1.1 菱形的性质与判定(3)同步作业

文档属性

名称 1.1 菱形的性质与判定(3)同步作业
格式 doc
文件大小 1.7MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2018-06-19 11:37:13

图片预览

文档简介

21世纪教育网 –中小学教育资源及组卷应用平台
1.1 菱形的性质与判定(3)同步作业
姓名:___________班级:___________考号:___________
一、选择题
1.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为(  )
A. 48 B. 35 C. 30 D. 24
2.(2017江苏省苏州市)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为( )
A. B. C. D. ﹣8
3.若菱形的周长是16, ,则对角线的长度为(   )
A. 2 B. C. 4 D.
4.下列说法中,错误的是( )
A. 平行四边形的对角线互相平分 B. 对角线互相垂直的四边形是菱形
C. 菱形的对角线互相垂直 D. 对角线互相平分的四边形是平行四边形
5.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于(  )
A. 6 B. 3 C. 1.5 D. 0.75
6.菱形ABCD中,如图,AE⊥BC于E,AF⊥CD于F,若BE=EC,则∠EAF=( )
A. 75° B. 60° C. 50° D. 45°
7.己知菱形ABCD的边长为1,∠DAB=60°,E为AD上的动点,F在CD上,且AE+CF=1,设ΔBEF的面积为y,AE=x,当点E运动时,能正确描述y与x关系的图像是:( )
A. B.
C. D.
8.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
A. 16 B. 15 C. 14 D. 13
9.如图,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒.过点D作DF⊥BC于点F,连接DE,EF.当四边形AEFD是菱形时,t的值为( )
A. 20秒 B. 18秒 C. 12秒 D. 6秒
10.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )
A. (1345,0) B. (1345.5,) C. (1345,) D. (1345.5,0)
二、填空题
11.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.
12.如图,在菱形ABCD中,E是对角线AC上一点,若AE=BE=2,AD=3,则CE=_____.
13.如图,在中,,BD为AC的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接 BG,DF.若AF=8,CF=6,则四边形BDFG的周长为_______________.
14.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②AB=AC;③BF∥EC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_______(只填写序号).
15.如图,在边长为1的菱形 ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°.连接AE,再以AE为边作第三个菱形AEGH,使 ∠AEG=120°,…,按此规律所作的第n个菱形的边长是 _____________________.
16.如图,菱形中, =2, =5, 是上一动点(不与重合),∥交于, ∥交于,则图中阴影部分的面积为______________。
17.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
三、解答题
18.如图,在四边形中,,点是边的中点.点恰是点关于所在直线的对称点.
(1)证明:四边形为菱形;
(2)连接交于点.若,求线段的长.
19.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
20.如图,在平行四边形中,∠BAD的平分线交于E,点在上,且,连接.
(1) 判断四边形的形状并证明;
(2) 若、相交于点,且四边形的周长为, ,求的长度及四边形的面积.
21.如图,已知菱形ABCD的对角线AC 、BD相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:四边形BECD是平行四边形;
(2)若∠E=60°,AC=,求菱形ABCD的面积.
22.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.
(1)求证:四边形AEDF是菱形;
(2)求菱形AEDF的面积;
(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?
23.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.
(1)证明:BE=CF.
(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
参考答案
1.D
【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
2.A
【解析】试题解析:如图,连接BD,DF,DF交PP′于H.
由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,∵DF=,∴DH=﹣=,∴平行四边形PP′CD的面积=×8=.故选A.
3.C
【解析】∵菱形ABCD的周长是16,
∴AB=AD=CD=BC=4,
∵∠A=60°,
∴△ABD是等边三角形,
∴AB=AD=BD=4.
∴对角线BD的长度为4.
故选C.
点睛:此题考查了菱形的性质与等边三角形的判定与性质,难度不大,解题的关键是利用数形结合思想.
4.B
【解析】分析:根据特殊平行四边形的判定与性质,注意判断即可.
详解:根据平行四边形的性质:平行四边形的对角线互相平分,故正确;
根据菱形的判定,对角线互相垂直平分的四边形是菱形,故不正确;
根据菱形的性质,菱形的对角线互相垂直,故正确;
根据平行四边形的判定,对角线互相平分的四边形是平行四边形,故正确.
故选:B.
点睛:此题主要考查了特殊平行四边形的性质与判定,熟记平行四边形的性质与判定和菱形的判定与性质是解题关键.
5.B
【解析】菱形ABCD的周长为16,4, 菱形面积为12,BC边上的高为3,
∠ABD=∠CBD,P到BC距离等于h=PE,PE+PF=h+PF=3.所以选B.
点睛:菱形的面积公式有两个:
( 1)知道底和高,按照平行四边形的面积公式计算:S=ah.
(2)知道两条对角线的长a和b,面积S=.
6.B
【解析】连接AC,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵AE垂直平分边BC,AF垂直平分边CD,
∴AB=AC,AC=AD
∴△ABC,△ACD均是等边三角形,
∴∠BCA=60°,∠DCA=60°
∴∠BCD=120°
∴在四边形AECF中,
∠EAF=360°-180°-120°=60°.
故选:B
7.A
【解析】过点E作EM⊥AB,EN⊥DC,垂足为M、N,过点B作BG⊥DC,垂足为G.
∵AE=DF=x,
∴DE=FC=a-x.
∵∠A=∠NDE=∠C=60°,
∴EM= x,NE=(1-x),BG=,
∵△EFB的面积=菱形的面积-△AEB的面积-△DFE的面积-△FCB的面积,
∴y=
=
当x=0或x=1时,S△EFB有最大值;
故选A。
【点睛】本题主要考查的是四边形的综合应用,解答本题主要应用了菱形的性质、矩形的性质、全等三角形的性质和判定、等边三角形的判定、二次函数的顶点坐标公式,依据△EFB的面积=菱形的面积-△AEB的面积-△DFE的面积-△FCB的面积列出y与x的函数关系式是解题的关键。
8.A
【解析】试题分析:根据平行四边形的性质和角平分线的性质,可知四边形ABEF是菱形,然后根据菱形的对角线互相垂直平分,可知BF的一半为6,由勾股定理可求得AE=16.
故选:A
9.A
【解析】∵直角△ABC中,∠C=90° ∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=12CD=2t,
∵DF⊥BC
∴∠CFD=90°
∵∠B=90°
∴∠B=∠CFD
∴DF∥AB,
由(1)得:DF=AE=2t,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即120 4t=2t,
解得:t=20,
即当t=20时, AEFD是菱形;
故选A.
点睛:用菱形的性质进行计算或证明时,一般是根据菱形的性质,将有关的边、角的求解问题,转化到边上,再利用相等等条件求解,从而解决问题.本题中易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
10.B
【解析】连接AC,如图所示.
∵四边形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等边三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
画出第5次、第6次、第7次翻转后的图形,如图所示.
由图可知:每翻转6次,图形向右平移4.
∵2017=336×6+1,
∴点B1向右平移1344(即336×4)到点B2017.
∵B1的坐标为(1.5, ),
∴B2017的坐标为(1.5+1344,),
故选B.
点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移4”是解题的关键.
11.2,3,4.
【解析】分析:根据题意得出EF的取值范围,从而得出EF的值.
详解:∵AB=4,∠ABC=60°, ∴BD=4,
当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=4;
当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,
∴EF可能的整数值为2、3、4.
点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.
12.
【解析】连接BD,交AC于O点,设EO=x,
因为菱形ABCD,∴AD=AB,BD⊥AC,AO=OC
在直角三角形△ABO和△EBO中,根据勾股定理
∴AB2﹣AO2=BO2=BE2﹣EO2
∵AE=BE=2,AD=3
∴3×3﹣(2+x)2=2×2﹣x2
解得x=,
∴CE=OC+EO=OA+EO=2+x+x=,
∴CE=.
点睛:本题主要利用菱形的对角线互相垂直平分及勾股定理来解决.
13.20
【解析】分析:首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
详解:∵AG∥BD,BD=FG,
∴四边形BGFD是平行四边形,
∵CF⊥BD,
∴CF⊥AG,
又∵点D是AC中点,
∴BD=DF=AC=5,
∴四边形BGFD是菱形,
∴四边形BDFG的周长=4GF=20.
点睛:本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
14.②
【解析】分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
15.
【解析】连接DB,
∵四边形ABCD是菱形,
∴AD=AB,AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM=,
∴AC=,
同理可得AE=AC=()2,AG=AE=3=()3,
按此规律所作的第n个菱形的边长为()n 1,
故答案为()n 1.
点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.
16.
【解析】∵四边形ABCD是菱形,
∴AC⊥BD,BO=OD=12BD=2.5,
∴△ABC的面积是×AC×BO=2.5,
∵AD∥BC,AB∥DC,
又∵PE∥BC,PF∥CD,
∴PF∥AB,PE∥AD,
∴四边形AEPF是平行四边形,
∴△AEF的面积和△PEF的面积相等,
∴阴影部分的面积等于△ABC的面积是2.5.
故答案为:2.5.
17.
【解析】试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
故答案为: .
点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
18.(1)证明见解析;(2)
【解析】【分析】(1)根据直角三角形斜边中线的性质可得CE=AE,再根据轴对称的性质可得AE=AF,CE=CF,从而问题得证;
(2)由菱形的性质可得OE=OF,AO=CO,根据三角形的中位线可求得OE的长,从而即可得到OF的长.
(2)∵四边形是菱形,
∴,
∴,
∴.
【点睛】本题考查了菱形的判定与性质、直角三角形斜边中线的性质、轴对称的性质等,熟练掌握相关的性质定理是解题的关键.
19.(1)见解析;(2)4
【解析】分析:(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;
(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
详解:(1)证明:∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC
∴BC=2DF=2.
又∵∠ABC=90°,
∴AB===4.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=2S△BCD=S△ABC=AB BC=×4×2=4.
点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(2)的关键.
20.(1)四边形是菱形,证明略,(2)AE=8;四边形ABEF的面积是24
【解析】试题分析:(1)由角平分线的定义可得∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;
(2)根据菱形的性质可得AE⊥BF,BO=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长,根据菱形面积等于对角线乘积的一半即可得出结论.
试题解析:解:(1)∵AE是∠BAF的角平分线,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE.∵AB=AF,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;
(2)∵四边形ABEF为菱形,且周长为20,∴AB=5,AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8,菱形ABEF面积=AE×BF=×8×6=24.
点睛:此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.
21.(1)证明见解析;(2)菱形ABCD的面积为
【解析】试题分析:(1)根据菱形的对边平行且相等可得AB=AD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;
(2)根据(1)的结论,以及菱形的性质可求出两对角线,然后根据菱形的面积=对角线之积的一半可求解.
试题解析:(1)∵四边形ABCD是菱形,
∴AB=CD,AB∥CD.;
又∵BE=AB,
∴BE=CD.
∵BE∥CD,
∴四边形BECD是平行四边形.
(2)∵四边形BECD是平行四边形,
∴BD∥CE.
∴∠ABO=∠E=60°.
又∵四边形ABCD是菱形,
∴AC丄BD,OA=OC.
∴∠BOA=90°,
∴∠BAO=30°.
∵AC=,
∴OA=OC=.
∴OB=OD=2.
∴BD=4.
∴菱形ABCD的面积=
22.(1)证明见解析;(2)20;(3)2秒
【解析】试题分析:(1)根据等腰三角形的三线合一可得出D为BC的中点,结合E、F分别为AB、AC的中点可得出DE和DF是△ABC的中位线,根据中位线的定义可得出DE∥AC、DF∥AB,即四边形AEDF是平行四边形,根据三角形中位线定义可得出DE=AC、DF=AB,结合AB=AC即可得出DE=DF,从而得出四边形AEDF是菱形;
(2)根据中位线的定义可得出EF的长度,根据菱形的面积公式可求出菱形AEDF的面积;
(3)由中位线的定义可得出EF∥BC,根据平行四边形的判定定理可得出关于t的一元一次方程,解之即可得出结论.
详解:(1)证明:∵AB=AC,AD⊥BC,
∴D为BC的中点.
∵E、F分别为AB、AC的中点,
∴DE和DF是△ABC的中位线,
∴DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形.
∵E,F分别为AB,AC的中点,AB=AC,
∴AE=AF,
∴四边形AEDF是菱形,
(2)解:∵EF为△ABC的中位线,
∴EF=BC=5.
∵AD=8,AD⊥EF,
∴S菱形AEDF=AD EF=×8×5=20.
(3)解:∵EF∥BC,
∴EH∥BP.
若四边形BPHE为平行四边形,则须EH=BP,
∴5﹣2t=3t,
解得:t=1,
∴当t=1秒时,四边形BPHE为平行四边形.
∵EF∥BC,
∴FH∥PC.
若四边形PCFH为平行四边形,则须FH=PC,
∴2t=10﹣3t,
解得:t=2,
∴当t=2秒时,四边形PCFH为平行四边形.
点睛:本题考查了菱形的判定与性质、三角形的中位线、菱形的面积、等腰三角形的性质、平行四边形的判定以及解一元一次方程,解题的关键是:(1)根据三角形中位线的性质找出DE∥AC、DF∥AB;(2)牢记菱形的面积公式;(3)根据平行四边形的判定定理找出关于t的一元一次方程.
23.(1)见解析;(2);(3)见解析
【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;
(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
试题解析:(1)证明:连接AC,
∵∠1+∠2=60°,∠3+∠2=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=∠ADC=60°
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∴△ABC、△ACD为等边三角形
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,

∴△ABE≌△ACF.(ASA)
∴BE=CF.
(2)解:由(1)得△ABE≌△ACF,
则S△ABE=S△ACF.
故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,
是定值.
作AH⊥BC于H点,
则BH=2,
S四边形AECF=S△ABC
=
=
=;
(3)解:由“垂线段最短”可知,
当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,
正三角形AEF的面积会最小,
又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.
由(2)得,S△CEF=S四边形AECF﹣S△AEF
=﹣=.
点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)