物理:1.2《动量守恒定律》教案(2)(鲁科版选修3-5)

文档属性

名称 物理:1.2《动量守恒定律》教案(2)(鲁科版选修3-5)
格式 rar
文件大小 161.7KB
资源类型 教案
版本资源 鲁科版
科目 物理
更新时间 2009-07-21 21:42:00

图片预览

内容文字预览

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第二节 动量守恒定律 教案(2)
三维教学目标
1、知识与技能:理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围;
2、过程与方法:在理解动量守恒定律的确切含义的基础上正确区分内力和外力;
3、情感、态度与价值观:培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。
教学重点:动量守恒定律。
教学难点:动量守恒的条件。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引 入
演示:
(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子。
碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化。两个物体的质量比例不同时,它们的速度变化也不一样。物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒)。
(二)进行新课
1、实验探究的基本思路
(1) 一维碰撞
我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。
演示:如图所示,A、B是悬挂起来的钢球,把小球A拉起使其悬线与竖直线夹一角度a,放开后A球运动到最低点与B球发生碰撞,碰后B球摆幅为β角,如两球的质量mA=mB,碰后A球静止,B球摆角β=α,这说明A、B两球碰后交换了速度;
如果mA>mB,碰后A、B两球一起向右摆动;
如果mA以上现象可以说明什么问题?
结论:以上现象说明A、B两球碰撞后,速度发生了变化,当A、B两球的质量关系发生变化时,速度变化的情况也不同。
(2)追寻不变量
在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度。设两个物体的质量分别为m1、m2,碰撞前它们速度分别为v1、v2,碰撞后的速度分别为、,规定某一速度方向为正。碰撞前后速度的变化和物体的质量m的关系,我们可以做如下猜测:
分析:
①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”。
②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量。
2、实验条件的保证、实验数据的测量
(1)实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;
(2)用天平测量物体的质量;
(3)测量两个物体在碰撞前后的速度。
测量物体的速度可以有哪些方法?
总结:
速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。
如图所示,图中滑块上红色部分为挡光板,挡光板有一定的宽度,设为L,气垫导轨上黄色框架上安装有光控开关,并与计时装置相连,构成光电计时装置。
当挡光板穿入时,将光挡住开始计时,穿过后不再挡光则停止计时,设记录的时间为t,则滑块相当于在L的位移上运动了时间t,所以滑块匀速运动的速度v=L/t。
3、实验方案
(1)用气垫导轨作碰撞实验(如图所示)
实验记录及分析(a-1)
碰撞前 碰撞后
质量 m1=4 m2=4 m1=4 m2=4
速度 v1=9 v2=0 =3 =6
mv
mv2
v/m
实验记录及分析(a-2)
碰撞前 碰撞后
质量 m1=4 m2=2 m1=4 m2=2
速度 v1=9 v2=0 =4.5 =9
mv
mv2
v/m
实验记录及分析(a-3)
碰撞前 碰撞后
质量 m1=2 m2=4 m1=2 m2=4
速度 v1=6 v2=0 = -2 =4
mv
mv2
v/m
实验记录及分析(b)
碰撞前 碰撞后
质量 m1=4 m2=2 m1=4 m2=2
速度 v1=0 v2=0 = 2 = - 4
mv
mv2
v/m
实验记录及分析(c)
碰撞前 碰撞后
质量 m1=4 m2=2 m1=4 m2=2
速度 v1=9 v2=0 =6 = 6
mv
mv2
v/m
4、动量守恒定律(law of conservation of momentum)
(1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。
公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′
(2)注意点:
① 研究对象:几个相互作用的物体组成的系统(如:碰撞)。
② 矢量性:以上表达式是矢量表达式,列式前应先规定正方向;
③ 同一性(即所用速度都是相对同一参考系、同一时刻而言的)
④ 条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒;
5、系统 内力和外力
(1)系统:相互作用的物体组成系统。
(2)内力:系统内物体相互间的作用力
(3)外力:外物对系统内物体的作用力
例1:质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量为90kg,求小孩跳上车后他们共同的速度?
解:取小孩和平板车作为系统,由于整个系统所受合外为为零,所以系统动量守恒。规定小孩初速度方向为正,则:
相互作用前:v1=8m/s,v2=0,设小孩跳上车后他们共同的速度速度为v′,由动量守恒定律得m1v1=(m1+m2) v′解得
数值大于零,表明速度方向与所取正方向一致。
课后补充练习
(1)一爆竹在空中的水平速度为υ,若由于爆炸分裂成两块,质量分别为m1和m2,其中质量为m1的碎块以υ1速度向相反的方向运动,求另一块碎片的速度。
(2)小车质量为200kg,车上有一质量为50kg的人。小车以5m/s的速度向东匀速行使,人以1m/s的速度向后跳离车子,求:人离开后车的速度。(5.6m/s)
第二课时
三维教学目标
1、知识与技能:掌握运用动量守恒定律的一般步骤。
2、过程与方法:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。
教学重点:运用动量守恒定律的一般步骤。
教学难点:动量守恒定律的应用。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片、多媒体辅助教学设备。
(一)引入新课
动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内 远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。)
(二)进行新课
1、动量守恒定律与牛顿运动定律
用牛顿定律自己推导出动量守恒定律的表达式。
(1)推导过程:
根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是:

根据牛顿第三定律,F1、F2等大反响,即 F1= - F2 所以:
碰撞时两球间的作用时间极短,用表示,则有:

代入并整理得
这就是动量守恒定律的表达式。
(2)动量守恒定律的重要意义
从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
2、应用动量守恒定律解决问题的基本思路和一般方法
(1)分析题意,明确研究对象
在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。
(2)要对各阶段所选系统内的物体进行受力分析
弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。
(3)明确所研究的相互作用过程,确定过程的始、末状态
即系统内各个物体的初动量和末动量的量值或表达式。
注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)确定好正方向建立动量守恒方程求解。
3、动量守恒定律的应用举例
例2:如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的10倍。两车开始都处于静止状态,小孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面的速度v推出。每次推出,A车相对于地面的速度都是v,方向向左。则小孩把A车推出几次后,A车返回时小孩不能再接到A车?
分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。
解:取水平向右为正方向,小孩第一次
推出A车时:mBv1-mAv=0
即: v1=
第n次推出A车时:mAv +mBvn-1=-mAv+mBvn
则: vn-vn-1=,
所以: vn=v1+(n-1)
当vn≥v时,再也接不到小车,由以上各式得n≥5.5 取n=6
点评:关于n的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。
课后补充练习
(1)(2002年全国春季高考试题)在高速公路上发生一起交通事故,一辆质量为15000 kg向南行驶的长途客车迎面撞上了一辆质量为3000 kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车碰前以20 m/s的速度行驶,由此可判断卡车碰前的行驶速率为 ( )
A.小于10 m/s B.大于10 m/s小于20 m/s
C.大于20 m/s小于30 m/s D.大于30 m/s小于40 m/s
(2)如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有 ( )
A.A、B系统动量守恒 B.A、B、C系统动量守恒
C.小车向左运动 D.小车向右运动
(3)把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是
A.枪和弹组成的系统,动量守恒
B.枪和车组成的系统,动量守恒
C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒
D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零
(4)甲乙两船自身质量为120 kg,都静止在静水中,当一个质量为30 kg的小孩以相对于地面6 m/s的水平速度从甲船跳上乙船时,不计阻力,甲、乙两船速度大小之比:v甲∶v乙=_______.
(5)(2001年高考试题)质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾.现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度.
(6)如图所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg的小物体.乙车质量为4 kg,以5 m/s的速度向左运动,与甲车碰撞以后甲车获得8 m/s的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止 (g取10 m/s2)
4、反冲运动与火箭
演示实验1:老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围。
演示实验2:用薄铝箔卷成一个细管,一端封闭,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去。
演示实验3:把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来。
提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来呢?
看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。
(1)反冲运动
A、分析:细管为什么会向后退?(当气体从管内喷出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动。)
B、分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。
为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验。分析,礼花为什么会上天?
(2)火箭
对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。
播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情。阅读课后阅读材料——《航天技术的发展和宇宙航行》。
A
B
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网