范围是________.
答案:(-4,-2)

求函数的极值
[典例] 求函数f(x)=4x3+3x2-36x+5在区间[-2,+∞)上的最值.
[解] f′(x)=12x2+6x-36,令f′(x)=0,
得x1=-2,x2=.
当x变化时,f′(x),f(x)的变化情况如下表:
x
-2
f′(x)
0

0

f(x)
57
?

?
由于当x>时,f′(x)>0,
所以f(x)在上为增函数.
因此,函数f(x)在[-2,+∞)上只有最小值-,无最大值.
求函数最值的四个步骤
第一步求函数的定义域.
第二步求f′(x),解方程f′(x)=0.
第三步列出关于x,f(x),f′(x)的变化表.
第四步求极值、端点值,确定最值.    
[活学活用]
函数y=x+2cos x在上取最大值时,x的值为(  )
A.0            B.
C. D.
解析:选B y′=1-2sin x,令y′=0,得sin x=,
∵x∈,∴x=. 由y′>0得sin x<,
∴0≤x<;由y′<0得sin x>,∴∴原函数在上单调递增,在上单调递减.当x=0时,y=2,当x=时,y=,当x=时,y=+,∵+>2>,∴当x=时取最大值,故应选B.
由函数的最值求参数的取值范围
[典例]  (1)函数f(x)=x3-x2-x+a在区间[0,2]上的最大值是3,则a等于(  )
A.3  B.1   C.2   D.-1
(2)已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值,并求f(x)在[-2,2]上的最大值.21教育网
[解析] (1)f′(x)=3x2-2x-1,
令f′(x)=0,解得x=-(舍去)或x=1,
又f(0)=a,f(1)=a-1,f(2)=a+2,
则f(2)最大,即a+2=3,
所以a=1.
答案:B
(2)解:f′(x)=6x2-12x=6x(x-2),
令f′(x)=0,得x=0或x=2.
又f(0)=a,f(2)=a-8,f(-2)=a-40.
f(0)>f(2)>f(-2),
所以当x=-2时,f(x)min=a-40=-37,得a=3.
所以当x=0时,f(x)max=3.
已知函数最值求参数的步骤
(1)求出函数在给定区间上的极值及函数在区间端点处的函数值.
(2)通过比较它们的大小,判断出哪个是最大值,哪个是最小值.
(3)结合已知求出参数,进而使问题得以解决.      
[活学活用]
已知函数f(x)=ax3-6ax2+b,问是否存在实数a,b,使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a,b的值;若不存在,请说明理由.
解:存在.显然a≠0.
f′(x)=3ax2-12ax=3ax(x-4).
令f′(x)=0,解得x1=0,x2=4(舍去).
(1)当a>0,x变化时,f′(x),f(x)的变化情况如表:
x
[-1,0)
0
(0,2]
f′(x)

0

f(x)
单调递增?
极大值
单调递减?
所以当x=0时,f(x)取得最大值,所以f(0)=b=3.
又f(2)=-16a+3,f(-1)=-7a+3,f(-1)>f(2).
所以当x=2时,f(x)取得最小值,
即-16a+3=-29,解得a=2.
(2)当a<0,x变化时,f′(x),f(x)的变化情况如表:
x
[-1,0)
0
(0,2]
f′(x)

0

f(x)
单调递减?
极小值
单调递增?
所以当x=0时,f(x)取得最小值,所以b=-29.
又f(2)=-16a-29,f(-1)=-7a-29,
f(2)>f(-1).
所以当x=2时,f(x)取得最大值,
∴f(2)=-16a-29=3,解得a=-2,
综上可得,a=2,b=3或a=-2,b=-29.
与最值有关的恒成立问题
[典例] 已知函数f(x)=x3+ax2+bx+c在x=-与x=1处都取得极值.
(1)求a,b的值及函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)[解] (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
因为f′(1)=3+2a+b=0,f′=-a+b=0,解得a=-,b=-2,
所以f′(x)=3x2-x-2=(3x+2)(x-1),
当x变化时,f′(x),f(x)的变化情况如表:
x

1
(1,+∞)
f′(x)

0

0

f(x)
单调递增?
极大值
单调递减?
极小值
单调递增?
所以函数f(x)的递增区间为和(1,+∞);
递减区间为.
(2)由(1)知,f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f=+c为极大值,21世纪教育网
因为f(2)=2+c,所以f(2)=2+c为最大值.
要使f(x)f(2)=2+c,
解得c<-1或c>2.
故c的取值范围为(-∞,-1)∪(2,+∞).
[一题多变]
1.[变设问]若本例中条件不变,“把(2)中对x∈[-1,2],不等式f(x)解:由典例解析知当x=1时,f(1)=c-为极小值,
又f(-1)=+c>c-,
所以f(1)=c-为最小值.
因为存在x∈[-1,2],不等式f(x)所以只需c2>f(1)=c-,即2c2-2c+3>0,
解得c∈R.
2.[变条件,变设问]已知函数f(x)=x3+ax+b(a,b∈R)在x=2处取得极小值-.
(1)求f(x)的单调递增区间.
(2)若f(x)≤m2+m+在[-4,3]上恒成立,求实数m的取值范围.
解:(1)f′(x)=x2+a,由f′(2)=0,得a=-4;
再由f(2)=-,得b=4.
所以f(x)=x3-4x+4,f′(x)=x2-4.
令f′(x)=x2-4>0,得x>2或x<-2.
所以f(x)的单调递增区间为(-∞,-2),(2,+∞).
(2)因为f(-4)=-,f(-2)=,f(2)=-,
f(3)=1,
所以函数f(x)在[-4,3]上的最大值为.
要使f(x)≤m2+m+在[-4,3]上恒成立,
只需m2+m+≥,
解得m≥2或m≤-3.所以实数m的取值范围是(-∞,-3]∪[2,+∞).
恒成立问题向最值转化的方法
(1)要使不等式f(x)f(x)max,则上面的不等式恒成立.21·cn·jy·com
(2)要使不等式f(x)>h在区间[m,n]上恒成立,可先在区间[m,n]上求出函数f(x)的最小值f(x)min,只要f(x)min>h,则不等式f(x)>h恒成立.    
层级一 学业水平达标
1.设M,m分别是函数f(x)在[a,b]上的最大值和最小值,若M=m,则f′(x)(  )
A.等于0          B.小于0
C.等于1 D.不确定
解析: 选A 因为M=m,所以f(x)为常数函数,故f′(x)=0,故选A.
2.函数y=2x3-3x2-12x+5在[-2,1]上的最大值、最小值分别是(  )
A.12,-8 B.1,-8
C.12,-15 D.5,-16
解析:选A y′=6x2-6x-12,
由y′=0?x=-1或x=2(舍去).
x=-2时,y=1;x=-1时,y=12;x=1时,y=-8.
∴ymax=12,ymin=-8.故选A.
3.函数f(x)=x4-4x(|x|<1)(  )
A.有最大值,无最小值
B.有最大值,也有最小值
C.无最大值,有最小值
D.既无最大值,也无最小值
解析:选D f′(x)=4x3-4=4(x-1)(x2+x+1).
令f′(x)=0,得x=1.又x∈(-1,1)且1?(-1,1),
∴该方程无解,故函数f(x)在(-1,1)上既无极值也无最值.故选D.
4.函数f(x)=2+,x∈(0,5]的最小值为(  )
A.2 B.3
C. D.2+
解析:选B 由f′(x)=-==0,得x=1,
且x∈(0,1)时,f′(x)<0,x∈(1,5]时,f′(x)>0,
∴x=1时,f(x)最小,最小值为f(1)=3.
5.函数y=的最大值为(  )
A.e-1 B.e
C.e2 D.10
解析:选A 令y′===0?x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y极大值=f(e)=e-1,在定义域内只有一个极值,所以ymax=e-1.
6.函数y=-x(x≥0)的最大值为__________.
解析:y′=-1=,令y′=0得x=.
∵0<x<时,y′>0;x>时,y′<0.
∴x=时,ymax=-=.
答案:
7.函数f(x)=xe-x,x∈[0,4]的最小值为________.
解析:f′(x)=e-x-xe-x=e-x(1-x).
令f′(x)=0,得x=1(e-x>0),
∴f(1)=>0,f(0)=0,f(4)=>0,
所以f(x)的最小值为0.
答案:0
8.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为m,n,则m-n=________.www.21-cn-jy.com
解析:∵f′(x)=3x2-3,
∴当x>1或x<-1时,f′(x)>0;
当-1<x<1时,f′(x)<0.
∴f(x)在[0,1]上单调递减,在[1,3]上单调递增.
∴f(x)min=f(1)=1-3-a=-2-a=n.
又∵f(0)=-a,f(3)=18-a,∴f(0)<f(3).
∴f(x)max=f(3)=18-a=m,
∴m-n=18-a-(-2-a)=20.
答案:20
9.设函数f(x)=ex-x2-x.
(1)若k=0,求f(x)的最小值;
(2)若k=1,讨论函数f(x)的单调性.
解:(1)k=0时,f(x)=ex-x,f′(x)=ex-1.
当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,故f(x)的最小值为f(0)=1.
(2)若k=1,则f(x)=ex-x2-x,定义域为R.
∴f′(x)=ex-x-1,令g(x)=ex-x-1,
则g′(x)=ex-1,
由g′(x)≥0得x≥0,所以g(x)在[0,+∞)上单调递增,
由g′(x)<0得x<0,所以g(x)在(-∞,0)上单调递减,
∴g(x)min=g(0)=0,即f′(x)min=0,故f′(x)≥0.
所以f(x)在R上单调递增.
10.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.21·世纪*教育网
(1)求a,b的值;
(2)求y=f(x)在[-3,1]上的最大值.
解:(1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,www-2-1-cnjy-com
∴f(1)=1+a+b+5=4,即a+b=-2,
又由f(x)=x3+ax2+bx+5得,
又f′(x)=3x2+2ax+b,
而由切线y=3x+1的斜率可知f′(1)=3,
∴3+2a+b=3,即2a+b=0,
由解得
∴a=2,b=-4.
(2)由(1)知f(x)=x3+2x2-4x+5,
f′(x)=3x2+4x-4=(3x-2)(x+2),
令f′(x)=0,得x=或x=-2.
当x变化时,f(x),f′(x)的变化情况如下表:
x
-3
(-3,-2)
-2
1
f′(x)

0

0

f(x)
8
?
极大值
?
极小值
?
4
∴f(x)的极大值为f(-2)=13,极小值为f=,
又f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值为13.
层级二 应试能力达标
1.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为(  )
A.[0,1)         B.(0,1)
C.(-1,1) D.
解析:选B ∵f′(x)=3x2-3a,令f′(x)=0,可得a=x2,又∵x∈(0,1),∴0<a<1,故选B.21cnjy.com
2.若函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为(  )
A.-10 B.-71
C.-15 D.-22
解析:选B f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0,得x=3或x=-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.2-1-c-n-j-y
3.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小值时t的值为(  )21*cnjy*com
A.1 B.
C. D.
解析:选D 因为f(x)的图象始终在g(x)的上方,所以|MN|=f(x)-g(x)=x2-ln x,设h(x)=x2-ln x,则h′(x)=2x-=,令h′(x)==0,得x=,所以h(x)在上单调递减,在上单调递增,所以当x=时有最小值,故t=.
4.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是(  )
A.[3,+∞) B.[-3,+∞)
C.(-3,+∞) D.(-∞,-3)
解析:选B ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立,即a≥-3x2在[1,+∞)上恒成立,又∵在[1,+∞)上(-3x2)max=-3,∴a≥-3.【21教育名师】
5.已知函数f(x)=ax-ln x,若f(x)>1在区间(1,+∞)内恒成立,实数a的取值范围为________.【21教育】
解析:由题意知a>在区间(1,+∞)内恒成立.
设g(x)=,则g′(x)=-<0(x>1),
∴g(x)=在区间(1,+∞)内单调递减,
∴g(x)<g(1),
∵g(1)=1,
∴<1在区间(1,+∞)内恒成立,
∴a≥1.
答案:[1,+∞)
6.已知函数y=-x2-2x+3在区间[a,2]上的最大值为,则a=________.
解析:y′=-2x-2,令y′=0,得x=-1,∴函数在(-∞,-1)上单调递增,在(-1,+∞)上单调递减.若a>-1,则最大值为f(a)=-a2-2a+3=,解之得a=-;若a≤-1,则最大值为f(-1)=-1+2+3=4≠.综上知,a=-.
答案:-
7.已知a∈R,函数f(x)=x2(x-a).
(1)当a=3时,求f(x)的零点;
(2)求函数y=f(x)在区间[1,2]上的最小值.
解:(1)当a=3时,f(x)=x2(x-3),
令f(x)=0,解得x=0或x=3.
(2)设此最小值为m,
而f′(x)=3x2-2ax=3x,x∈(1,2),
①当a≤0时,在1<x<2时,f′(x)>0,
则f(x)是区间[1,2]上的增函数,所以m=f(1)=1-a;
②当a>0时,
在x<0或x>时,f′(x)>0,
从而f(x)在区间上是增函数;
在0<x<时,f′(x)<0,
从而f(x)在区间上是减函数.
ⅰ当a≥2,即a≥3时,m=f(2)=8-4a;
ⅱ当1<a<2,即<a<3时,m=f=-.
ⅲ当0<a≤1,即0<a≤时,m=f(1)=1-a.
综上所述,所求函数的最小值m=
8.已知函数f(x)=ln x+.
(1)当a<0时,求函数f(x)的单调区间;
(2)若函数f(x)在[1,e]上的最小值是,求a的值.
解:函数f(x)=ln x+的定义域为(0,+∞),
f′(x)=-=,
(1)∵a<0,∴f′(x)>0,
故函数在其定义域(0,+∞)上单调递增.
(2)x∈[1,e]时,分如下情况讨论:
①当a<1时,f′(x)>0,函数f(x)单调递增,其最小值为f(1)=a<1,这与函数在[1,e]上的最小值是相矛盾;【21·世纪·教育·网】
②当a=1时,函数f(x)在[1,e]上单调递增,其最小值为f(1)=1,同样与最小值是相矛盾;
③当10,f(x)单调递增,【21cnj*y.co*m】
所以,函数f(x)的最小值为f(a)=ln a+1,由ln a+1=,得a=.
④当a=e时,函数f(x)在[1,e]上有f′(x)<0,f(x)单调递减,其最小值为f(e)=2,这与最小值是相矛盾;21*教*育*名*师
⑤当a>e时,显然函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+>2,仍与最小值是相矛盾;21-cnjy*com
综上所述,a的值为.
1.1.3 导数的几何意义
 预习课本P6~8,思考并完成下列问题
(1)导数的几何意义是什么?
 
 
(2)导函数的概念是什么?怎样求导函数?
 
 
(3)怎么求过一点的曲线的切线方程?
 
 
 
   
1.导数的几何意义
(1)切线的概念:如图,对于割线PPn,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.【21教育名师】
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k= =f′(x0).2·1·c·n·j·y
2.导函数的概念
(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).
(2)记法:f′(x)或y′,即f′(x)=y′= .
[点睛] 曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.与曲线只有一个公共点的直线也不一定是曲线的切线.
1.判断(正确的打“√”,错误的打“×”)
(1)导函数f′(x)的定义域与函数f(x)的定义域相同.(  )
(2)直线与曲线相切,则直线与已知曲线只有一个公共点.(  )
(3)函数f(x)=0没有导函数.(  )
答案:(1)× (2)× (3)×
2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线(  )
A.不存在         B.与x轴平行或重合
C.与x轴垂直 D.与x轴斜交
答案:B
3.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=(  )
A.4    B.-4
C.-2    D.2
答案:D
4.抛物线y2=x与x轴、y轴都只有一个公共点,在x轴和y轴这两条直线中,只有________是它的切线,而______不是它的切线.
答案:y轴 x轴
求曲线的切线方程
[典例] 已知曲线C:y=x3+,求曲线C上的横坐标为2的点处的切线方程.
[解]  将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2= =
=[4+2·Δx+(Δx)2]=4.
∴k=y′|x=2=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),
即4x-y-4=0.
1.过曲线上一点求切线方程的三个步骤
2.求过曲线y=f(x)外一点P(x1,y1)的切线方程的六个步骤
(1)设切点(x0,f(x0)).
(2)利用所设切点求斜率k=f′(x0)= .
(3)用(x0,f(x0)),P(x1,y1)表示斜率.
(4)根据斜率相等求得x0,然后求得斜率k.
(5)根据点斜式写出切线方程.
(6)将切线方程化为一般式.     
 [活学活用]
过点(1,-1)且与曲线y=x3-2x相切的直线方程为(  )
A.x-y-2=0或5x+4y-1=0
B.x-y-2=0
C.x-y-2=0或4x+5y+1=0
D.x-y+2=0
解析:选A 显然点(1,-1)在曲线y=x3-2x上,
若切点为(1,-1),则由f′(1)=

=[(Δx)2+3Δx+1]=1,
∴切线方程为y-(-1)=1×(x-1),
即x-y-2=0.
若切点不是(1,-1),设切点为(x0,y0),
则k===
=x+x0-1,
又由导数的几何意义知
k=f′(x0)=
= =3x-2,
∴x+x0-1=3x-2,
∴2x-x0-1=0,
∵x0≠1,∴x0=-.
∴k=x+x0-1=-,
∴切线方程为y-(-1)=-(x-1),
即5x+4y-1=0,故选A.
求切点坐标
[典例]  已知抛物线y=2x2+1分别满足下列条件,请求出切点的坐标.
(1)切线的倾斜角为45°.
(2)切线平行于直线4x-y-2=0.
(3)切线垂直于直线x+8y-3=0.
[解] 设切点坐标为(x0,y0),则
Δy=2(x0+Δx)2+1-2x-1=4x0·Δx+2(Δx)2,
∴=4x0+2Δx,
当Δx→0时,→4x0,即f′(x0)=4x0.
(1)∵抛物线的切线的倾斜角为45°,
∴斜率为tan 45°=1.
即f′(x0)=4x0=1,得x0=,
∴切点的坐标为.
(2)∵抛物线的切线平行于直线4x-y-2=0,
∴k=4,即f′(x0)=4x0=4,得x0=1,
∴切点坐标为(1,3).
(3)∵抛物线的切线与直线x+8y-3=0垂直,
则k·=-1,即k=8,
故f′(x0)=4x0=8,得x0=2,∴切点坐标为(2,9).
求切点坐标可以按以下步骤进行
(1)设出切点坐标;
(2)利用导数或斜率公式求出斜率;
(3)利用斜率关系列方程,求出切点的横坐标;
(4)把横坐标代入曲线或切线方程,求出切点纵坐标.      
[活学活用]
直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,则a的值为___________,切点坐标为____________.21cnjy.com
解析:设直线l与曲线C的切点为(x0,y0),
因为y′= =3x2-2x,
则y′|x=x0=3x-2x0=1,解得x0=1或x0=-,
当x0=1时,y0=x-x+1=1,
又(x0,y0)在直线y=x+a上,
将x0=1,y0=1代入得a=0与已知条件矛盾舍去.
当x0=-时,y0=3-2+1=,
则切点坐标为,将代入直线y=x+a中得a=.
答案: 
层级一 学业水平达标
1.下面说法正确的是(  )
A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线
B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在
C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在
D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在
解析:选C f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处切线的斜率,当切线垂直于x轴时,切线的斜率不存在,但存在切线.21·cn·jy·com
2.曲线y=在点的切线的斜率为(  )
A.2            B.-2
C.4 D.-4
解析:选D 因为y′= =
= =-.
所以曲线在点的切线斜率为k=y′|x==-4.
3.曲线y=x3-2在点处切线的倾斜角为(  )
A.1     B.    C.    D.-
解析:选B ∵y′=
= =x2,
∴切线的斜率k=y′|x=1=1.
∴切线的倾斜角为,故应选B.
4.曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于(  )
A.1 B.
C.- D.-1
解析:选A ∵y′|x=1= =
li = (2a+aΔx)=2a,
∴2a=2,∴a=1.
5.过正弦曲线y=sin x上的点的切线与y=sin x的图象的交点个数为(  )
A.0个 B.1个
C.2个 D.无数个
解析:选D 由题意,y=f(x)=sin x,
则f′=
= .
当Δx→0时,cos Δx→1,
∴f′=0.
∴曲线y=sin x的切线方程为y=1,且与y=sin x的图象有无数个交点.
6.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=________.21教育网
解析:由导数的几何意义得f′(1)=,由点M在切线上得f(1)=×1+2=,所以f(1)+f′(1)=3.www.21-cn-jy.com
答案:3
7.已知曲线f(x)=,g(x)=过两曲线交点作两条曲线的切线,则曲线f(x)在交点处的切线方程为____________________.【21·世纪·教育·网】
解析:由,得
∴两曲线的交点坐标为(1,1).
由f(x)=,
得f′(x)= = =,
∴y=f(x)在点(1,1)处的切线方程为y-1=(x-1).
即x-2y+1=0,
答案:x-2y+1=0
8.曲线y=x2-3x的一条切线的斜率为1,则切点坐标为________.
解析:设f(x)=y=x2-3x,切点坐标为(x0,y0),
f′(x0)=
= =2x0-3=1,故x0=2,
y0=x-3x0=4-6=-2,故切点坐标为(2,-2).
答案:(2,-2)
9.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.
解:根据题意可知与直线x-y-2=0平行的抛物线y=x2的切线对应的切点到直线x-y-2=0的距离最短,设切点坐标为(x0,x),则y′|x=x0= =2x0=1,所以x0=,所以切点坐标为,21·世纪*教育网
切点到直线x-y-2=0的距离d==,所以抛物线上的点到直线x-y-2=0的最短距离为.
10.已知直线l:y=4x+a和曲线C:y=x3-2x2+3相切,求a的值及切点的坐标.
解:设直线l与曲线C相切于点P(x0,y0),
∵=
=(Δx)2+(3x0-2)Δx+3x-4x0.
∴当Δx→0时,→3x-4x0,
即f′(x0)=3x-4x0,
由导数的几何意义,得3x-4x0=4,
解得x0=-或x0=2.
∴切点的坐标为或(2,3),
当切点为时,
有=4×+a,
∴a=,
当切点为(2,3)时,有3=4×2+a,
∴a=-5,
当a=时,切点为;
a=-5时,切点为(2,3).
层级二 应试能力达标
1.已知y=f(x)的图象如图,则f′(xA)与f′(xB)的大小关系是(  )
A.f′(xA)>f′(xB)
B.f′(xA)C.f′(xA)=f′(xB)
D.不能确定
解析:选B 由图可知,曲线在点A处的切线的斜率比曲线在点B处的切线的斜率小,结合导数的几何意义知f′(xA)2.已知曲线y=2x3上一点A(1,2),则点A处的切线斜率等于(  )
A.0            B.2
C.4 D.6
解析:选D Δy=2(1+Δx)3-2×13=6Δx+6(Δx)2+2(Δx)3, =[2(Δx)2+6Δx+6]=6,故选D.www-2-1-cnjy-com
3.设f(x)存在导函数,且满足 =-1,则曲线y=f(x)上点(1,f(1))处的切线斜率为(  )2-1-c-n-j-y
A.2 B.-1
C.1 D.-2
解析:选B l
= =f′(x)=-1.
4.已知直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则为(  )
A. B.
C.- D.-
解析:选D 由导数的定义可得y′=3x2,∴y=x3在点P(1,1)处的切线斜率k=y′|x=1=3,由条件知,3×=-1,∴=-.21*cnjy*com
5.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则【21cnj*y.co*m】
=______.
解析:由导数的概念和几何意义知,
=f′(1)=kAB==-2.
答案:-2
6.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则的最小值为________.【21教育】
解析:由导数的定义,得f′(0)=
= = (a·Δx+b)=b.
又因为对于任意实数x,有f(x)≥0,
则所以ac≥,所以c>0.
所以=≥≥=2.
答案:2
7.求曲线y=和y=x2在它们交点处的两条切线与x轴所围成的三角形的面积.
解:联立两曲线方程,得
解得即交点坐标为(1,1).
曲线y=在点(1,1)处的切线的斜率为
f′(1)= = =-1,
所以曲线y=在点(1,1)的切线方程为y-1=-1(x-1),即y=-x+2.
同理,曲线y=x2在点(1,1)处的切线的斜率为
f′(1)= =
= (2+Δx)=2.
所以曲线y=x2在点(1,1)的切线方程为y-1=2(x-1),即y=2x-1,两条切线y=-x+2和y=2x-1与x轴所围成的图形如图所示.所以S=×1×=.故三角形的面积为.21*教*育*名*师
8.过点P(-1,0)作抛物线y=x2+x+1的切线,求切线方程.
解:设切线过抛物线上的点Q(x0,x+x0+1),则y′|x=x0= = (2x0+Δx+1)=2x0+1,因为切线过点P(-1,0)和点Q(x0,x+x0+1),其斜率满足=2x0+1,所以x+2x0=0,解得x0=0或x0=-2,所以点(0,1),(-2,3)是抛物线上的点.21-cnjy*com
因此在点(0,1)的切线方程为y-1=x,即x-y+1=0;在点(-2,3)的切线方程为y-3=-3(x+2),即3x+y+3=0.所以所求切线方程为x-y+1=0和3x+y+3=0.
1.4 
几何中的最值问题
[典例] 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截下的小正方形边长应为多少?
[解] 设截下的小正方形边长为x,容器容积为V(x),则做成的长方体形无盖容器底面边长为a-2x,高为x,21cnjy.com
V(x)=(a-2x)2x,0即V(x)=4x3-4ax2+a2x,0实际问题归结为求V(x)在区间上的最大值点.
为此,先求V(x)的极值点.在开区间内,
V′(x)=12x2-8ax+a2.
令V′(x)=0,得12x2-8ax+a2=0.
解得x1=a,x2=a(舍去).
x1=a在区间内,x1可能是极值点.且
当00;
当x1因此x1是极大值点,且在区间内,x1是唯一的极值点,所以x=a是V(x)的最大值点.
即当截下的小正方形边长为a时,容积最大.
1.利用导数解决实际问题中的最值的一般步骤
(1)分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);21·世纪*教育网
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值;
(4)把所得数学结论回归到数学问题中,看是否符合实际情况并下结论.
2.几何中最值问题的求解思路
面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.      
[活学活用]
1.已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为________.
解析:设圆柱的底面半径为r,
则S圆柱底=2πr2,
S圆柱侧=2πrh,
∴圆柱的表面积S=2πr2+2πrh.
∴h=,
又圆柱的体积V=πr2h=(S-2πr2)=,
V′(r)=,
令V′(r)=0得S=6πr2,∴h=2r,因为V′(r)只有一个极值点,故当h=2r时圆柱的容积量大.www-2-1-cnjy-com
又r=,∴h=2=.
即当圆柱的容积V最大时,圆柱的高h为.
答案:
2.将一段长为100 cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截可使正方形与圆面积之和最小?21*cnjy*com
解:设弯成圆的一段长为x(0<x<100),另一段长为100-x,记正方形与圆的面积之和为S,则S=π2+2(0<x<100),则S′=-(100-x).
令S′=0,则x=.
由于在(0,100)内函数只有一个导数为零的点,问题中面积之和最小值显然存在,故当x= cm时,面积之和最小.
故当截得弯成圆的一段长为 cm时,两种图形面积之和最小.
用料、费用最少问题
[典例] 某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
[解]  (1)设需新建n个桥墩,则(n+1)x=m,
即n=-1.
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-=(x-512).令f′(x)=0,得x=512,所以x=64.
当0当640,f(x)在区间(64,640)内为增函数,
所以f(x)在x=64处取得最小值.
此时n=-1=-1=9.
故需新建9个桥墩才能使y最小.
费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际做答.      
[活学活用]
某工厂要围建一个面积为128 m2的矩形堆料场,一边可以用原有的墙壁,其它三边要砌新的墙壁,要使砌墙所用的材料最省,则堆料场的长、宽应分别是多少?
解:设场地宽为x m,则长为 m,
因此新墙总长度为y=2x+(x>0),
y′=2-,令y′=0,∵x>0,∴x=8.
因为当0<x<8时,y′<0;当x>8时,y′>0,
所以当x=8时,y取最小值,此时宽为8 m,长为16 m.
即当堆料场的长为16 m,宽为8 m时,可使砌墙所用材料最省.
利润最大问题
[典例] 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2.其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.【21·世纪·教育·网】
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
[解]  (1)因为x=5时,y=11,
所以+10=11,a=2.
(2)由(1)可知,该商品每日的销售量y=+10(x-6)2,
所以商场每日销售该商品所获得的利润
f(x)=(x-3)=2+10(x-3)·(x-6)2,3<x<6.
从而f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x)

0

f(x)
单调递增↗
极大值42
单调递减↘
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以当x=4时,函数f(x)取得最大值,且最大值等于42.
即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
1.经济生活中优化问题的解法
经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.2-1-c-n-j-y
2.关于利润问题常用的两个等量关系
(1)利润=收入-成本.
(2)利润=每件产品的利润×销售件数.    
[活学活用]
工厂生产某种产品,次品率p与日产量x(万件)间的关系为p=(c为常数,且0(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
解:(1)当x>c时,p=,y=·x·3-·x·=0;
当0∴y=·x·3-·x·=.
∴日盈利额y(万元)与日产量x(万件)的函数关系为
y=(c为常数,且0(2)由(1)知,当x>c时,日盈利额为0.
当0∴y′=·=,
令y′=0,得x=3或x=9(舍去),
∴①当00,∴y在区间(0,c]上单调递增,∴y最大值=f(c)=.
②当3≤c<6时,在(0,3)上,y′>0,在(3,c)上,y′<0,∴y在(0,3)上单调递增,在(3,c)上单调递减.【21cnj*y.co*m】
∴y最大值=f(3)=.
综上,若0层级一 学业水平达标
1.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是(  )
A.8            B.
C.-1 D.-8
解析:选C 瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.
2.把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )
A. cm2 B.4 cm2
C.3 cm2 D.2 cm2
解析:选D 设一段为x,则另一段为12-x(0<x<12),
则S(x)=×2×+×2×=,∴S′(x)=.
令S′(x)=0,得x=6,
当x∈(0,6)时,S′(x)<0,
当x∈(6,12)时,S′(x)>0,
∴当x=6时,S(x)最小.
∴S==2(cm2).
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)=则总利润最大时,每年生产的产品是(  )
A.100 B.150
C.200 D.300
解析:选D 由题意,总成本为:C=20 000+100x,所以总利润为P=R-C=
P′=令P′=0,当0≤x≤400时,得x=300;当x>400时,P′<0恒成立,易知当x=300时,总利润最大.
4.设正三棱柱的体积为V,那么其表面积最小时,底面边长为(  )
A. B.2
C. D.V
解析:选C 设底面边长为x,则高为h=,
∴S表=3××x+2×x2=+x2,
∴S表′=-+x,
令S表′=0,得x=.
经检验知,当x=时,S表取得最小值.
5.内接于半径为R的球且体积最大的圆锥的高为(  )
A.R B.2R
C.R D.R
解析:选C 设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2,∴V=πr2h=h(2Rh-h2)=πRh2-h3,V′=πRh-πh2.令V′=0得h=R. 当00;当6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.
解析:设甲地销售x辆,则乙地销售(15-x)辆.
总利润L=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
令L′=-0.3x+3.06=0,得x=10.2.
∴当x=10时,L有最大值45.6.
答案:45.6
7.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.21世纪教育网
解析:设CD=x,则点C坐标为,点B坐标为,
∴矩形ABCD的面积
S=f(x)=x·
=-+x,x∈(0,2).
由f′(x)=-x2+1=0,
得x1=-(舍),x2=,
∴x∈时,f′(x)>0,f(x)是递增的,
x∈时,f′(x)<0,f(x)是递减的,
当x=时,f(x)取最大值.
答案:
8.某厂生产某种产品x件的总成本:C(x)=1 200+x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.
解析:设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=.
总利润y=500-x3-1 200(x>0),
y′=-x2,由y′=0,得x=25,x∈(0,25)时,
y′>0,x∈(25,+∞)时,y′<0,所以x=25时,
y取最大值.
答案:25
9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=,再由C(0)=8,得k=40,
因此C(x)=.
而建造费用为C1(x)=6x.
最后得隔热层建造费用与20年的能源消耗费用之和为
f(x)=20C(x)+C1(x)=20×+6x
=+6x(0≤x≤10).
(2)f′(x)=6-,
令f′(x)=0,即=6,
解得x=5,x=-(舍去).
当00,
故x=5是f(x)的最小值点,对应的最小值为
f(5)=6×5+=70.
当隔热层修建5 cm厚时,总费用达到最小值70万元.
10.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=(x∈N*).21·cn·jy·com
(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;
(2)为获最大日盈利,该厂的日产量应定为多少件?
解:(1)由题意可知次品率p=日产次品数/日产量,每天生产x件,次品数为xp,正品数为x(1-p).
因为次品率p=,当每天生产x件时,
有x·件次品,有x件正品.
所以T=200x-100x·
=25·(x∈N*).
(2)T′=-25·,
由T′=0得x=16或x=-32(舍去).
当0层级二 应试能力达标
1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为(  )
A.13万件          B.11万件
C.9万件 D.7万件
解析:选C y′=-x2+81,令y′=0,解得x=9或x=-9(舍去),当0<x<9时,y′>0;当x>9时,y′<0. 所以当x=9时,y取得最大值.
2.若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为(  )
A.2πr2 B.πr2
C.4πr2 D.πr2
解析:选A 设内接圆柱的底面半径为r1,高为t,
则S=2πr1t=2πr12=4πr1.
∴S=4π. 令(r2r-r)′=0得r1=r.
此时S=4π·r·=4π·r·r=2πr2.
3.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,要使利润最大每件定价为(  )
A.80元 B.85元
C.90元 D.95元
解析:选B 设每件商品定价x元,依题意可得
利润为L=x(200-x)-30x=-x2+170x(0<x<200).
L′=-2x+170,令-2x+170=0,解得x==85.
因为在(0,200)内L只有一个极值,所以以每件85元出售时利润最大.
4.内接于半径为R的半圆的周长最大的矩形的宽和长分别为(  )
A.和R B.R和R
C.R和R D.以上都不对
解析:选B 设矩形的宽为x,则长为2,
则l=2x+4(0令l′=0,解得x1=R,x2=-R(舍去).
当00,当R所以当x=R时,l取最大值,即周长最大的矩形的宽和长分别为R,R.
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x=________吨.
解析:设该公司一年内总共购买n次货物,则n=,
∴总运费与总存储费之和f(x)=4n+4x=+4x,令f′(x)=4-=0,解得x=20,x=-20(舍去),2·1·c·n·j·y
x=20是函数f(x)的最小值点,故当x=20时,f(x)最小.
答案:20
6.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示).当帐篷的顶点O到底面中心O1的距离为__________ m时,帐篷的体积最大.
解析:设OO1为x m,底面正六边形的面积为S m2,帐篷的体积为V m3. 则由题设可得正六棱锥底面边长为=(m),于是底面正六边形的面积为S=6×()2=(8+2x-x2).
帐篷的体积为
V=×(8+2x-x2)(x-1)+(8+2x-x2)
=(8+2x-x2)
=(16+12x-x3),
V′=(12-3x2).
令V′=0,解得x=2或x=-2(不合题意,舍去).
当1<x<2时,V′>0;当2<x<4时,V′<0.
所以当x=2时,V最大.
答案:2
7.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤3).
(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?
(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)
解:(1)设投入t(百万元)的广告费后增加的收益为f(t),
则有f(t)=(-t2+5t)-t=-t2+4t=-(t-2)2+4(0≤t≤3),
∴当t=2时,f(t)取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.
(2)设用于技术改造的资金为x(百万元),
则用于广告促销的资金为(3-x)(百万元),又设由此获得的收益是g(x)(百万元),
则g(x)=+[-(3-x)2+5(3-x)]-3=-x3+4x+3(0≤x≤3),
∴g′(x)=-x2+4,
令g′(x)=0,解得x=-2(舍去)或x=2.
又当0≤x<2时,g′(x)>0;当2∴当x=2时,g(x)取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.
8.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=x3-x+8(0(1)当x=64千米/小时时,行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?
解:(1)当x=64千米/小时时,要行驶100千米需要=小时,要耗油
×=11.95(升).
(2)设22.5升油能使该型号汽车行驶a千米,由题意得,
×=22.5,
∴a=,
设h(x)=x2+-,
则当h(x)最小时,a取最大值,
h′(x)=x-=,
令h′(x)=0?x=80,
当x∈(0,80)时,h′(x)<0,
当x∈(80,120)时,h′(x)>0,
故当x∈(0,80)时,函数h(x)为减函数,
当x∈(80,120)时,函数h(x)为增函数,
∴当x=80时,h(x)取得最小值,此时a取最大值为
a==200.
故若油箱有22.5升油,则该型号汽车最多行驶200千米.
(时间: 120分钟 满分:150分)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以正弦曲线y=sin x上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(  )
A.∪     B.[0,π)
C. D.∪
解析:选A y′=cos x,∵cos x∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是∪.
2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(   )
A.1个 B.2个
C.3个 D.4个
解析:选A 设极值点依次为x1,x2,x3且a<x1<x2<x3<b,则f(x)在(a,x1),(x2,x3)上递增,在(x1,x2),(x3,b)上递减,因此,x1,x3是极大值点,只有x2是极小值点.
3.函数f(x)=x2-ln x的单调递减区间是(  )
A.
B.
C. ,
D.,
解析:选A ∵f′(x)=2x-=,当0<x≤时,f′(x)≤0,故f(x)的单调递减区间为.
4.函数f(x)=3x-4x3(x∈[0,1])的最大值是(  )
A.1 B.
C.0 D.-1
解析:选A f′(x)=3-12x2,令f′(x)=0,
则x=-(舍去)或x=,f(0)=0,f(1)=-1,
f=-=1,∴f(x)在[0,1]上的最大值为1.
5.已知函数f(x)的导函数f′(x)=a(x-b)2+c的图象如图所示,则函数f(x)的图象可能是(  )【21教育】
解析:选D 由导函数图象可知,当x<0时,函数f(x)递减,排除A、B;当00,函数f(x)递增.因此,当x=0时,f(x)取得极小值,故选D.
6.定义域为R的函数f(x)满足f(1)=1,且f(x)的导函数f′(x)>,则满足2f(x)A.{x|-1C.{x|x<-1或x>1} D.{x|x>1}
解析:选B 令g(x)=2f(x)-x-1,∵f′(x)>,
∴g′(x)=2f′(x)-1>0,∴g(x)为单调增函数,
∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴当x<1时,
g(x)<0,即2f(x)7.某产品的销售收入y1(万元)是产量x(千台)的函数:y1=17x2,生产成本y2(万元)是产量x(千台)的函数:y2=2x3-x2(x>0),为使利润最大,应生产(  )
A.6千台 B.7千台
C.8千台 D.9千台
解析:选A 设利润为y,则y=y1-y2=17x2-(2x3-x2)=18x2-2x3,y′=36x-6x2,令y′=0得x=6或x=0(舍),f(x)在(0,6)上是增函数,在(6,+∞)上是减函数,∴x=6时y取得最大值.21*教*育*名*师
8.已知定义在R上的函数f(x),f(x)+x·f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b) B.af(b)<bf(a)
C.af(a)>bf(b) D.af(b)>bf(a)
解析:选C [x·f(x)]′=x′f(x)+x·f′(x)=f(x)+x·f′(x)<0,
∴函数x·f(x)是R上的减函数,
∵a<b,∴af(a)>bf(b).
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)
9.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3处取得极值,则a=________.
解析:f′(x)=3x2+2ax+3,∵f′(-3)=0.
∴3×(-3)2+2a×(-3)+3=0,∴a=5.
答案:5
10.若f(x)=x3-f′(1)x2+x+5,则f′(1)=________,f′(2)=________.
解析:f′(x)=x2-2f′(1)x+1,令x=1,得f′(1)=,∴f′(2)=22-2××2+1=.
答案: 
11.函数y=ln(x2-x-2)的定义域为________,单调递减区间为________.
解析:由题意,x2-x-2>0,解得x<-1或x>2,故函数y=ln(x2-x-2)的定义域为(-∞,-1)∪(2,+∞),
令f(x)=x2-x-2,f′(x)=2x-1<0,得x<,
∴函数y=ln(x2-x-2)的单调递减区间为(-∞,-1).
答案:(-∞,-1)∪(2,+∞) (-∞,-1)
12.函数y=x3-6x+a的极大值为________,极小值为________.
解析:y′=3x2-6=3(x+)(x-),
令y′>0,得x>或x<-,
令y′<0,得-<x<,
∴当x=-时取得极大值a+4,
当x=时取得极小值a-4.
答案:a+4 a-4
13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=________,b=________.www.21-cn-jy.com
解析:y′=3x2+2ax+b,方程y′=0有根-1及3,
由根与系数的关系得,

答案:-3 -9
14.已知函数f(x)满足f(x)=f(π-x),且当x∈时,f(x)=x+sin x,设a=f(1),b=f(2),c=f(3),则a,b,c的大小关系是________.
解析:f(2)=f(π-2),f(3)=f(π-3),
因为f′(x)=1+cos x≥0,
故f(x)在上是增函数,
∵>π-2>1>π-3>0,
∴f(π-2)>f(1)>f(π-3),即c答案:c15.若函数f(x)=在区间(m,2m+1)上单调递增,则实数m的取值范围是__________.
解析:f′(x)=,令f′(x)>0,得-1<x<1,
即函数f(x)的增区间为(-1,1).
又f(x)在(m,2m+1)上单调递增,
所以解得-1<m≤0.
答案:(-1,0]
三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)
16.(本小题满分14分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
解:(1)f′(x)=3ax2+2bx-3,依题意,
f′(1)=f′(-1)=0,即
解得a=1,b=0.
∴f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).
令f′(x)=0,得x=-1或x=1.
若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,
故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数.
若x∈(-1,1),则f′(x)<0,故f(x)在(-1,1)上是减函数.
∴f(-1)=2是极大值;f(1)=-2是极小值.
(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.
∵f′(x0)=3(x-1),
故切线的方程为y-y0=3(x-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x-3x0)=3(x-1)(0-x0).
化简得x=-8,解得x0=-2.
∴切点为M(-2,-2),切线方程为9x-y+16=0.
17. (本小题满分15分)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;
(2)求f(x)的单调区间.
解:(1)因为f(x)=xea-x+bx,
所以f′(x)=(1-x)ea-x+b.
依题设有即
解得
(2)由(1)知f(x)=xe2-x+ex.
由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,
f′(x)与1-x+ex-1同号.
令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.
所以当x∈(-∞,1)时,g′(x)<0,
g(x)在区间(-∞,1)上单调递减;
当x∈(1,+∞)时,g′(x)>0,
g(x)在区间(1,+∞)上单调递增.
故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,
从而g(x)>0,x∈(-∞,+∞).
综上可知,f′(x)>0,x∈(-∞,+∞),
故f(x)的单调递增区间为(-∞,+∞).
18.(本小题满分15分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.
(1)求a,b的值;
(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.
解:(1)由投资额为零时收益为零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
设投入经销B商品的资金为x万元(0<x≤5),
则投入经销A商品的资金为(5-x)万元,
设所获得的收益为S(x)万元,
则S(x)=2(5-x)+6ln(x+1)
=6ln(x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
当0<x<2时,S′(x)>0,函数S(x)单调递增;
当2<x≤5时,S′(x)<0,函数S(x)单调递减.
所以当x=2时,函数S(x)取得最大值,
S(x)max=S(2)=6ln 3+6≈12.6万元.
所以,当投入经销A商品3万元,B商品2万元时,
他可获得最大收益,收益的最大值约为12.6万元.
19.(本小题满分15分)已知函数f(x)=ax2+2ln(1-x)(a为常数).
(1)若f(x)在x=-1处有极值,求a的值并判断x=-1是极大值点还是极小值点;
(2)若f(x)在[-3,-2]上是增函数,求a的取值范围.
解:(1)f′(x)=2ax-,x∈(-∞,1),
f′(-1)=-2a-1=0,
所以a=-.
f′(x)=-x-=.
∵x<1,∴1-x>0,x-2<0,
因此,当x<-1时f′(x)>0,
当-1∴x=-1是f(x)的极大值点.
(2)由题意f′(x)≥0在x∈[-3,-2]上恒成立,
即2ax-≥0在x∈[-3,-2]上恒成立
∴a≤在x∈[-3,-2]上恒成立,
∵-x2+x=-2+ ∈[-12,-6],
∴∈,
∴min=-,a≤-.
即a的取值范围为.
20.(本小题满分15分)已知函数f(x)=x+(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).21教育网
(1)求证:x1,x2为关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t)的表达式;
(3)在(2)的条件下,若在区间[2,16]内总存在m+1个实数a1,a2,…,am+1(可以相同),使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
解:(1)证明:由题意可知:y1=x1+,y2=x2+
∵f′(x)=1-,
∴切线PM的方程为:y-=(x-x1),
又∵切线PM过点P(1,0),
∴0-=(1-x1),
即x+2tx1-t=0,①
同理,由切线PN也过点P(1,0),
得x+2tx2-t=0.②
由①②,可得x1,x2是方程x2+2tx-t=0(*)的两根
(2)由(*)知
|MN|=

=,
∴g(t)=(t>0).
(3)易知g(t)在区间[2,16]上为增函数,
∴g(2)≤g(ai)≤g(16)(i=1,2,…,m+1),
则m·g(2)≤g(a1)+g(a2)+…+g(am)<g(am+1)≤g(16).
即m·g(2)<g(16),
即m<,
所以m< ,由于m为正整数,所以m≤6.
又当m=6时,存在a1=a2=…=a6=2,a7=16满足条件,所以m的最大值为6.
课件21张PPT。